Iran TST 2019/15

Evan Chen

Twitch Solves ISL

Episode 25

Problem

In triangle $A B C, M, N$ and P are midpoints of sides $B C, C A$ and $A B$. Point K lies on segment $N P$ so that $A K$ bisects $\angle B K C$. Lines $M N$ and $B K$ intersect at E; lines $M P$ and $C K$ intersects at F. Suppose that H be the foot of perpendicular line from A to $B C$ and L the second intersection of circumcircle of triangles $A K H$ and $H E F$. Prove that $M K, E F$ and $H L$ are concurrent.

Video

https://youtu.be/3p2rWg5pGwk

Solution

Claim. Points A, E, F are collinear.
Proof. Pappus theorem on $B M C$ and $N K P$.

Let $T=\overline{A K} \cap \overline{B C}$.
Claim. Lines $B F, C E, A K$ are pairwise parallel.
Proof. We get $B F$ and $C E$ are parallel by Desargue theorem on $\triangle B P F$ and $\triangle E N C$. However, Desargue theorem on $\triangle B A C$ and $\triangle F T E$ gives $B F, A T, C E$ concurrent.

Claim. The quadrilateral $B F E C$ is an isosceles trapezoid.
Proof. Since $B K / K C=B T / T C=F A / A E=F K / K E$, we get $B F E C$ is cyclic.
We let $Z=\overline{E F} \cap \overline{B C}$.
Claim. $Z A K H$ is cyclic, with diameter $\overline{A Z}$.
Proof. Because $\angle Z H A=90^{\circ}=\angle Z K A$.
Finally, let $G=\overline{K M} \cap \overline{E F}$.
Claim. The point G satisfies

$$
G E \cdot G F=G A \cdot G Z
$$

Proof. Since $\overline{K M}$ is K-median of $\triangle K B C$, it follows $\overline{K G}$ is K-symmedian of $\triangle K E F$. However, the circle with diameter $\overline{A Z}$ is the K-Apollonian circle of $\triangle K E F$, so it passes through the point Q (not shown) such that $E Q F K$ is a harmonic quadrilateral. Since G lies on $K Q$, the conclusion follows

Hence the point G is the concurrency point described in the problem, as $H L$ is the radical axis of $(A K H)$ and $(H E F)$.

