# Iran 2010/2/6 <br> Evan Chen 

## Twitch Solves ISL

Episode 23

## Problem

Let $g$ and $n$ be positive integers such that $\operatorname{gcd}\left(g^{2}-g, n\right)=1$. Define $B$ as the set of possible remainders when $g^{k}$ is divided by $n$, across all integers $k \geq 0$. For each $i=0, \ldots, g-1$ define $a_{i}$ as the number of elements of $B$ which lie in the interval

$$
\left[\frac{n i}{g}, \frac{n(i+1)}{g}\right) .
$$

Show that $g-1$ divides $\sum_{i=0}^{g-1} i a_{i}$.

## Video

https://youtu.be/CC5w30L118A

## Solution

Let $e>0$ denote the order of $g$ modulo $n$. Also, by $a \% n$ we mean the remainder when $a$ is divided by $n$.
The main observation is that an element $b \in B$ will fall in the $\left\lfloor\frac{g \cdot b}{n}\right\rfloor$ 'th interval, and contribute that amount to the sum given in the problem. This gives the first equality in the following calculation:

$$
\begin{aligned}
\sum i a_{i} & =\sum_{b \in B}\left\lfloor\frac{g \cdot b}{n}\right\rfloor \\
& =\sum_{k=0}^{e-1}\left\lfloor\frac{g \cdot\left(g^{k} \% n\right)}{n}\right\rfloor \\
& =\sum_{k=0}^{e-1} \frac{g \cdot\left(g^{k} \% n\right)-\left(g \cdot\left(g^{k} \% n\right)\right) \% n}{n} \\
& =\sum_{k=0}^{e-1} \frac{g \cdot\left(g^{k} \% n\right)-\left(g^{k+1} \% n\right)}{n}
\end{aligned}
$$

We may now take modulo $g-1$, noting that $g \equiv 1(\bmod g-1)$ and $n$ is relatively prime to $g-1$, hence

$$
\begin{aligned}
\sum i a_{i} & =\sum_{k=0}^{e-1} \frac{\left(g^{k} \% n\right)-\left(g^{k+1} \% n\right)}{n}(\bmod g-1) \\
& =0
\end{aligned}
$$

as desired, with the sum telescoping.

