Brazil 2017/6

Evan Chen

Twitch Solves ISL

Episode 26

Problem

Let a be a positive integer and p a prime divisor of $a^{3}-3 a+1$, with $p \neq 3$. Prove that p is of the form $9 k+1$ or $9 k-1$, where k is integer.

Video

https://youtu.be/A3AQVRvVk3g

External Link

https://aops.com/community/p9495218

Solution

Write $a=x+\frac{1}{x}$ for some $x \in \mathbb{F}_{p^{2}}$.
Claim. The element x has order 9 .
Proof. Because

$$
\begin{aligned}
0 & =\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right)+1 \\
& =x^{3}+x^{-3}+1=\frac{x^{6}+x^{3}+1}{x^{3}}
\end{aligned}
$$

This implies $x^{9}=1$, so x has order dividing 9 . However, $x^{3} \neq 1$ since $p>3$. Therefore, x has order exactly 9 .

Thus $9 \mid p^{2}-1$ so we're done.
Remark. Useful example for debugging: $a=7$ gives $p=17$. (Sometimes people think $9 \mid p-1$ should follow.)

