JMO 2020/4 Evan Chen

Twitch Solves ISL

Episode 16

Problem

Let ABCD be a convex quadrilateral inscribed in a circle and satisfying

$$DA < AB = BC < CD.$$

Points *E* and *F* are chosen on sides *CD* and *AB* such that $\overline{BE} \perp \overline{AC}$ and $\overline{EF} \parallel \overline{BC}$. Prove that FB = FD.

Video

https://youtu.be/r7j0oRtpErA

External Link

https://aops.com/community/p15952890

Solution

We present three approaches. We note that in the second two approaches, the result remains valid even if $AB \neq BC$, as long E is replaced by the point on \overline{AC} satisfying EA = EC. So the result is actually somewhat more general.

First solution by inscribed angle theorem. Since $\overline{EF} \parallel \overline{BC}$ we may set $\theta = \angle FEB = \angle CBE = \angle EBF$. This already implies FE = FB, so we will in fact prove that F is the circumcenter of $\triangle BED$.

Note that $\angle BDC = \angle BAC = 90^{\circ} - \theta$. However, $\angle BFE = 180^{\circ} - 2\theta$. So by the inscribed angle theorem, D lies on the circle centered at F with radius FE = FB, as desired.

Remark. Another approach to the given problem is to show that *B* is the *D*-excenter of $\triangle DAE$, and *F* is the arc midpoint of \widehat{DAE} of the circumcircle of $\triangle DAE$. In my opinion, this approach is much clumsier.

Second general solution by angle chasing. By Reim's theorem, AFED is cyclic.

Hence

$$\measuredangle FDB = \measuredangle FDC - \measuredangle BDC = \measuredangle FAE - \measuredangle FAC$$

$$= \measuredangle CAE = \measuredangle ECA = \measuredangle DCA = \measuredangle DBA = \measuredangle DBF$$

as desired.

Third general solution by Pascal. Extend rays AE and DF to meet the circumcircle again at G and H. By Pascal's theorem on HDCBAG, it follows that E, F, and $GH \cap BC$ are collinear, which means that $\overline{EF} \parallel \overline{GH} \parallel \overline{BC}$.

Since EA = EC, it follows DAGC in isosceles trapezoid. But also GHBC is an isosceles trapezoid. Thus $\widehat{mDA} = \widehat{mGC} = \widehat{mBH}$, so DAHB is an isosceles trapezoid. Thus FD = FB.

Remark. Addicts of projective geometry can use Pascal on *DBCAHG* to finish rather than noting the equal arcs.