Shortlist 2004 C5 Evan Chen

TWITCH SOLVES ISL

Episode 9

Problem

Let N be a positive integer. Alice and Bob play a game. First Alice writes down 1 first. Then every player (starting with Bob) sees the last number written. If it is n, then that player may write either n + 1 or 2n, but the written number cannot exceed N. The player who writes N wins. For which N does Bob win?

External Link

https://aops.com/community/p251895

Solution

Call this game the N-game (as we will induct on N). The answer is that Bob wins the N-game are exactly those that, when expressed in binary, have no 1's in the 2^0 , 2^2 , 2^4 , ... positions.

Setup. Define the *N*-table as follows. It has *N* entries indexed by $\{1, \ldots, N\}$.

- The *n*th entry is **losing** if and only if a player who sees this number on their turn wins; otherwise, it is **winning**. Hence by definition the last entry is always *L* (because a player who is faced with *N* has just lost!).
- Equivalently, here is a recursive description. We say N is losing. Then, a given n is winning if either n + 1 or 2n is losing (ignoring 2n if n > N/2); else, it is winning.
- Bob wins the N-game if and only if 1 is W.

The tables are shown below for N = 12, respectively.

1	2	3	4	5	6	7	8	9	10	11	12		
L	W	L	W	W	W	W	L	W	L	W	L		
1	2	3	4	5	6	7	8	9	10	11	12	13	
L	W	L	W	L	W	L	W	L	W	L	W	L	
1	0	2			~	_							
1	2	3	4	5	6	7	8	9	10	11	12	13	14

Proof. We start with the following claim.

Claim. If N is odd, then Alice wins the N-game.

Proof. Alice can force Bob to stay on odd numbers.

We now address the case where N is even.

Claim. Suppose $N \equiv 2 \pmod{4}$ and N > 2. Then Bob wins the N-game if and only if he wins the (N-2)-game.

Proof. In the N-table, we have N is losing, N - 1 is winning, N - 2 is losing, and so on; until N/2 + 1 is losing. Thus N/2 is winning.

Now note that we may delete N and N-1 (the last two columns) from the table without affecting any other entries; indeed N/2 was winning anyways as N/2+1 is losing. Thus the N-table is the (N-2)-table with two extra columns at the end.

Claim. Suppose $N \equiv 0 \pmod{4}$ and N > 4. Then Bob wins the N-game if and only if he wins the N/4-game.

Proof. In the N-table, we have N is losing, N-1 is winning, N-2 is losing, and so on; until N/2 + 1 is winning. Now from this it follows N/2, N/2 - 1, ..., N/4 + 1 are all winning.

Since this entire range of numbers is winning and thus don't affect any later numbers, we wind up finding the first N/4 numbers are just a copy of the (N/4)-table.

These three claims imply the answer directly by induction.