MODS 2019/2

Evan Chen

Twitch Solves ISL

Episode 25

Problem

Find all positive integers b such that

$$
1+b+b^{2}+\cdots+b^{e}
$$

is a triangular number for every positive integer e.

Video

https://youtu.be/EE3z66dcd4s

Solution

The answer is $b=9$ only, which works since

$$
1+9+\cdots+9^{e}=\frac{1}{2} \frac{3^{e+1}+1}{2} \frac{3^{e+1}-1}{2}
$$

To prove $b=9$ is the only one possible, note that for $e=2$ and $e=4$ we find that

$$
8(b+1)+1 \quad \text { and } \quad 8\left(b^{3}+b^{2}+b+1\right)+1
$$

are perfect squares. Hence the product A defined by

$$
\begin{aligned}
A & : \\
& =4096[8(b+1)+1]\left[8\left(b^{3}+b^{2}+b+1\right)+1\right] \\
& =4096(8 b+9)\left(8 b^{3}+8 b^{2}+8 b+9\right) \\
& =4096\left(64 b^{4}+136 b^{3}+136 b^{2}+144 b+81\right) \\
& =4096 \cdot\left[\left(8 b^{2}+\frac{17}{2} b+\frac{255}{64}\right)^{2}+\frac{4881 b}{64}+\frac{266751}{4096}\right] \\
& =\left(512 b^{2}+544 b+255\right)^{2}+(312384 b+266751)
\end{aligned}
$$

is a perfect square divisible by 4096 .
However, $312384 b+266751<33\left(1024 b^{2}+1088 b+533\right)$ holds for all $b \geq 10$. So when $b \geq 10$ we have $\left(512 b^{2}+544 b+255\right)^{2}<A<\left(512 b^{2}+544 b+288\right)^{2}$. Since A was supposed to be a perfect square divisible by 4096, one would have to have $A=\left(512 b^{2}+544 b+256\right)^{2}$, so

$$
\begin{aligned}
\left(512 b^{2}+544 b+256\right)^{2} & =\left(512 b^{2}+544 b+255\right)^{2}+(312384 b+266751) \\
\Longleftrightarrow 312384 b+266751 & =1024 b^{2}+1088 b+511 \\
\Longleftrightarrow 0 & =1024 b^{2}-311296 b+266240 \\
\Longleftrightarrow 0 & =b^{2}-304 b+260
\end{aligned}
$$

But the discriminant $304^{2}-4 \cdot 260$ isn't a square, so this is a contradiction.
Hence, it suffices to exclude $b=1,2, \ldots, 8$ exhaustively. For $1+b$ to be a triangular number for $b \leq 8$, one needs $b \in\{2,5\}$, but $1+2+2^{2}=7$ and $1+5+5^{2}=31$ are not triangular. This concludes the proof.

