JMO 2020/6 Evan Chen

TWITCH SOLVES ISL

Episode 16

Problem

Let $n \ge 2$ be an integer. Let $P(x_1, x_2, ..., x_n)$ be a nonconstant *n*-variable polynomial with real coefficients. Assuming that *P* vanishes whenever two of its arguments are equal, prove that *P* has at least n! terms.

Video

https://youtu.be/r7j0oRtpErA

Solution

We present Ankan's original solution. Begin with the following observation:

Claim. Let $1 \le i < j \le n$. There is no term of P which omits both x_i and x_j .

Proof. Note that P ought to become identically zero if we set $x_i = x_j = 0$, since it is zero for any choice of the remaining n-2 variables, and the base field \mathbb{R} is infinite. \Box

Remark (Technical warning for experts). The fact we used is not true if \mathbb{R} is replaced by a field with finitely many elements, such as \mathbb{F}_p , even with one variable. For example the one-variable polynomial $X^p - X$ vanishes on every element of \mathbb{F}_p , by Fermat's little theorem.

We proceed by induction on $n \ge 2$ with the base case n = 2 being clear. Assume WLOG P is not divisible by any of x_1, \ldots, x_n , since otherwise we may simply divide out this factor. Now for the inductive step, note that

- The polynomial $P(0, x_2, x_3, ..., x_n)$ obviously satisfies the inductive hypothesis and is not identically zero since $x_1 \nmid P$, so it has at least (n-1)! terms.
- Similarly, $P(x_1, 0, x_3, \ldots, x_n)$ also has at least (n-1)! terms.
- Similarly, $P(x_1, x_2, 0, ..., x_n)$ also has at least (n-1)! terms.
- \bullet . . . and so on.

By the claim, all the terms obtained in this way came from different terms of the original polynomial P. Therefore, P itself has at least $n \cdot (n-1)! = n!$ terms.

Remark. Equality is achieved by the Vandermonde polynomial $P = \prod_{1 \le i \le j \le n} (x_i - x_j)$.