Croatia TST 2016/2/2
 Evan Chen

Twitch Solves ISL

Episode 22

Problem

Let $n>1$ be an integer. We have an $n \times n$ board with two diagonally opposite corner cells colored in black; the rest is colored white. A legal move consists of picking row or column and inverting the colour of cells which are in that row/column. What is the least additional number of cells that we need to colour black so that we can eventually turn all cells black?

Video

https://youtu.be/BulxRrkmQUQ

External Link

https://aops.com/community/p6260550

Solution

The answer is $2 n-4$ additional cells.
We'll do the usual reduction: all the moves commute with each other and doing the same move twice does nothing. Also, it'll be more natural to get all-white to the "starting" state; we'll do so as they are equivalent anyways.

Thus, we may as well assume (by permuting rows/columns)

- we operated on the first a rows;
- we operated on the first b columns.

The given hypothesis is equivalent to saying that if we do this operation on an initially empty board, then we got k black cells, and at least two of them are not in the same row or column. The problem asks for the smallest possible value of $k-2$.

However, the point is that we have the explicit value

$$
k=a(n-b)+b(n-a)
$$

It will be more economical actually to write

$$
n^{2}-k=a b+(n-a)(n-b) \leq \sqrt{\left(a^{2}+(n-a)^{2}\right)\left(b^{2}+(n-b)^{2}\right)}
$$

We now analyze two cases:

- If any of a or b are 0 or n, we may directly check we need $k \geq 2 n$ in order to have two black cells not in the same row or column.
- Otherwise, $x^{2}+(n-x)^{2} \leq 1+(n-1)^{2}$ for $1 \leq x \leq n-1$, so

$$
n^{2}-k \leq 1^{2}+(n-1)^{2}
$$

which means $k \geq 2 n-2$.
In conclusion, $k-2 \geq 2 n-4$; and moreover equality occurs at $a=b=1$, which is checked to indeed work.

