Japan 2019/4

Evan Chen

Twitch Solves ISL
Episode 12

Problem

Let $A B C$ be a triangle with its incenter I, incircle ω, and let M be a midpoint of the $\overline{B C}$. The line through A perpendicular to $\overline{B C}$ and the line through M perpendicular to $\overline{A I}$ meet at K. Show that the circle with diameter $\overline{A K}$ is tangent to ω.

Video

https://youtu.be/cm8svlDoPfs

External Link

https://aops.com/community/p11754885

Solution

We make the following preliminary setup.

- Let E be the tangency point of the A-excircle, so $\overline{A E}$ passes through the antipode of D on ω.
- Thus $\overline{A E}$ intersects the incircle again at T, the foot from D to $\overline{A E}$. Since $D M=$ $M E$ and $\measuredangle D T E=90^{\circ}$, it follows that $M D=M T=M E$ so in fact $\overline{M T}$ is also tangent to ω.
- Let $\overline{A F}$ be the A-altitude.

Let K^{\prime} be the intersection of $\overline{T D}$ with A-altitude. By homothety, the circle with diameter $\overline{A K^{\prime}}$ is certainly tangent to ω. We are going to prove $K^{\prime}=K$.

Let L denote the second intersection of $\overline{K M}$ with (IDMT), so $\measuredangle M L I=90^{\circ}$.
Claim. Quadrilateral $A T L K^{\prime}$ is cyclic.
Proof. Since $\measuredangle K^{\prime} L T=\measuredangle M L T=\measuredangle M D T=\measuredangle F D T=\measuredangle F A T=\measuredangle K^{\prime} A T$.
Thus $\measuredangle M L A=\measuredangle A L K^{\prime}=\measuredangle A T K^{\prime}=90^{\circ}$ as well. Thus we conclude $\overline{A I}$ and $\overline{M K^{\prime}}$ are perpendicular at L as desired.

