Shortlist 2004 G6

Evan Chen

TWITCH SOLVES ISL

Episode 17

Problem

Let \mathcal{P} be a convex polygon. Prove that there exists a convex hexagon that is contained in \mathcal{P} and whose area is at least $\frac{3}{4}$ of the area of the polygon \mathcal{P} .

Video

https://youtu.be/okLAo36yxdk

External Link

https://aops.com/community/p143293

Solution

We are going to solve the problem when \mathcal{P} is replaced by a differentiable convex curve. (The proof requires only trivial modifications for a polygon; in any case, polygons can approximate convex curves arbitrarily well and vice versa.)

We start by committing to take the longest segment AB as a major diagonal of our hexagon. Therefore, this cuts \mathcal{P} into two halves and we deal with each half separately.

Orient AB on the x-axis with A = (0,0) and B = (1,0) and consider the region above the x-axis. Let C and D be the points on the curve with x-coordinates $\frac{1}{4}$ and $\frac{3}{4}$ respectively. Then the lines x = 0 and x = 1, together with the tangents at C and D, determine a pentagon AXYZB that encloses \mathcal{P} (since \mathcal{P} is convex), as shown.

The claim is that ACDB fits the bill:

Claim. We have

$$[ACDB] \ge \frac{3}{4}[AXYZB].$$

Proof. Let h_1 and h_2 be the y-coordinates of C and D. Also, as depicted, let x = 1/2 meet YDZ at P and XCY at Q, and let M = (1/2, 0). Then

$$\frac{4}{3} \cdot [ACDB] = \frac{4}{3} \left(\frac{1}{8} h_1 + \frac{1}{4} (h_1 + h_2) + \frac{1}{8} h_2 \right) = \frac{1}{2} (h_1 + h_2)$$
$$= [AXQM] + [BZPM] \ge [AXYZB].$$

Note that equality when P = Q = Y.

Repeating the same proof for the bottom half of \mathcal{P} exhibits the desired hexagon.