USAMO 2020/1 ## **Evan Chen** ### TWITCH SOLVES ISL Episode 16 ### **Problem** Let ABC be a fixed acute triangle inscribed in a circle ω with center O. A variable point X is chosen on minor arc AB of ω , and segments CX and AB meet at D. Denote by O_1 and O_2 the circumcenters of triangles ADX and BDX, respectively. Determine all points X for which the area of triangle OO_1O_2 is minimized. ### Video https://youtu.be/r7j0oRtpErA ### **External Link** https://aops.com/community/p15952768 #### Solution We prove $[OO_1O_2] \ge \frac{1}{4}[ABC]$, with equality if and only if $\overline{CX} \perp \overline{AB}$. First approach (Bobby Shen). We use two simultaneous inequalities: • Let M and N be the midpoints of CX and DX. Then MN equals the length of the O-altitude of $\triangle OO_1O_2$, since $\overline{O_1O_2}$ and \overline{DX} meet at N at a right angle. Moreover, we have $$MN = \frac{1}{2}CD \ge \frac{1}{2}h_a$$ where h_a denotes the A-altitude. • The projection of O_1O_2 onto line AB has length exactly AB/2. Thus $$O_1O_2 \ge \frac{1}{2}AB.$$ So, we find $$[OO_1O_2] = \frac{1}{2} \cdot MN \cdot O_1O_2 \ge \frac{1}{8}h_a \cdot AB = \frac{1}{4}[ABC].$$ Note that equality occurs in both cases if and only if $\overline{CX} \perp \overline{AB}$. So the area is minimized exactly when this occurs. **Second approach (Evan's solution).** We need two claims. **Claim.** We have $\triangle OO_1O_2 \sim \triangle CBA$, with opposite orientation. *Proof.* Notice that $\overline{OO_1} \perp \overline{AX}$ and $\overline{O_1O_2} \perp \overline{CX}$, so $\angle OO_1O_2 = \angle AXC = \angle ABC$. Similarly $\angle OO_2O_1 = \angle BAC$. Therefore, the problem is equivalent to minimizing O_1O_2 . Claim (Salmon theorem). We have $\triangle XO_1O_2 \sim \triangle XAB$. *Proof.* It follows from the fact that $\triangle AO_1X \sim \triangle BO_2X$ (since $\angle ADX = \angle XDB \implies \angle XO_1A = \angle XO_2B$) and that spiral similarities come in pairs. Let $\theta = \angle ADX$. The ratio of similarity in the previous claim is equal to $\frac{XO_1}{XA} = \frac{1}{2\sin\theta}$. In other words, $$O_1 O_2 = \frac{AB}{2\sin\theta}.$$ This is minimized when $\theta = 90^{\circ}$, in which case $O_1O_2 = AB/2$ and $[OO_1O_2] = \frac{1}{4}[ABC]$. This completes the solution.