USAMO 2020/6

Evan Chen

TWITCH SOLVES ISL

Episode 16

Problem

Let $n \geq 2$ be an integer. Let $x_1 \geq x_2 \geq \cdots \geq x_n$ and $y_1 \geq y_2 \geq \cdots \geq y_n$ be 2n real numbers such that

$$0 = x_1 + x_2 + \dots + x_n = y_1 + y_2 + \dots + y_n,$$

and
$$1 = x_1^2 + x_2^2 + \dots + x_n^2 = y_1^2 + y_2^2 + \dots + y_n^2.$$

Prove that

$$\sum_{i=1}^{n} (x_i y_i - x_i y_{n+1-i}) \ge \frac{2}{\sqrt{n-1}}.$$

Video

https://youtu.be/r7j0oRtpErA

External Link

https://aops.com/community/p15953303

Solution

We present two approaches. In both approaches, it's helpful motivation that for even n, equality occurs at

$$(x_i) = \left(\underbrace{\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}}_{n/2}, \underbrace{-\frac{1}{\sqrt{n}}, \dots, -\frac{1}{\sqrt{n}}}_{n/2}\right)$$
$$(y_i) = \left(\underbrace{\frac{n-1}{\sqrt{n(n-1)}}, \underbrace{-\frac{1}{\sqrt{n(n-1)}}, \dots, -\frac{1}{\sqrt{n(n-1)}}}}_{n-1}\right)$$

First approach (expected value). For a permutation σ on $\{1, 2, ..., n\}$ we define

$$S_{\sigma} = \sum_{i=1}^{n} x_i y_{\sigma(i)}.$$

Claim. For random permutations σ , $\mathbb{E}[S_{\sigma}] = 0$ and $\mathbb{E}[S_{\sigma}^2] = \frac{1}{n-1}$

Proof. The first one is clear.

Since $\sum_{i < j} 2x_i x_j = -1$, it follows that (for fixed i and j), $\mathbb{E}[y_{\sigma(i)} y_{\sigma(j)}] = -\frac{1}{n(n-1)}$, Thus

$$\sum_{i} x_{i}^{2} \cdot \mathbb{E}\left[y_{\sigma(i)}^{2}\right] = \frac{1}{n}$$

$$2\sum_{i < j} x_{i}x_{j} \cdot \mathbb{E}\left[y_{\sigma(i)}y_{\sigma(j)}\right] = (-1) \cdot \frac{1}{n(n-1)}$$

the conclusion follows.

Claim (A random variable in [0,1] has variance at most 1/4). If A is a random variable with mean μ taking values in the closed interval [m,M] then

$$\mathbb{E}[(A-\mu)^2] \le \frac{1}{4}(M-m)^2.$$

Proof. By shifting and scaling, we may assume m=0 and M=1, so $A\in [0,1]$ and hence $A^2\leq A$. Then

$$\mathbb{E}[(A-\mu)^2] = \mathbb{E}[A^2] - \mu^2 \le \mathbb{E}[A] - \mu^2 = \mu - \mu^2 \le \frac{1}{4}.$$

This concludes the proof.

Thus the previous two claims together give

$$\max_{\sigma} S_{\sigma} - \min_{\sigma} S_{\sigma} \ge \sqrt{\frac{4}{n-1}} = \frac{2}{\sqrt{n-1}}.$$

But $\sum_i x_i y_i = \max_{\sigma} S_{\sigma}$ and $\sum_i x_i y_{n+1-i} = \min_{\sigma} S_{\sigma}$ by rearrangement inequality and therefore we are done.

Outline of second approach (by convexity, due to Alex Zhai). We will instead prove a converse result: given the hypotheses

- $x_1 \ge \cdots \ge x_n$
- $y_1 \ge \cdots \ge y_n$
- $\sum_{i} x_i = \sum_{i} y_i = 0$
- $\sum_{i} x_{i} y_{i} \sum_{i} x_{i} y_{n+1-i} = \frac{2}{\sqrt{n-1}}$

we will prove that $\sum x_i^2 \sum y_i^2 \le 1$.

Fix the choice of y's. We see that we are trying to maximize a convex function in n variables (x_1, \ldots, x_n) over a convex domain (actually the intersection of two planes with several half planes). So a maximum can only happen at the boundaries: when at most two of the x's are different.

An analogous argument applies to y. In this way we find that it suffices to consider situations where x_{\bullet} takes on at most two different values. The same argument applies to y_{\bullet} .

At this point the problem can be checked directly.