Shortlist 2008 C5
 Evan Chen

Twitch Solves ISL

Episode 8

Problem

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k+\ell}\right\}$ be a subset of $[0,1]$. A k-element subset $A \subset S$ is called nice if

$$
\left|\frac{1}{k} \sum_{x_{i} \in A} x_{i}-\frac{1}{\ell} \sum_{x_{j} \in S \backslash A} x_{j}\right| \leq \frac{k+\ell}{2 k \ell}
$$

Prove that the number of nice subsets is at least $\frac{2}{k+\ell}\binom{k+\ell}{k}$.

Video

https://youtu.be/ikvgjL-82tE

External Link

https://aops.com/community/p1555908

Solution

We let $\Delta(A)$ denote the quantity in the absolute value as a function of A. Let $n=k+\ell$ for brevity.

Consider a random permutation π of $\{1,2, \ldots, n\}$. Look at the following $k+\ell$ sets, the "cyclic shifts":

$$
\begin{aligned}
A_{1} & =\left\{x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(k)}\right\} \\
A_{2} & =\left\{x_{\pi(2)}, x_{\pi(3)}, \ldots, x_{\pi(k+1)}\right\} \\
A_{3} & =\left\{x_{\pi(3)}, x_{\pi(4)}, \ldots, x_{\pi(k+2)}\right\} \\
& \vdots \\
A_{n-1} & =\left\{x_{\pi(n-1)}, x_{\pi(n)}, \ldots, x_{\pi(n-2)}\right\} \\
A_{n} & =\left\{x_{\pi(n)}, x_{\pi(1)}, \ldots, x_{\pi(n-1)}\right\} .
\end{aligned}
$$

We evidently have

$$
\sum_{1}^{n} \Delta\left(A_{i}\right)=0
$$

However, any two consecutive $\Delta\left(A_{i}\right)$ are going to differ by at most $\delta:=\frac{1}{k}+\frac{1}{\ell}$. However we note that:

Lemma. If we have (cyclic) sequence of $n \geq 2$ numbers with mean zero, and whose consecutive terms differ by at most δ, then there will always be at least two numbers with absolute value at most $\delta / 2$.

In other words, among these n sets, there must be at least two nice ones, regardless of π.

However, if p is the fraction of k-element subsets which are nice, then the expected number of nice sets is exactly $n \cdot p$. So we conclude $p \geq \frac{2}{n}$ as desired.

