Twitch 013.1

Evan Chen
Twitch Solves ISL
Episode 13

Problem

There are n pairwise intersecting circles in the plane, no three passing through the same point and no two tangent. The n circles dissect the plane into some number of regions bounded by circular arcs. We assign a direction (clockwise or counterclockwise) to each of the n circles and count C, the number of regions R such that the boundary of R can be traveled along the directions of edges. Prove that if n is sufficiently large, then this assignment could be done such that $C>\frac{4}{11 \pi} n^{2}$.

Video

[^0]
Solution

Take any intersection point as a vertex. We use

$$
V-E+F=2
$$

in the usual way. Here $V=n(n-1)$ and $E=n(2 n-2)$; hence the number of faces is

$$
F=n(2 n-2)-n(n-1)+2=n^{2}-n+2
$$

We now do the assignment randomly by coin flip. Suppose the regions have $a_{1}, a_{2}, \ldots, a_{m}$ sides, $m=n^{2}-n+2$ (including unbounded). Then the expected number of good regions from this (possibly including the unbounded face) is

$$
\sum_{i=1}^{m} \frac{1}{2^{a_{i}-1}}
$$

where

$$
\mathbb{E}\left[a_{i}\right]=\frac{2 E}{F}=\frac{4 n(n-1)}{n^{2}-n+1} \approx 4
$$

Thus by Jensen inequality, one can get at least $(1 / 8-o(1)) n^{2}$ good regions.

[^0]: https://youtu.be/6DxiStGJQb0

