IMO 1979/3
 Evan Chen

Twitch Solves ISL
Episode 21

Problem

Two circles in a plane intersect and A is one of the points of intersection. Starting simultaneously from A two points move with constant speed, each travelling along its own circle in the same direction. The two points return to A simultaneously after one revolution. Prove that there is a fixed point P in the plane such that the two points are always equidistant from P.

Video

https://youtu.be/cavQ_A0QS8o

External Link

https://aops.com/community/p367352

Solution

Let B and C be the antipodes of A on the two circles and let D be the foot of the altitude from A, which is the other intersection point of the two circles. Also, let M be the midpoint of $\overline{B C}$, and construct rectangle $A D M Z$. Our claim is that Z is the fixed point.

We let X and Y be the two points; by the condition the angles are the same. So we have a spiral similarity

$$
\triangle A X Y \sim \triangle A B C
$$

Now let N be the midpoint of $\overline{X Y}$. By spiral similarity, since N maps to M, it follows M, N, A, and D are cyclic too. So actually N lies on the circumcircle of rectangle $A D M Z$, meaning $\overline{Z N} \perp \overline{X Y}$, hence $Z X=Z Y$ as needed.

Remark. The special point Z can be identified by selecting the special case $X \rightarrow A$, $Y \rightarrow A$ and $X=B, Y=C$.

