SIME 2020/14

Evan Chen
Twitch Solves ISL
Episode 23

Problem

Let $P(x)=x^{3}-3 x^{2}+3$. For how many positive integers $n<1000$ does there not exist a pair (a, b) of positive integers such that the equation

$$
\underbrace{P(P(\ldots P}_{a \text { times }}(x) \ldots))=\underbrace{P(P(\ldots P}_{b \text { times }}(x) \ldots))
$$

has exactly n distinct real solutions?

Video

https://youtu.be/6RJbk6tTUi0

External Link

https://aops.com/community/p16682015

Solution

The idea is to replace x with the variable $y=2 x+1$.
To formally, express this consider the substitution $T(y)=2 y+1$, which is a bijective function. Then

$$
P(T(y))=T\left(4 y^{3}-3 y\right)
$$

Thus, if we define $Q(y)=4 y^{3}-3 y$, the problem is actually equivalent to saying that

$$
Q(Q(\ldots Q(y)))=Q(Q(\ldots Q(y)))
$$

where Q appears a times on the left and b times on the right.
We now substitute $y=\cos \theta$ for $\theta \in \mathbb{C}$, recognizing Q as the triple-angle formula: $Q(\cos \theta)=\cos 3 \theta$. Thus the condition then becomes equivalent to

$$
\cos \left(3^{a} \theta\right)=\cos \left(3^{b} \theta\right)
$$

Claim. Assume $a<b$. There are $n=3^{b}-3^{a}+1$ solutions to the above equation in terms of y, as a function of a and b.

Proof. It is simplest to re-parametrize by $z \in \mathbb{C}$ on the unit circle; the relevant condition is

$$
z^{3^{a}}+z^{-3^{a}}=z^{3^{b}}+z^{-3^{b}} .
$$

which simplifies to

$$
\left(z^{3^{b}+3^{a}}-1\right)\left(z^{3^{b}-3^{a}}-1\right)=0 .
$$

Note there are $\operatorname{gcd}\left(3^{b}+3^{a}, 3^{b}-3^{a}\right)=2 \cdot 3^{a}$ repeated roots. So in total there are $2 \cdot\left(3^{b}-3^{a}\right)$ To avoid double counting we only take those z with $\Im z \geq 0$. There are two roots $z= \pm 1$ on the real axis; so this gives the final count $n=3^{b}-3^{a}+1$.

A calculations gives an answer of $999-(1+2+3+4+5)=984$ now.

