USAMO 2020/6

Evan Chen

Twitch Solves ISL

Episode 16

Problem

Let $n \geq 2$ be an integer. Let $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$ and $y_{1} \geq y_{2} \geq \cdots \geq y_{n}$ be $2 n$ real numbers such that

$$
\begin{aligned}
0 & =x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}+\cdots+y_{n} \\
\text { and } \quad 1 & =x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}
\end{aligned}
$$

Prove that

$$
\sum_{i=1}^{n}\left(x_{i} y_{i}-x_{i} y_{n+1-i}\right) \geq \frac{2}{\sqrt{n-1}}
$$

Video

https://youtu.be/r7j0oRtpErA

External Link

https://aops.com/community/p15953303

Solution

We present two approaches. In both approaches, it's helpful motivation that for even n, equality occurs at

$$
\begin{aligned}
& \left(x_{i}\right)=(\underbrace{\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}}_{n / 2}, \underbrace{-\frac{1}{\sqrt{n}}, \ldots,-\frac{1}{\sqrt{n}}}_{n / 2}) \\
& \left(y_{i}\right)=(\frac{n-1}{\sqrt{n(n-1)}},-\underbrace{\frac{1}{\sqrt{n(n-1)}}, \ldots,-\frac{1}{\sqrt{n(n-1)}}}_{n-1})
\end{aligned}
$$

First approach (expected value). For a permutation σ on $\{1,2, \ldots, n\}$ we define

$$
S_{\sigma}=\sum_{i=1}^{n} x_{i} y_{\sigma(i)}
$$

Claim. For random permutations $\sigma, \mathbb{E}\left[S_{\sigma}\right]=0$ and $\mathbb{E}\left[S_{\sigma}^{2}\right]=\frac{1}{n-1}$.
Proof. The first one is clear.
Since $\sum_{i<j} 2 x_{i} x_{j}=-1$, it follows that (for fixed i and j), $\mathbb{E}\left[y_{\sigma(i)} y_{\sigma(j)}\right]=-\frac{1}{n(n-1)}$, Thus

$$
\begin{aligned}
\sum_{i} x_{i}^{2} \cdot \mathbb{E}\left[y_{\sigma(i)}^{2}\right] & =\frac{1}{n} \\
2 \sum_{i<j} x_{i} x_{j} \cdot \mathbb{E}\left[y_{\sigma(i)} y_{\sigma(j)}\right] & =(-1) \cdot \frac{1}{n(n-1)}
\end{aligned}
$$

the conclusion follows.
Claim (A random variable in $[0,1]$ has variance at most $1 / 4$). If A is a random variable with mean μ taking values in the closed interval $[m, M]$ then

$$
\mathbb{E}\left[(A-\mu)^{2}\right] \leq \frac{1}{4}(M-m)^{2}
$$

Proof. By shifting and scaling, we may assume $m=0$ and $M=1$, so $A \in[0,1]$ and hence $A^{2} \leq A$. Then

$$
\mathbb{E}\left[(A-\mu)^{2}\right]=\mathbb{E}\left[A^{2}\right]-\mu^{2} \leq \mathbb{E}[A]-\mu^{2}=\mu-\mu^{2} \leq \frac{1}{4}
$$

This concludes the proof.
Thus the previous two claims together give

$$
\max _{\sigma} S_{\sigma}-\min _{\sigma} S_{\sigma} \geq \sqrt{\frac{4}{n-1}}=\frac{2}{\sqrt{n-1}}
$$

But $\sum_{i} x_{i} y_{i}=\max _{\sigma} S_{\sigma}$ and $\sum_{i} x_{i} y_{n+1-i}=\min _{\sigma} S_{\sigma}$ by rearrangement inequality and therefore we are done.

Outline of second approach (by convexity, due to Alex Zhai). We will instead prove a converse result: given the hypotheses

- $x_{1} \geq \cdots \geq x_{n}$
- $y_{1} \geq \cdots \geq y_{n}$
- $\sum_{i} x_{i}=\sum_{i} y_{i}=0$
- $\sum_{i} x_{i} y_{i}-\sum_{i} x_{i} y_{n+1-i}=\frac{2}{\sqrt{n-1}}$
we will prove that $\sum x_{i}^{2} \sum y_{i}^{2} \leq 1$.
Fix the choice of y 's. We see that we are trying to maximize a convex function in n variables $\left(x_{1}, \ldots, x_{n}\right)$ over a convex domain (actually the intersection of two planes with several half planes). So a maximum can only happen at the boundaries: when at most two of the x 's are different.

An analogous argument applies to y. In this way we find that it suffices to consider situations where x_{\bullet} takes on at most two different values. The same argument applies to y.

At this point the problem can be checked directly.

