Singapore 2017/J2/2

Evan Chen

Twitch Solves ISL

Episode 20

Problem

Let n be a positive integer and $a_{1}, a_{2}, \ldots, a_{2 n}$ are $2 n$ distinct integers. Given the equation

$$
\left|x-a_{1}\right|\left|x-a_{2}\right| \ldots\left|x-a_{2 n}\right|=(n!)^{2}
$$

has an integer solution, determine its value in terms of the a_{i}.

Solution

The left-hand side has $2 n$ different nonzero numbers. So the absolute values are at least $n!^{2}$; hence it follows that the a_{i} are a shift of $(-n,-(n-1), \ldots,-1,1, \ldots, n)$.

One of several valid functions is to take x to be the average of the a_{i}.

