USAMO 2020/1

Evan Chen

Twitch Solves ISL

Episode 16

Problem

Let $A B C$ be a fixed acute triangle inscribed in a circle ω with center O. A variable point X is chosen on minor arc $A B$ of ω, and segments $C X$ and $A B$ meet at D. Denote by O_{1} and O_{2} the circumcenters of triangles $A D X$ and $B D X$, respectively. Determine all points X for which the area of triangle $O O_{1} O_{2}$ is minimized.

Video

https://youtu.be/r7j0oRtpErA

External Link

https://aops.com/community/p15952768

Solution

We prove $\left[O O_{1} O_{2}\right] \geq \frac{1}{4}[A B C]$, with equality if and only if $\overline{C X} \perp \overline{A B}$.

First approach (Bobby Shen). We use two simultaneous inequalities:

- Let M and N be the midpoints of $C X$ and $D X$. Then $M N$ equals the length of the O-altitude of $\triangle O O_{1} O_{2}$, since $\overline{O_{1} O_{2}}$ and $\overline{D X}$ meet at N at a right angle. Moreover, we have

$$
M N=\frac{1}{2} C D \geq \frac{1}{2} h_{a}
$$

where h_{a} denotes the A-altitude.

- The projection of $O_{1} O_{2}$ onto line $A B$ has length exactly $A B / 2$. Thus

$$
O_{1} O_{2} \geq \frac{1}{2} A B
$$

So, we find

$$
\left[O O_{1} O_{2}\right]=\frac{1}{2} \cdot M N \cdot O_{1} O_{2} \geq \frac{1}{8} h_{a} \cdot A B=\frac{1}{4}[A B C] .
$$

Note that equality occurs in both cases if and only if $\overline{C X} \perp \overline{A B}$. So the area is minimized exactly when this occurs.

Second approach (Evan's solution). We need two claims.
Claim. We have $\triangle O O_{1} O_{2} \sim \triangle C B A$, with opposite orientation.
Proof. Notice that $\overline{O O_{1}} \perp \overline{A X}$ and $\overline{O_{1} O_{2}} \perp \overline{C X}$, so $\measuredangle O O_{1} O_{2}=\measuredangle A X C=\measuredangle A B C$. Similarly $\measuredangle O O_{2} O_{1}=\measuredangle B A C$.

Therefore, the problem is equivalent to minimizing $O_{1} O_{2}$.

Claim (Salmon theorem). We have $\triangle X O_{1} O_{2} \sim \triangle X A B$.

Proof. It follows from the fact that $\triangle A O_{1} X \sim \triangle B O_{2} X$ (since $\measuredangle A D X=\measuredangle X D B \Longrightarrow$ $\left.\measuredangle X O_{1} A=\measuredangle X O_{2} B\right)$ and that spiral similarities come in pairs.

Let $\theta=\angle A D X$. The ratio of similarity in the previous claim is equal to $\frac{X O_{1}}{X A}=\frac{1}{2 \sin \theta}$. In other words,

$$
O_{1} O_{2}=\frac{A B}{2 \sin \theta} .
$$

This is minimized when $\theta=90^{\circ}$, in which case $O_{1} O_{2}=A B / 2$ and $\left[O O_{1} O_{2}\right]=\frac{1}{4}[A B C]$. This completes the solution.

