Shortlist 2008 G6
 Evan Chen

Twitch Solves ISL

Episode 8

Problem

Let $A B C D$ be a given convex quadrilateral. Prove that there exists a point P inside the quadrilateral such that

$$
\begin{aligned}
\angle P A B+\angle P D C & =\angle P B C+\angle P A D=\angle P C D+\angle P B A \\
& =\angle P D A+\angle P C B=90^{\circ}
\end{aligned}
$$

if and only if the diagonals $A C$ and $B D$ are perpendicular.

Video

https://youtu.be/okxnxCnAAas

External Link

https://aops.com/community/p1555924

Solution

The problem is killed by quoting the following theorem:
Theorem 1. If X is a point such that $\angle A X D+\angle B X C=180^{\circ}$, then the isogonal conjugate of X exists.

Proof, for completeness only. It's enough for the projections of X to the sides to be cyclic, by considering the six-point circle. Let them be $X_{1}, X_{2}, X_{3}, X_{4}$.

$$
\measuredangle X X_{4} X_{1}=\measuredangle X A X_{1}
$$

and this means $\measuredangle X_{1} X_{2} X_{3}=\measuredangle X_{1} X_{4} X_{3}$.
Now in one direction, if the diagonals are perpendicular and meet at Q, then its isogonal conjugate exists, and is seen to have the desired property.

Conversely, given such a point P, it has an isogonal conjugate Q which satisfies $\angle A Q B=\angle B Q C=\angle C Q D=\angle D Q A=90^{\circ}$, which implies that Q is the perpendicular intersection of the diagonals.

