Japan 2019/4 Evan Chen

TWITCH SOLVES ISL

Episode 12

Problem

Let ABC be a triangle with its incenter I, incircle ω , and let M be a midpoint of the \overline{BC} . The line through A perpendicular to \overline{BC} and the line through M perpendicular to \overline{AI} meet at K. Show that the circle with diameter \overline{AK} is tangent to ω .

Video

https://youtu.be/cm8svlDoPfs

External Link

https://aops.com/community/p11754885

Solution

We make the following preliminary setup.

- Let E be the tangency point of the A-excircle, so \overline{AE} passes through the antipode of D on ω .
- Thus \overline{AE} intersects the incircle again at T, the foot from D to \overline{AE} . Since DM = ME and $\angle DTE = 90^{\circ}$, it follows that MD = MT = ME so in fact \overline{MT} is also tangent to ω .
- Let \overline{AF} be the A-altitude.

Let K' be the intersection of \overline{TD} with A-altitude. By homothety, the circle with diameter $\overline{AK'}$ is certainly tangent to ω . We are going to prove K' = K.

Let L denote the second intersection of \overline{KM} with (IDMT), so $\measuredangle MLI = 90^{\circ}$.

Claim. Quadrilateral ATLK' is cyclic.

Proof. Since $\measuredangle K'LT = \measuredangle MLT = \measuredangle MDT = \measuredangle FDT = \measuredangle FAT = \measuredangle K'AT$.

Thus $\measuredangle MLA = \measuredangle ALK' = \measuredangle ATK' = 90^{\circ}$ as well. Thus we conclude \overline{AI} and $\overline{MK'}$ are perpendicular at L as desired.