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Problem
Let Z[x] denote the set of single-variable polynomials in x with integer coefficients. Find
all functions θ : Z[x] → Z[x] (i.e. functions taking polynomials to polynomials) such that

• for any polynomials p, q ∈ Z[x], θ(p+ q) = θ(p) + θ(q);

• for any polynomial p ∈ Z[x], p has at least one integer root if and only if θ(p) has
at least one integer root.

Video
https://youtu.be/V2TNgUwbs6A

External Link
https://aops.com/community/p15412166
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Solution
The answer is that

θ(x) = r(x) · p(±x+ c)

for any choice of c ∈ Z, r(x) without an integer root, with the choice of sign fixed. For
the converse direction we present two approaches.

First solution. It’s clear that this works, so we prove it is the only one. Let r(x) = θ(1),
which has no integer root since the constant 1 has no roots at all.

Part 1. We fix a positive integer n and start by determining θ(xn) which is the bulk
of the problem. Let f(x) = θ(xn). We look at

θ(axn + b) = a · f(x) + b · r(x).

Let g(x) = f(x)/r(x), a quotient of two polynomials whose denominator never vanishes.
By using the problem condition in both directions, varying x ∈ Z and −b/a ∈ Q, we find
that

f(x)

r(x)
takes on exactly the values . . . , (−2)n, (−1)n, 0n, 1n, 2n, 3n, . . . for x ∈ Z

So let g(x) = f(x)/r(x) now.

Claim (Rational functions can’t be integer-valued forever). Since g maps integers to
integers, it must actually be a polynomial with rational coefficients.

Proof. We will only need the condition that g maps integers to integers.
If not, then by the division algorithm, we have g(x) = d(x)+ f1(x)

f2(x)
for some polynomials

d(x), f1(x), f2(x) in Q[x] with deg f2 > deg f1 ≥ 0. There exists an integer D such that
D · d(x) ∈ Z[x] (say the lcm of the denominators of the coefficients of g).

But for large enough integers x the value of f1(x)
f2(x)

is a nonzero and has absolute value
less than 1

D . This is a contradiction.

Remark. You can’t drop the condition that g has rational (rather than integer) coeffi-
cients in the proof above; consider g(x) = 1

2x(x+ 1) for example.
A common wrong approach is to try to use the same logic on θ(xn)/θ(xn−1) for n ≥ 2.

This doesn’t work since θ(xn) and θ(xn−1) could have a common root for n ≥ 2 and
therefore the problem condition essentially says nothing.

Let C be an integer divisible by every denominator in the coefficients of g. Then
apparently

h(x) = Cn · g(x)
is a polynomial which only takes only nth powers as x ∈ Z.

Claim (Polya and Szego). Since h is a polynomial with integer coefficients whose only
values are nth powers, it must itself be the nth power of a polynomial.

Proof. This is a classical folklore problem, but we prove it for completeness.
Decompose h into irreducible factors as

h(x) = c · f0(x)e0 · f1(x)e1 · f2(x)e2 · f3(x)e3 · · · · · fm(x)em

where the fi are nonconstant and c is an integer, and ei > 0 for all i > 0. We also assume
m > 0.

We use the following facts:

2

https://aops.com/community/q2h1215192p6307719


Twitch Solves ISL — Episode 10 USEMO 2019/2

• In general, if A(x), B(x) ∈ Z[x] are coprime, then gcd(A,B) is bounded by some
constant CA,B. This follows by Bezout lemma.

• If A(x) ∈ Z[x] is a nonconstant polynomial, then there are infinitely many primes
dividing some element in the range of A. This is called Schur’s theorem.

• Let A(x) ∈ Z[x] be an irreducible polynomial, and let A′(x) be its derivative.
Then if p is prime and p > CA,A′ , and p has root in Fp, then there exists x with
νp(A(x)) = 1. This follows by Hensel lemma.

Now for the main proof. By the above facts and the Chinese remainder theorem
(together with Dirichlet theorem), we can select enormous primes p1 < p2 < · · · < pm < q
(exceeding c, e, max ei, maxCfi,x, maxCfi,fj for all i and j) and a single integer N
satisfying the following constraints:

• νpi(fi(N)) = 1 for all i = 1, . . . ,m, by requiring N ≡ ti (mod p2i ) for suitable
constant ti not divisible by pi (because of Hensel lemma);

• pi - fj(N) whenever i 6= j; this follows by the fact that pi > Cfi,fj ;

Now look at the value of f(N). It has

νp1(f(N)) = e1

νp2(f(N)) = e2
...

νpm(f(N)) = em.

Now f(N) is a nth power so n divides all of e1, . . . , em. Finally c must be an nth power
too.

So h(x) is an nth power; thus so is g(x). Let’s write g(x) = p(x)n then. Since g = f/r
was supposed to take on all the values . . . , (−2)n, (−1)n, 0n, 1n, 2n, . . . , it follows that
for every k ≥ 0, the of p(x) contains either k or −k. For density reasons, this forces p to
be linear, and actually of the form p(x) = ±x+ c for some constant c.

Part 2. We have now shown θ(xn) = (±x+ c)nr(x), for every n, for some sign and
choice of c depending possibly on n. It remains to show that the choices of signs and
constants are compatible across the different values of n. So let’s verify this.

By applying a suitable transformation on x let’s assume θ(x) = x for simplicity. Then
look at θ(xn+ax) = (±x+ c)n+ax for choices of integers a. This is apparently supposed
to have a root for each choice of a, but if c 6= 0, this means 1

x(±x + c)n can take any
integer value, which is obviously not true for density reasons. This means c = 0, so it
shows θ(xn) = ±xn for any integer n.

Finally, by considering θ(xn + x − 2) = ±xn − x + 2, we see the sign must be + for
the RHS to have an integer root. This finishes the proof.

Second solution, outline (by contestants). The solution is like the previous one, but
replaces the high-powered Polya and Szego with the following simpler result.

Claim (Odd-degree polynomials are determined by their range). Let P (x) ∈ Z[x] be an
odd-degree polynomial. Let Q(x) be another polynomial with the same range as P over
Z. Then P (x) = Q(±x+ c) for some ± and c.
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Proof. First, Q also has odd degree since it must be unbounded in both directions. By
negating if needed, assume Q has positive leading coefficient.

Take a sufficiently large integer n0 such that P (x) and Q(x) are both strictly increasing
for x ≥ n0, and moreover P (n0) > maxx<n0 P (x), Q(n0) > maxx<n0 P (x). Then take an
even larger integer n1 > n0 such that min(P (n1), Q(n1)) > max(P (n0), Q(n0)). Choose
n2 > n0 such that P (n1) = Q(n2). We find that this implies

P (n1) = Q(n2)

P (n1 + 1) = Q(n2 + 1)

P (n1 + 2) = Q(n2 + 2)

P (n1 + 3) = Q(n2 + 3)

and so on. So P is a shift of Q as needed.

This is enough to force θ(xn) = (±x + c)nr(x) when n is odd. When n is even, for
each integer k one can consider

θ(kxn+3 + xn) = kθ(xn+3) + θ(xn)

and use the claim on θ(xn+3) and θ(kxn+3 + xn) to pin down θ(xn).

Third solution (from author). The answers are as before and we prove only the converse
direction.

Lemma. Given two polynomials P,Q ∈ Z[x], if P + nQ has an integer root for all n,
then either P and Q share an integer root or P (x) =

(
x+m
k

)
Q(x) for some integers m, k

with k 6= 0.

Proof. Let d = gcd(P (0), Q(0)) so P (0) = dr and Q(0) = ds. Now, for an integer root
kn of P + nQ,

kn|P (0) + nQ(0) = dr + nds = d(r + ns).

Let p be a prime ≡ r mod s, of which there are infinitely many by Dirichlet’s theorem.
Now, for n = p−r

s , we have
kn|dp.

As the divisors of dp are exactly those of d times 1 or p, there exists a (not necessarily
positive) divisor j of d and a t ∈ {1, p} so that kn = dt for infinitely many n. In the
first case, we have that P (j) + nQ(j) = 0 for infinitely many n and some fixed j, which
implies that j is a root of both P and Q. In the second case, we have, noting p = r+ ns,
that

P (j(r + ns)) + nQ(j(r + ns)) = 0.

As this holds for infinitely many n, we may rewrite it as a polynomial equation

P (x) = (ax+ b)Q(x)

for some rational a, b. Now, we know that (ax+ b+ n)Q(x) has a rational root for all
n ∈ Z. If Q has an integer root then P does as well and we are in our first case; otherwise,
n+b
a ∈ Z for all n ∈ Z. This implies that 1/a ∈ Z, let it be k. Then b/a ∈ Z; let it be m.

This finishes the proof.
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Now, let Pn(x) = f(xn). We claim that P1(x) = (±x+ t)P0(x) for some t ∈ Z. Indeed,
P1 + nP0 has an integer root for all n, so either P1 and P0 share an integer root or
P1(x) =

(
x+m
k

)
P0(x) for some m, k ∈ Z. They clearly cannot share a root, since P0(x)

cannot have any integer roots. Now,

kP1(x) + P0(x) = (x+m+ k)P0(x)

has an integer root, so kx+ 1 must as well, and thus k = ±1, as desired. Now, we see
that

θ (a(xn − cn) + b(x− c)) = a
(
Pn(x)− cnP0(x)

)
+ b
(
P1(x)− cP0(x)

)
has an integer root for any c, a, b. Let Q = Pn − cnP0 and R = P1 − cP0. Since aQ+ bR
has an integer root for all a, b ∈ Z, we can apply our lemma on both the pair (Q,R) and
(R,Q); if they do not share an integer root, then Q must be a linear polynomial times R
and R must be a linear times Q, a contradiction unless they are both 0 (in which case
they share any integer root). So, Q and R share an integer root. We have

R(x) = P1(x)− cP0(x) = (±x+ t− c)P0(x),

and P0 has no integer root as 1 has no integer root, so we have that ±(c− t) is the only
integer root of R and is thus also a root of Q; in particular

Pn(±(c− t)) = cnP0(±(c− t))

for all c ∈ Z. This is a polynomial equation that holds for infinitely many c so we must
have that

Pn(±(x− t)) = xnP0(±(x− t)) =⇒ Pn(x) = (±x+ t)nP0(x).

Thus, if Q(x) =
∑d

i=0 aix
i,

θ(Q(x)) = θ

(
d∑

i=0

aix
i

)
=

d∑
i=0

ai(±x+ t)iP0(x) = P0(x)Q(±x+ t),

finishing the proof.
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