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Problem
Let n ≥ 2 be an integer. Let P (x1, x2, . . . , xn) be a nonconstant n-variable polynomial
with real coefficients. Assuming that P vanishes whenever two of its arguments are equal,
prove that P has at least n! terms.

Video
https://youtu.be/r7j0oRtpErA

External Link
https://aops.com/community/p15952921
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Twitch Solves ISL — Episode 16 JMO 2020/6

Solution
We present two solutions.

First solution using induction (by Ankan). Begin with the following observation:

Claim. Let 1 ≤ i < j ≤ n. There is no term of P which omits both xi and xj .

Proof. Note that P ought to become identically zero if we set xi = xj = 0, since it is
zero for any choice of the remaining n− 2 variables, and the base field R is infinite.

Remark (Technical warning for experts). The fact we used is not true if R is replaced
by a field with finitely many elements, such as Fp, even with one variable. For example
the one-variable polynomial Xp −X vanishes on every element of Fp, by Fermat’s little
theorem.

We proceed by induction on n ≥ 2 with the base case n = 2 being clear. Assume
WLOG P is not divisible by any of x1, . . . , xn, since otherwise we may simply divide
out this factor. Now for the inductive step, note that

• The polynomial P (0, x2, x3, . . . , xn) obviously satisfies the inductive hypothesis and
is not identically zero since x1 - P , so it has at least (n− 1)! terms.

• Similarly, P (x1, 0, x3, . . . , xn) also has at least (n− 1)! terms.

• Similarly, P (x1, x2, 0, . . . , xn) also has at least (n− 1)! terms.

• . . .and so on.

By the claim, all the terms obtained in this way came from different terms of the original
polynomial P . Therefore, P itself has at least n · (n− 1)! = n! terms.

Remark. Equality is achieved by the Vandermonde polynomial P =
∏

1≤i<j≤n(xi − xj).

Second solution using Vandermonde polynomial (by Yang Liu). Since xi − xj divides
P for any i 6= j, it follows that P should be divisible by the Vandermonde polynomial

V =
∏
i<j

(xj − xi) =
∑
σ

sgn(σ)xσ(0)1 x
σ(1)
2 . . . xσ(n−1)

n

where the sum runs over all permutations σ on {0, . . . , n− 1}.
Consequently, we may write

P =
∑
σ

sgn(σ)xσ(0)1 x
σ(1)
2 . . . xσ(n−1)

n Q

The main idea is that each of the n! terms of the above sum has a monomial not appearing
in any of the other terms.

As an example, consider xn−1
1 xn−2

2 . . . x1n−1x
0
n. Among all monomial in Q, consider the

monomial xe11 xe22 . . . xenn with the largest e1, then largest e2, . . . . (In other words, take
the lexicographically largest (e1, . . . , en).) This term

x
e1+(n−1)
1 x

e2+(n−2)
2 . . . xenn

can’t appear anywhere else because it is strictly lexicographically larger than any other
term appearing in any other expansion.

Repeating this argument with every σ gives the conclusion.
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