USAMO 2020/4 Evan Chen

Twitch Solves ISL

Episode 16

Problem

Suppose that (a_1, b_1) , (a_2, b_2) , ..., (a_{100}, b_{100}) are distinct ordered pairs of nonnegative integers. Let N denote the number of pairs of integers (i, j) satisfying $1 \le i < j \le 100$ and $|a_ib_j - a_jb_i| = 1$. Determine the largest possible value of N over all possible choices of the 100 ordered pairs.

Video

https://youtu.be/r7j0oRtpErA?

External Link

https://aops.com/community/p15952792

Solution

The answer is 197. In general, if 100 is replaced by $n \ge 2$ the answer is 2n - 3.

The idea is that if we let $P_i = (a_i, b_i)$ be a point in the coordinate plane, and let O = (0, 0) then we wish to maximize the number of triangles $\triangle OP_iP_j$ which have area 1/2. Call such a triangle good.

Construction of 197 **points.** It suffices to use the points (1,0), (1,1), (2,1), (3,1), ..., (99,1) as shown. Notice that:

- There are 98 good triangles with vertices (0,0), (k,1) and (k+1,1) for $k = 1, \ldots, 98$.
- There are 99 good triangles with vertices (0,0), (1,0) and (k,1) for $k = 1, \ldots, 99$.

This is a total of 98 + 99 = 197 triangles.

Proof that 197 **points is optimal.** We proceed by induction on n to show the bound of 2n - 3. The base case n = 2 is evident.

For the inductive step, suppose (without loss of generality) that the point $P = P_n = (a, b)$ is the farthest away from the point O among all points.

Claim. This farthest point $P = P_n$ is part of at most two good triangles.

Proof. We must have gcd(a, b) = 1 for P to be in any good triangles at all, since otherwise any divisor of gcd(a, b) also divides 2[OPQ]. Now, we consider the locus of all points Q for which [OPQ] = 1/2. It consists of two parallel lines passing with slope OP, as shown.

Since gcd(a, b) = 1, see that only two lattice points on this locus actually lie inside the quarter-circle centered at O with radius OP. Indeed if one of the points is (u, v) then the others on the line are $(u \pm a, v \pm b)$ where the signs match. This proves the claim. \Box

This claim allows us to complete the induction by simply deleting P_n .