JMO 2020/2 ## **Evan Chen** ### TWITCH SOLVES ISL Episode 16 ### **Problem** Let ω be the incircle of a fixed equilateral triangle ABC. Let ℓ be a variable line that is tangent to ω and meets the interior of segments BC and CA at points P and Q, respectively. A point R is chosen such that PR = PA and QR = QB. Find all possible locations of the point R, over all choices of ℓ . ### Video https://youtu.be/r7j0oRtpErA ### **External Link** https://aops.com/community/p15952801 #### Solution Let r be the inradius. Let T be the tangency point of \overline{PQ} on arc \widehat{DE} of the incircle, which we consider varying. We define R_1 and R_2 to be the two intersections of the circle centered at P with radius PA, and the circle centered at Q with radius QB. We choose R_1 to lie on the opposite side of C as line PQ. **Claim.** The point R_1 is the unique point on ray TI with $R_1I = 2r$. *Proof.* Define S to be the point on ray TI with SI = 2r. Note that there is a homothety at I which maps $\triangle DTE$ to $\triangle ASB$, for some point S. Note that since TASD is an isosceles trapezoid, it follows PA = PS. Similarly, QB = QS. So it follows that $S = R_1$. Since T can be any point on the open arc \widehat{DE} , it follows that the locus of R_1 is exactly the open 120° arc of \widehat{AB} of the circle centered at I with radius 2r (i.e. the circumcircle of ABC). It remains to characterize R_2 . Since TI = r, $IR_1 = 2r$, it follows $TR_2 = 3r$ and $IR_2 = 4r$. Define A' on ray DI such that A'I = 4r, and B' on ray IE such that B'I = 4r. Then it follows, again by homothety, that the locus of R_2 is the 120° arc $\widehat{A'B'}$ of the circle centered at I with radius 4r. In conclusion, the locus of R is the two open 120° arcs we identified.