Iberoamerican 2001/3

Evan Chen

Twitch Solves ISL

Episode 13

Problem

Let X be a set with n elements. Given $k \geq 2$ subsets of X, each with at least r elements, show that we can find two of them whose intersection has at least $r-\frac{n k}{4(k-1)}$ elements.

Video

https://youtu.be/sqcw8uB2M-8

External Link

https://aops.com/community/p482610

Solution

Assume for contradiction this is not the case. We double-count the number N of triples of the form

$$
\left(x, A_{i}, A_{j}\right) \quad \text { where } \quad x \in A_{i}, x \in A_{j}
$$

On the one hand, counting by $\left(A_{i}, A_{j}\right)$ first, we have

$$
N \leq\binom{ k}{2} \cdot\left[r-\frac{n k}{4(k-1)}\right]
$$

On other hand, summing by $x \in X$, we have

$$
N=\sum_{x}\binom{\# \text { times } x \text { appears }}{2} \geq n \cdot\binom{\frac{r k}{n}}{2}
$$

by Jensen. Therefore we obtain

$$
\frac{1}{2} n \cdot \frac{r k}{n} \cdot\left(\frac{r k}{n}-1\right)<\frac{k(k-1)}{2} \cdot\left[r-\frac{n k}{4(k-1)}\right]
$$

which rearranges to

$$
r \cdot\left(\frac{r k}{n}-1\right)<(k-1) r-\frac{n}{4} \cdot k \Longleftrightarrow \frac{1}{n}\left(r-\frac{n}{2}\right)^{2}<0
$$

and this is a contradiction.

