USAMO 2020/3

Evan Chen

Twitch Solves ISL

Episode 16

Problem

Let p be an odd prime. An integer x is called a quadratic non-residue if p does not divide $x-t^{2}$ for any integer t.

Denote by A the set of all integers a such that $1 \leq a<p$, and both a and $4-a$ are quadratic non-residues. Calculate the remainder when the product of the elements of A is divided by p.

Video

https://youtu.be/r7j0oRtpErA

External Link

https://aops.com/community/p15952782

Solution

The answer is that $\prod_{a \in A} a \equiv 2(\bmod p)$ regardless of the value of p. In the following solution, we work in \mathbb{F}_{p} always and abbreviate "quadratic residue" and "non-quadratic residue" to "QR" and "non-QR", respectively.

We define

$$
\begin{aligned}
& A=\left\{a \in \mathbb{F}_{p} \mid a, 4-a \text { non-QR }\right\} \\
& B=\left\{b \in \mathbb{F}_{p} \mid b, 4-b \mathrm{QR}, b \neq 0, b \neq 4\right\} .
\end{aligned}
$$

Notice that

$$
A \cup B=\left\{n \in \mathbb{F}_{p} \mid n(4-n) \text { is } \mathrm{QR} n \neq 0,4\right\} .
$$

We now present two approaches both based on the set B.
First approach (based on Holden Mui's presentation in Mathematics Magazine). The idea behind this approach is that $n(4-n)$ is itself an element of B for $n \in A \cup B$, because $4-n(4-n)=(n-2)^{2}$. This motivates the following claim.

Claim. The map

$$
A \cup B \backslash\{2\} \rightarrow B \quad \text { by } \quad n \mapsto n(4-n)
$$

is a well-defined two-to-one map, i.e. every $b \in B$ has exactly two pre-images.
Proof. Since $n \notin\{0,2,4\}$, we have $n(4-n) \notin\{0,4\}$, so as discussed previously, $n(4-n) \in$ B. Thus this map is well-defined.

Choose $b \in B$. The quadratic equation $n(4-n)=b$ in n rewrites as $n^{2}-4 n+b=0$, and has discriminant $4(4-b)$, which is a nonzero QR. Hence there are exactly two values of n, as desired.

Therefore, it follows that

$$
\prod_{n \in A \cup B \backslash\{2\}} n=\prod_{b \in B} b
$$

by pairing n with $4-n$ on the left-hand side. So, $\prod_{a \in A} a=2$.
Second calculation approach (along the lines of official solution). We now do the following magical calculation in \mathbb{F}_{p} :

$$
\begin{aligned}
& \prod_{b \in B} b=\prod_{b \in B}(4-b)=\prod_{\substack{1 \leq y \leq(p-1) / 2 \\
y \neq 2}}\left(4-y^{2}\right) \\
&=\prod_{\substack{1 \leq y \leq(p-1) / 2 \\
y \neq 2}}(2+y) \prod_{\substack{1 \leq y \leq(p-1) / 2 \\
y \neq 2) \\
4-y^{2} \text { is } \mathrm{QR}}}(2-y) \\
&=\prod_{\substack{1 \leq y \leq(p-1) / 2 \\
y \neq 2}}(2+y) \prod_{\substack{y^{2} \text { is } \mathrm{QR}}}(p+1) / 2 \leq y \leq p-1 \\
& y \neq p-2 \\
& 4-y^{2} \text { is } \mathrm{QR} \\
& 4-y^{2} \text { is } \mathrm{QR} \\
&=\prod_{\substack{1 \leq y \leq p-1 \\
y \neq 2, p-2 \\
4-y^{2} \text { is } \mathrm{QR}}}(2+y)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{\substack{3 \leq z \leq p+1 \\
z \neq 4, p \\
z(4-z) \text { is QR }}} z \\
& =\prod_{\substack{0 \leq z \leq p-1 \\
z \neq 0,4,2 \\
z(4-z) \text { is QR }}} z .
\end{aligned}
$$

Note $z(4-z)$ is a nonzero QR if and only if $z \in A \cup B$. So the right-hand side is almost the product over $z \in A \cup B$, except it is missing the $z=2$ term. Adding it in gives

$$
\prod_{b \in B} b=\frac{1}{2} \prod_{\substack{0 \leq z \leq p-1 \\ z \neq 0,4 \\ z(4-z) \text { is } \mathrm{QR}}} z=\frac{1}{2} \prod_{a \in A} a \prod_{b \in B} b
$$

This gives $\prod_{a \in A} a=2$ as desired.

