Iran TST 2018/9 Evan Chen

TWITCH SOLVES ISL

Episode 14

Problem

Let a_1, a_2, a_3, \ldots be an infinite sequence of distinct integers. Prove that there are infinitely many primes p that distinct positive integers i, j, k can be found such that $p \mid a_i a_j a_k - 1$.

Video

https://youtu.be/_o8r5wGUmWE

External Link

https://aops.com/community/p10206683

Solution

We proceed by contradiction. Say a set S of integers is *prime-deficient* if at most finitely many primes divide one of its element. Then:

- The problem says $\{a_1a_2a_k 1\}_k$ prime deficient.
- Hence $\{a_1a_2a_3a_k a_3\}$ is prime deficient.
- By Kobayashi theorem, by adding $a_3 a_2$, we find $\{a_1a_2a_3a_k a_2\}$ is not prime deficient.
- Hence $\{a_1a_3a_k 1\}$ is not prime deficient.

This gives a contradiction.