JMO 2020/6

Evan Chen

Twitch Solves ISL

Episode 16

Problem

Let $n \geq 2$ be an integer. Let $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a nonconstant n-variable polynomial with real coefficients. Assuming that P vanishes whenever two of its arguments are equal, prove that P has at least n ! terms.

Video

https://youtu.be/r7j0oRtpErA

External Link

https://aops.com/community/p15952921

Solution

We present two solutions.
First solution using induction (by Ankan). Begin with the following observation:
Claim. Let $1 \leq i<j \leq n$. There is no term of P which omits both x_{i} and x_{j}.
Proof. Note that P ought to become identically zero if we set $x_{i}=x_{j}=0$, since it is zero for any choice of the remaining $n-2$ variables, and the base field \mathbb{R} is infinite.

Remark (Technical warning for experts). The fact we used is not true if \mathbb{R} is replaced by a field with finitely many elements, such as \mathbb{F}_{p}, even with one variable. For example the one-variable polynomial $X^{p}-X$ vanishes on every element of \mathbb{F}_{p}, by Fermat's little theorem.

We proceed by induction on $n \geq 2$ with the base case $n=2$ being clear. Assume WLOG P is not divisible by any of x_{1}, \ldots, x_{n}, since otherwise we may simply divide out this factor. Now for the inductive step, note that

- The polynomial $P\left(0, x_{2}, x_{3}, \ldots, x_{n}\right)$ obviously satisfies the inductive hypothesis and is not identically zero since $x_{1} \nmid P$, so it has at least ($n-1$)! terms.
- Similarly, $P\left(x_{1}, 0, x_{3}, \ldots, x_{n}\right)$ also has at least $(n-1)$! terms.
- Similarly, $P\left(x_{1}, x_{2}, 0, \ldots, x_{n}\right)$ also has at least $(n-1)$! terms.
- ...and so on.

By the claim, all the terms obtained in this way came from different terms of the original polynomial P. Therefore, P itself has at least $n \cdot(n-1)!=n!$ terms.

Remark. Equality is achieved by the Vandermonde polynomial $P=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$.
Second solution using Vandermonde polynomial (by Yang Liu). Since $x_{i}-x_{j}$ divides P for any $i \neq j$, it follows that P should be divisible by the Vandermonde polynomial

$$
V=\prod_{i<j}\left(x_{j}-x_{i}\right)=\sum_{\sigma} \operatorname{sgn}(\sigma) x_{1}^{\sigma(0)} x_{2}^{\sigma(1)} \ldots x_{n}^{\sigma(n-1)}
$$

where the sum runs over all permutations σ on $\{0, \ldots, n-1\}$.
Consequently, we may write

$$
P=\sum_{\sigma} \operatorname{sgn}(\sigma) x_{1}^{\sigma(0)} x_{2}^{\sigma(1)} \ldots x_{n}^{\sigma(n-1)} Q
$$

The main idea is that each of the n ! terms of the above sum has a monomial not appearing in any of the other terms.

As an example, consider $x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n-1}^{1} x_{n}^{0}$. Among all monomial in Q, consider the monomial $x_{1}^{e_{1}} x_{2}^{e_{2}} \ldots x_{n}^{e_{n}}$ with the largest e_{1}, then largest e_{2}, \ldots (In other words, take the lexicographically largest $\left(e_{1}, \ldots, e_{n}\right)$.) This term

$$
x_{1}^{e_{1}+(n-1)} x_{2}^{e_{2}+(n-2)} \ldots x_{n}^{e_{n}}
$$

can't appear anywhere else because it is strictly lexicographically larger than any other term appearing in any other expansion.

Repeating this argument with every σ gives the conclusion.

