JMO 2020/2

Evan Chen
Twitch Solves ISL
Episode 16

Problem

Let ω be the incircle of a fixed equilateral triangle $A B C$. Let ℓ be a variable line that is tangent to ω and meets the interior of segments $B C$ and $C A$ at points P and Q, respectively. A point R is chosen such that $P R=P A$ and $Q R=Q B$. Find all possible locations of the point R, over all choices of ℓ.

Video

https://youtu.be/r7j0oRtpErA

External Link

https://aops.com/community/p15952801

Solution

Let r be the inradius. Let T be the tangency point of $\overline{P Q}$ on arc $\widehat{D E}$ of the incircle, which we consider varying. We define R_{1} and R_{2} to be the two intersections of the circle centered at P with radius $P A$, and the circle centered at Q with radius $Q B$. We choose R_{1} to lie on the opposite side of C as line $P Q$.

Claim. The point R_{1} is the unique point on ray $T I$ with $R_{1} I=2 r$.
Proof. Define S to be the point on ray $T I$ with $S I=2 r$. Note that there is a homothety at I which maps $\triangle D T E$ to $\triangle A S B$, for some point S.

Note that since TASD is an isosceles trapezoid, it follows $P A=P S$. Similarly, $Q B=Q S$. So it follows that $S=R_{1}$.

Since T can be any point on the open arc $\widehat{D E}$, it follows that the locus of R_{1} is exactly the open 120° arc of $\widehat{A B}$ of the circle centered at I with radius $2 r$ (i.e. the circumcircle of $A B C$).

It remains to characterize R_{2}. Since $T I=r, I R_{1}=2 r$, it follows $T R_{2}=3 r$ and $I R_{2}=4 r$. Define A^{\prime} on ray $D I$ such that $A^{\prime} I=4 r$, and B^{\prime} on ray $I E$ such that $B^{\prime} I=4 r$. Then it follows, again by homothety, that the locus of R_{2} is the 120° arc $\widehat{A^{\prime} B^{\prime}}$ of the circle centered at I with radius $4 r$.
In conclusion, the locus of R is the two open 120° arcs we identified.

