USAMO 2020/5

Evan Chen

Twitch Solves ISL

Episode 16

Problem

A finite set S of points in the coordinate plane is called overdetermined if $|S| \geq 2$ and there exists a nonzero polynomial $P(t)$, with real coefficients and of degree at most $|S|-2$, satisfying $P(x)=y$ for every point $(x, y) \in S$.

For each integer $n \geq 2$, find the largest integer k (in terms of n) such that there exists a set of n distinct points that is not overdetermined, but has k overdetermined subsets.

Video

https://youtu.be/r7j0oRtpErA

External Link

https://aops.com/community/p15952824

Solution

We claim the answer is $k=2^{n-1}-n$. We denote the n points by A.
Throughout the solution we will repeatedly use the following fact:
Lemma. If S is a finite set of points in the plane there is at most one polynomial with real coefficients and of degree at most $|S|-1$ whose graph passes through all points of S.

Proof. If any two of the points have the same x-coordinate then obviously no such polynomial may exist at all.

Otherwise, suppose f and g are two such polynomials. Then $f-g$ has degree at most $|S|-1$, but it has $|S|$ roots, so is the zero polynomial.

Remark. Actually Lagrange interpolation implies that such a polynomial exists as long as all the x-coordinates are different!

Construction: Consider the set $A=\{(1, a),(2, b),(3, b),(4, b), \ldots,(n, b)\}$, where a and b are two distinct nonzero real numbers. Any subset of the latter $n-1$ points with at least one element is overdetermined, and there are $2^{n-1}-n$ such sets.

Bound: Say a subset S of A is flooded if it is not overdetermined. For brevity, an m-set refers simply to a subset of A with m elements.
Claim. If S is an flooded m-set for $m \geq 3$, then at most one ($m-1$)-subset of S is not flooded.

Proof. Let $S=\left\{p_{1}, \ldots, p_{m}\right\}$ be flooded. Assume for contradiction that $S-\left\{p_{i}\right\}$ and $S-\left\{p_{j}\right\}$ are both overdetermined. Then we can find polynomials f and g of degree at most $m-3$ passing through $S-\left\{p_{i}\right\}$ and $S-\left\{p_{j}\right\}$, respectively.

Since f and g agree on $S-\left\{p_{i}, p_{j}\right\}$, which has $m-2$ elements, by the lemma we have $f=g$. Thus this common polynomial (actually of degree at most $m-3$) witnesses that S is overdetermined, which is a contradiction.

Claim. For all $m=2,3, \ldots, n$ there are at least $\binom{n-1}{m-1}$ flooded m-sets of A.
Proof. The proof is by downwards induction on m. The base case $m=n$ is by assumption.
For the inductive step, suppose it's true for m. Each of the $\binom{n-1}{m-1}$ flooded m-sets has at least $m-1$ flooded ($m-1$)-subsets. Meanwhile, each $(m-1)$-set has exactly $n-(m-1)$ parent m-sets. We conclude the number of flooded sets of size $m-1$ is at least

$$
\frac{m-1}{n-(m-1)}\binom{n-1}{m-1}=\binom{n-1}{m-2}
$$

as desired.
This final claim completes the proof, since it shows there are at most

$$
\sum_{m=2}^{n}\left(\binom{n}{m}-\binom{n-1}{m-1}\right)=2^{n-1}-n
$$

overdetermined sets, as desired.
Remark (On repeated x-coordinates). Suppose A has two points p and q with repeated x coordinates. We can argue directly that A satisfies the bound. Indeed, any overdetermined set contains at most one of p and q. Moreover, given $S \subseteq A-\{p, q\}$, if $S \cup\{p\}$ is overdetermined then $S \cup\{q\}$ is not, and vice-versa. (Recall that overdetermined sets always have distinct x-coordinates.) This gives a bound $\left[2^{n-2}-(n-2)-1\right]+\left[2^{n-2}-1\right]=$ $2^{n-1}-n$ already.

Remark (Alex Zhai). An alternative approach to the double-counting argument is to show that any overdetermined m-set has an flooded m-superset. Together with the first claim, this lets us pair overdetermined sets in a way that implies the bound.

