Putnam 2019 A5
 Evan Chen

Twitch Solves ISL

Episode 24

Problem

Let p be an odd prime and define

$$
q(x)=\sum_{k=1}^{p-1} k^{\frac{p-1}{2}} x^{k}
$$

in $\mathbb{F}_{p}[x]$. Find the greatest nonnegative integer n such that $(x-1)^{n}$ divides $q(x)$ in $\mathbb{F}_{p}[x]$.

Video

https://youtu.be/K_YcIS8PW3g

External Link

https://aops.com/community/p13616866

Solution

The answer is $n=\frac{1}{2}(p-1)$.
We use derivatives in the following way.
Claim. Define $q_{0}=q$, and $q_{i+1}=x \cdot q_{i}^{\prime}$. Suppose n is such that q_{1}, \ldots, q_{n-1} has $x=1$ as a root, but q_{n} does not have $x=1$ as a root. Then n is the multiplicity of $x=1$ in q.

Proof. This follows from the fact that q_{i+1} will have multiplicity of $x=1$ one less than in q_{i}.

On the other hand, we may explicitly compute

$$
q_{n}(1)=\sum_{k=1}^{p-1} k^{n+\frac{p-1}{2}} .
$$

It is a classical fact that the sum of powers vanishes if and only if $p-1 \nmid n+\frac{p-1}{2}$ (this can be proven by taking a primitive root, say). The smallest n for which this fails is $n=\frac{p-1}{2}$.

