Shortlist 2004 G6
 Evan Chen

Twitch Solves ISL

Episode 17

Problem

Let \mathcal{P} be a convex polygon. Prove that there exists a convex hexagon that is contained in \mathcal{P} and whose area is at least $\frac{3}{4}$ of the area of the polygon \mathcal{P}.

Video

https://youtu.be/okLAo36yxdk

External Link

https://aops.com/community/p143293

Solution

We are going to solve the problem when \mathcal{P} is replaced by a differentiable convex curve. (The proof requires only trivial modifications for a polygon; in any case, polygons can approximate convex curves arbitrarily well and vice versa.)

We start by committing to take the longest segment $A B$ as a major diagonal of our hexagon. Therefore, this cuts \mathcal{P} into two halves and we deal with each half separately.

Orient $A B$ on the x-axis with $A=(0,0)$ and $B=(1,0)$ and consider the region above the x-axis. Let C and D be the points on the curve with x-coordinates $\frac{1}{4}$ and $\frac{3}{4}$ respectively. Then the lines $x=0$ and $x=1$, together with the tangents at C and D, determine a pentagon $A X Y Z B$ that encloses \mathcal{P} (since \mathcal{P} is convex), as shown.

The claim is that $A C D B$ fits the bill:
Claim. We have

$$
[A C D B] \geq \frac{3}{4}[A X Y Z B] .
$$

Proof. Let h_{1} and h_{2} be the y-coordinates of C and D. Also, as depicted, let $x=1 / 2$ meet $Y D Z$ at P and $X C Y$ at Q, and let $M=(1 / 2,0)$. Then

$$
\begin{aligned}
\frac{4}{3} \cdot[A C D B] & =\frac{4}{3}\left(\frac{1}{8} h_{1}+\frac{1}{4}\left(h_{1}+h_{2}\right)+\frac{1}{8} h_{2}\right)=\frac{1}{2}\left(h_{1}+h_{2}\right) \\
& =[A X Q M]+[B Z P M] \geq[A X Y Z B] .
\end{aligned}
$$

Note that equality when $P=Q=Y$.
Repeating the same proof for the bottom half of \mathcal{P} exhibits the desired hexagon.

