USEMO 2019/5 ## **Evan Chen** #### TWITCH SOLVES ISL Episode 11 ### **Problem** Let \mathcal{P} be a regular polygon, and let \mathcal{V} be the set of its vertices. Each point in \mathcal{V} is colored red, white, or blue. A subset of \mathcal{V} is *patriotic* if it contains an equal number of points of each color, and a side of \mathcal{P} is *dazzling* if its endpoints are of different colors. Suppose that \mathcal{V} is patriotic and the number of dazzling edges of \mathcal{P} is even. Prove that there exists a line, not passing through any point of \mathcal{V} , dividing \mathcal{V} into two nonempty patriotic subsets. ### Video https://youtu.be/OrdnO1T_q4Y #### **External Link** https://aops.com/community/p15425728 #### Solution We prove the contrapositive: if there is no way to split V into two patriotic sets, then the number of dazzling edges is odd. Let $\zeta = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ be a root of unity. Read the *n* vertices of the polygon in order starting from any point. In the complex plane, start from the origin and, corresponding to red, white, or blue, move by 1, ζ , or ζ^2 , respectively, to get a path. The diagram below shows an example (where black stands in for white, for legibility reasons). #### Note that: - The path we get is actually a closed loop, since $\mathcal V$ was assumed to be patriotic. - Because there is no nontrivial patriotic subset, this closed loop does not intersect itself, so it corresponds to some polygon Q. We have to show the number m of vertices of \mathcal{Q} (corresponding to dazzling edges) is odd. Let x and y denote the number of 60° and 300° angles, so 60x + 300y = 180(x + y - 2). This gives x - y = 3 so x + y is odd.