Shortlist 2007 N5

Evan Chen

TWITCH SOLVES ISL

Episode 13

Problem

Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that f(1) = 1 and for all positive integers m and n and primes p, the number f(m+n) is divisible by p if and only if f(m) + f(n) is divisible by p.

Video

https://youtu.be/OExdK27KHx8

External Link

https://aops.com/community/p1187222

Solution

The answer is that f must be the identity (which works). We let rad n denote the product of distinct prime factors of n. We also let P(m, n) denote the given statement.

Remark. The original problem gave the hypothesis f was surjective in place of f(1) = 1. Our version is better: to see that f surjective implies f(1) = 1 anyways, consider P(1, N-1) if f(N) = 1 held for any $N \ge 2$.

Claim. We have rad $f(2^e) = 2$ for every positive integer e; that is, f(2), f(4), ... are all powers of 2.

Proof. Follows by taking $P(2^{e-1}, 2^{e-1})$ and induction.

Claim. We have f(2) = 2, f(3) = 3, f(4) = 4.

Proof. First, P(3,1) gives that $f(3) = 2^y - 1$ for some y. Now if $f(2) = 2^x$ then P(2,1) gives

$$rad(2^x + 1) = rad(2^y - 1).$$

We now consider two cases.

- If x = 3 then this forces y = 2. So f(2) = 8 and f(3) = 3. But rad(1 + f(4)) = rad(f(2) + f(3)) = 11, so there is no possible value of f(4), contradiction.
- Otherwise, let p be a primitive prime divisor of $2^{2x} 1$ which exists by Zsigmondy. It also divides the right-hand side, so $2x \mid y$, and $2^{2x} 1 \mid 2^y 1$. This could only happen if $2^x 1 = 1$, so x = 1. This gives y = 2 (again by Zsigmondy) and we're done.

Hence f(2) = 2 and f(3) = 3. Now rad(1 + f(4)) = rad(f(2) + f(3)) = 5, and since f(4) is a power of 2, Zsigmondy implies f(4) = 4.

Moving forward, we apply the following simple consequence of Zsigmondy:

Lemma. If $rad(2^x - 1) = rad(2^y - 1)$ then x = y. Similarly if $rad(2^x + 1) = rad(2^y + 1)$ then x = y.

We now prove by induction on $e \geq 1$ the statement that

$$f(n) = n$$
 for $2^e \le n \le 2^{e+1}$.

The base case is already set for us. For the inductive step, suppose f is the identity for $n \leq 2^e$. We proceed in three steps:

• First, we have

$$\operatorname{rad}(1+f(2^{e+1}-1)) = 2$$

$$\operatorname{rad}(f(2^{e+1}-1)) = \operatorname{rad}(f(2^{e}-1)+f(2^{e})) = \operatorname{rad}(2^{e+1}-1).$$

The first equation just says $f(2^{e+1}-1)=2^t-1$ for some t. So the latter equation, together with the lemma, gives $f(2^{e+1}-1)=2^{e+1}-1$.

• Next, we have

$$\operatorname{rad}(f(2^{e+1}) + 1) = \operatorname{rad}f(2^{e+1} + 1) = \operatorname{rad}((2^{e+1} - 1) + 2)$$
$$= \operatorname{rad}(f(2^{e+1} - 1) + f(2)) = \operatorname{rad}(2^{e+1} + 1)$$

which gives $f(2^{e+1}) = 2^{e+1}$.

• Now assume $2^e+1 \le n \le 2^{e+1}-2$. Let $1 \le k \le 2^e-2$ be such than $n+k=2^{e+1}-1$. Then

$$\operatorname{rad}(f(n) + k) = \operatorname{rad}(f(n) + f(k)) = \operatorname{rad}(f(n + k)) = \operatorname{rad}(2^{e+1} - 1)$$

$$\operatorname{rad}(f(n) + k + 1) = \operatorname{rad}(f(n) + f(k + 1)) = \operatorname{rad}(f(n + k + 1)) = 2.$$

So we have an integer x (depending on k) such that

$$f(n) + k + 1 = 2^x \implies \operatorname{rad}(2^x - 1) = \operatorname{rad}(f(n) + k) = \operatorname{rad}(2^{e+1} - 1).$$

Hence x = e + 1. And so f(n) = n.

This completes the induction and hence the problem is solved.