Romania JBMO TST 2019/3.1

Evan Chen

Twitch Solves ISL

Episode 19

Problem

Find all pairs (a, b) of relatively prime positive integers such that

$$
a^{2}+b=(a-b)^{3}
$$

Video

https://youtu.be/yAU826DfIdo

Solution

The only answer is $(a, b)=(5,2)$ which works.
To see it is the only one, note that taking modulo a and b respectively gives:

- $b=(-b)^{3}(\bmod a) \Longrightarrow a \mid b^{2}+1$
- $a^{2}=a^{3}(\bmod b) \Longrightarrow b \mid a-1$.

Let us set $a=k \cdot b+1$. Then the first equation gives

$$
k b+1\left|k\left(b^{2}+1\right)=k \cdot k b+k \Longrightarrow k b+1\right|-b+k .
$$

For size reasons this forces $k=b$, else $|k b+1|>|k-b|>0$.
In other words, we need $a=b^{2}+1$. So

$$
\left(b^{2}+1\right)^{2}+b=\left(b^{2}+1-b\right)^{3} .
$$

Now a calculation shows

$$
\left(b^{2}-b+1\right)^{3}-\left[\left(b^{2}+1\right)^{2}+b\right]=b(b-2)\left(b^{2}+1\right)\left(b^{2}+b-2\right)
$$

so $b=2$ is the only integer solution.

