Shortlist 2007 N5

Evan Chen

Twitch Solves ISL

Episode 13

Problem

Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(1)=1$ and for all positive integers m and n and primes p, the number $f(m+n)$ is divisible by p if and only if $f(m)+f(n)$ is divisible by p.

Video

https://youtu.be/OExdK27KHx8

External Link

https://aops.com/community/p1187222

Solution

The answer is that f must be the identity (which works). We let $\operatorname{rad} n$ denote the product of distinct prime factors of n. We also let $P(m, n)$ denote the given statement.

Remark. The original problem gave the hypothesis f was surjective in place of $f(1)=1$. Our version is better: to see that f surjective implies $f(1)=1$ anyways, consider $P(1, N-1)$ if $f(N)=1$ held for any $N \geq 2$.
Claim. We have $\operatorname{rad} f\left(2^{e}\right)=2$ for every positive integer e; that is, $f(2), f(4), \ldots$ are all powers of 2 .
Proof. Follows by taking $P\left(2^{e-1}, 2^{e-1}\right)$ and induction.
Claim. We have $f(2)=2, f(3)=3, f(4)=4$.
Proof. First, $P(3,1)$ gives that $f(3)=2^{y}-1$ for some y. Now if $f(2)=2^{x}$ then $P(2,1)$ gives

$$
\operatorname{rad}\left(2^{x}+1\right)=\operatorname{rad}\left(2^{y}-1\right)
$$

We now consider two cases.

- If $x=3$ then this forces $y=2$. So $f(2)=8$ and $f(3)=3$. But $\operatorname{rad}(1+f(4))=$ $\operatorname{rad}(f(2)+f(3))=11$, so there is no possible value of $f(4)$, contradiction.
- Otherwise, let p be a primitive prime divisor of $2^{2 x}-1$ which exists by Zsigmondy. It also divides the right-hand side, so $2 x \mid y$, and $2^{2 x}-1 \mid 2^{y}-1$. This could only happen if $2^{x}-1=1$, so $x=1$. This gives $y=2$ (again by Zsigmondy) and we're done.

Hence $f(2)=2$ and $f(3)=3$. Now $\operatorname{rad}(1+f(4))=\operatorname{rad}(f(2)+f(3))=5$, and since $f(4)$ is a power of 2 , Zsigmondy implies $f(4)=4$.

Moving forward, we apply the following simple consequence of Zsigmondy:
Lemma. If $\operatorname{rad}\left(2^{x}-1\right)=\operatorname{rad}\left(2^{y}-1\right)$ then $x=y$. Similarly if $\operatorname{rad}\left(2^{x}+1\right)=\operatorname{rad}\left(2^{y}+1\right)$ then $x=y$.

We now prove by induction on $e \geq 1$ the statement that

$$
f(n)=n \quad \text { for } 2^{e} \leq n \leq 2^{e+1} .
$$

The base case is already set for us. For the inductive step, suppose f is the identity for $n \leq 2^{e}$. We proceed in three steps:

- First, we have

$$
\begin{aligned}
\operatorname{rad}\left(1+f\left(2^{e+1}-1\right)\right) & =2 \\
\quad \operatorname{rad}\left(f\left(2^{e+1}-1\right)\right) & =\operatorname{rad}\left(f\left(2^{e}-1\right)+f\left(2^{e}\right)\right)=\operatorname{rad}\left(2^{e+1}-1\right) .
\end{aligned}
$$

The first equation just says $f\left(2^{e+1}-1\right)=2^{t}-1$ for some t. So the latter equation, together with the lemma, gives $f\left(2^{e+1}-1\right)=2^{e+1}-1$.

- Next, we have

$$
\begin{aligned}
\operatorname{rad}\left(f\left(2^{e+1}\right)+1\right) & =\operatorname{rad} f\left(2^{e+1}+1\right)=\operatorname{rad}\left(\left(2^{e+1}-1\right)+2\right) \\
& =\operatorname{rad}\left(f\left(2^{e+1}-1\right)+f(2)\right)=\operatorname{rad}\left(2^{e+1}+1\right)
\end{aligned}
$$

which gives $f\left(2^{e+1}\right)=2^{e+1}$.

- Now assume $2^{e}+1 \leq n \leq 2^{e+1}-2$. Let $1 \leq k \leq 2^{e}-2$ be such than $n+k=2^{e+1}-1$. Then

$$
\begin{aligned}
\operatorname{rad}(f(n)+k) & =\operatorname{rad}(f(n)+f(k))=\operatorname{rad}(f(n+k))=\operatorname{rad}\left(2^{e+1}-1\right) \\
\operatorname{rad}(f(n)+k+1) & =\operatorname{rad}(f(n)+f(k+1))=\operatorname{rad}(f(n+k+1))=2
\end{aligned}
$$

So we have an integer x (depending on k) such that

$$
f(n)+k+1=2^{x} \Longrightarrow \operatorname{rad}\left(2^{x}-1\right)=\operatorname{rad}(f(n)+k)=\operatorname{rad}\left(2^{e+1}-1\right)
$$

Hence $x=e+1$. And so $f(n)=n$.
This completes the induction and hence the problem is solved.

