SIME 2020/15
 Evan Chen

Twitch Solves ISL

Episode 22

Problem

Triangle $A B C$ has side lengths $A B=13, B C=14$, and $A C=15$. Suppose M and N are the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively. Let P be a point on $\overline{M N}$, such that if the circumcircles of triangles $\triangle B M P$ and $\triangle C N P$ intersect at a second point Q distinct from P, then $P Q$ is parallel to $A B$. Calculate $A P^{2}$.

Video

https://youtu.be/EIz39iVoGcg

Solution

We ignore the condition that $\overline{P Q} \| \overline{A B}$ momentarily, and prove the following two claims.
Claim. The point Q lies on $(A B C)$.
Proof. Miquel point of P, C, B with respect to $\triangle A M N$.
Claim. The line $P Q$ passes through the reflection of A over the perpendicular bisector of line $B C$.

Proof. Because $\measuredangle B Q P=\measuredangle B M P=\measuredangle N M A=\measuredangle C B A=\measuredangle B C A^{\prime}=\measuredangle B Q A^{\prime}$.

We now bring in the condition of the problem. We have $A M P A^{\prime}$ is a parallelogram in the given problem, so $M P=A A^{\prime}$, essentially locating P. To compute $A A^{\prime}$, we use Ptolemy's theorem by

$$
A A^{\prime} \cdot 14+13^{2}=15^{2} \Longrightarrow M P=A A^{\prime}=4
$$

and a calculation on $\triangle A M N$ now gives $A P^{2}=153 / 4$.

