Mexico 2019/6 Evan Chen

Twitch Solves ISL

Episode 21

Problem

Let ABC be a triangle such that $\angle BAC = 45^{\circ}$. Let H and O be the orthocenter and circumcenter of ABC, respectively. Let ω be the circumcircle of ABC and P the point on ω such that the circumcircle of PBH is tangent to BC. Let X and Y be the circumcenters of PHB and PHC respectively. Let O_1, O_2 be the circumcenters of PXOand PYO respectively. Prove that O_1 and O_2 lie on AB and AC, respectively.

Video

https://youtu.be/lxuqQaN59tU

External Link

https://aops.com/community/p13469495

Solution

We let \overline{BK} and \overline{CL} be the altitudes of $\triangle ABC$. The circle with diameter \overline{BC} will be denoted by γ ; and we'll denote the center by M.

Claim. The circle (PHC) is also tangent to line BC.

Proof. We are given $\angle PBC = \angle PHB$. Since $\angle BHC = -\angle BAC = -\angle BPC$, it follows $\angle PCB = \angle PHC$ too.

Claim. Points P, H, M are collinear. Actually, P is the inverse of H with respect to γ .

Proof. Line *PH* bisects \overline{BC} by radical axis on (*BPH*) and (*CPH*). Also, $MH \cdot MP = MB^2 = MC^2$.

We now actually use the condition that $\angle BAC = 45^{\circ}$, which is equivalent to $\angle BHC = 135^{\circ}$ and $\angle BOC = 90^{\circ}$. This means that O is the arc midpoint of (BC).

Claim. *LOKH* is a parallelogram.

Proof. Since arcs KL and OB of γ measure 90°, the arcs BL and OK are equal, hence $\overline{LO} \parallel \overline{BK}$. Similarly $\overline{KO} \parallel \overline{CL}$.

Claim. We have $\measuredangle XPO = 45^{\circ}$.

Proof. Since $\triangle HLK \sim \triangle HBC$, and \overline{HO} bisects \overline{LK} by previous claim, it follows

$$\measuredangle BHM = \measuredangle OHL.$$

Now

$$\begin{split} \measuredangle XPO &= \measuredangle XPH + \measuredangle MPO = (90^{\circ} - \measuredangle HBP) + \measuredangle HOM \\ &= 90^{\circ} - \measuredangle MBP + \measuredangle MBH + \measuredangle HOM \\ &= 90^{\circ} - \measuredangle BHM + \measuredangle MBH + \measuredangle HOM \\ &= 90^{\circ} - \measuredangle OHL + \measuredangle MBH + \measuredangle HOM \\ &= 90^{\circ} + \measuredangle (LH, HO) + \measuredangle (MB, BH) + \measuredangle (HO, MO) \\ &= 90^{\circ} + \measuredangle (LH, BH) + \measuredangle (MB, MO) = 45^{\circ}. \end{split}$$

Claim. We have X, O_1 , O, L, H are concyclic, in the circle with diameter \overline{XO} .

Proof. First, since $\triangle LBH$ is a 45°-45°-90° triangle and XB = XH, it follows that \overline{XL} is the perpendicular bisector of \overline{BH} . Hence, $\measuredangle XLO = 90^\circ$.

On the other hand, since $\angle XPO = 45^{\circ}$, we have $\angle XO_1O = 90^{\circ}$. This implies concyclic.

Finally, $\measuredangle BLO = 135^{\circ}$ and

$$\measuredangle OLO_1 = \measuredangle OXO_1 = 90^\circ - \measuredangle XPO = 45^\circ$$

this implies O_1 lies on line BL, ergo lies on line AB.