SIME 2020/13 Evan Chen

TWITCH SOLVES ISL

Episode 25

Problem

In acute triangle $\triangle ABC$, AB = 20 and AC = 21. Let the feet of the perpendiculars from A to the angle bisectors of $\angle ACB$ and $\angle ABC$ be X and Y, respectively. Let M be the midpoint of \overline{XY} . Suppose P is the point on side BC such that MP is parallel to the angle bisector of $\angle BAC$. Given that BP = 11, find the length of BC.

Video

https://youtu.be/hQ41Fgub7tU

Solution

The answer is BC = 205/9. Introduce the intouch triangle DEF.

Claim. Point M is the midpoint of \overline{AD} .

=

Proof. By EGMO Lemma 1.45, we have X on line DF. Since $\overline{DFX} \perp \overline{BI}$ and $\overline{BI} \perp \overline{AY}$, we have $\overline{DX} \parallel \overline{AY}$. Similarly, $\overline{DY} \parallel \overline{AX}$, and it follows DXAY is a parallelogram. \Box

Let K be the foot of angle bisector. Then it follows that $BP = \frac{1}{2}(BD + BK)$. Thus we may write in the usual notation

$$11 = BP = \frac{(s-b) + \frac{c}{c+b} \cdot a}{2} = \frac{\frac{a-1}{2} + \frac{20}{41}a}{2}$$

$$\Rightarrow \frac{45}{2} = \frac{81}{82} \cdot a \implies a = \frac{205}{9}.$$