Taiwan TST 2019/2J/2
 Evan Chen

Twitch Solves ISL

Episode 13

Problem

Let $A B C$ be a triangle with incircle ω and circumcircle Ω. Assume that ω is tangent to sides $A B, A C$ at F, E, respectively. Line $E F$ meets Ω at points P and Q. Let M be the midpoint of $\overline{B C}$.

Take a point R on the circumcircle of $\triangle M P Q$, say Γ, such that $\overline{M R} \perp \overline{E F}$. Prove that line $A R, \omega$ and Γ intersect at one point.

Video

https://youtu.be/KcHiYXOJi_Q

External Link

https://aops.com/community/p14533530

Solution

Let D be the foot from I to $\overline{B C}$.
Claim. Quadrilateral $M D P Q$ is cyclic.
Proof. Let $X=P Q \cap B C$. Then $(X D ; B C)=-1$ by Ceva/Menelaus with the Gergonne point. Hence, $X D \cdot X M=X B \cdot X C=X P \cdot X Q$ as needed.

We let G be the intersection of the D-altitude to $\overline{E F}$ with the incircle. Let line $A G$ meet the incircle again at H.

Claim. Quadrilateral $H D P Q$ is cyclic.
Proof $H D P Q$ cyclic. For this proof, we need to introduce several points:

- Let K be the foot from D to $\overline{E F}$.
- Let N be the midpoint of $\overline{E F}$.
- Let S be the inverse of K with respect to the incircle, which is known to satisfy $\angle A I S=90^{\circ}$.
- Let $Y=\overline{H D} \cap \overline{E F}$.

We have $-1=(E F ; G H) \stackrel{D}{=}(E F ; K Y)$. Since $\overline{S K}$ bisects $\angle F S E$, this implies Y also lies on line $A S$. We can then calculate

$$
Y H \cdot Y D=Y F \cdot Y E=Y K \cdot Y N=Y S \cdot Y A=Y P \cdot Y Q
$$

which implies the concyclic condition.
We let R^{\prime} be a point on line $\overline{A G H}$ such that $\overline{R^{\prime} M} \perp \overline{P Q}$. Then

$$
\measuredangle H R^{\prime} M=\measuredangle H G D=\measuredangle H D B=\measuredangle H D M
$$

so $R^{\prime}=R$ and the problem is solved (the concurrence point in the problem is H).

