India TST 2019/2
 Evan Chen

Twitch Solves ISL
Episode 12

Problem

Show that there do not exist natural numbers $a_{1}, a_{2}, \ldots, a_{2018}$ such that the numbers

$$
a_{1}^{2018}+a_{2}, a_{2}^{2018}+a_{3}, \ldots, a_{2018}^{2018}+a_{1}
$$

are all powers of 5 .

External Link

https://aops.com/community/p21566876

Solution

Assume the contrary.
Claim. None of the numbers are divisible by 5 .
Proof. If $\nu_{5}\left(a_{1}\right)$ is maximal and positive, then $\nu_{5}\left(a_{1}^{2018}\right)>\nu_{5}\left(a_{2}\right)$, so $a_{1}^{2018}+a_{2}$ cannot be a power of 5 .

Let 5^{e} denote the smallest of the powers of 5 , so all elements are divisible by 5^{e}. Evidently, $e \geq 2$, and for every index i,

$$
a_{i+2} \equiv-a_{i}^{2018^{2}} \quad\left(\bmod 5^{e}\right)
$$

Claim. We have $a_{i} \equiv 4(\bmod 5)$ for all i.
Proof. This follows immediately form the previous displayed equation.
Now let $x=-a_{1}\left(\bmod 5^{e}\right)$. But if we iterate this 1009 times we obtain

$$
x \equiv x^{2018^{2018}} \quad\left(\bmod 5^{e}\right)
$$

Thus $x \bmod 5^{e}$ has order dividing $N=2018^{2018}-1$. But since $N \equiv 3(\bmod 5)$, we find $\operatorname{gcd}\left(N, \varphi\left(5^{e}\right)\right)=1$, So this forces $x \equiv 1$.

In other words, $a_{1} \equiv-1\left(\bmod 5^{e}\right)$, and the same is true for any other term. But $\left(5^{e}-1\right)^{2018}>5^{e}$ and we have a size contradiction.

