Shortlist 2004 N2

Evan Chen
Twitch Solves ISL
Episode 7

Problem

Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
f(n)=\sum_{k=1}^{n} \operatorname{gcd}(k, n) .
$$

For each positive integer a, show that the equation $f(x)=a x$ has at least one solution and determine whether or not that solution is unique.

External Link

https://aops.com/community/p191396

Solution

Let $g(n)=f(n) / n$, so we are interested in the outputs of g. We start with:
Claim. The function g is multiplicative and satisfies

$$
g\left(p^{e}\right)=\frac{p-1}{p} \cdot e+1
$$

for any prime power p^{e}.
Proof. First, write

$$
f(n)=\sum_{d \mid n} d \varphi(n / d)=\operatorname{id} * \varphi
$$

to get that f is multiplicative (as the Dirichlet convolution of two multiplicative functions). Thus $g(n)=f(n) / n$ is multiplicative too.

Now note that for any prime power p^{e}, we have

$$
g\left(p^{e}\right)=\frac{f\left(p^{e}\right)}{p^{e}}=\frac{p^{e} \cdot 1+p^{e-1}(p-1)+\cdots+1 \cdot\left(p^{e}-p^{e-1}\right)}{p^{e}}=e+1-\frac{e}{p}
$$

so the second part is true too.
In particular, we have

$$
g\left(2^{2 a-2}\right)=a
$$

so we already know every a has the solution $x=2^{2 a-2}$.
We now show that this is the only solution if and only if a is a power of 2 .
First, if $q>1$ is any odd divisor of a, then writing $a=q \cdot b$, one can note that

$$
\begin{aligned}
g\left(2^{2 b-2}\right) & =b \\
g\left(3^{\frac{3}{2}(q-1)}\right) & =q
\end{aligned}
$$

and in this way we generate a new solution to the given equation. This shows the solution we found is not unique when a is not a power of 2 .

Conversely, suppose $a=2^{\ell}$ is a power of 2 and x is an integer with

$$
g(x)=a=2^{\ell} .
$$

Note that if y is an odd prime power, then

- $\nu_{2}(g(y))=0$, and
- $g(y)>1$.

So by measuring ν_{2}, we get $\nu_{2}(g(x))=\ell \Longrightarrow \nu_{2}(x)=2 a-2$ matching the solution we found before. But then for size reasons, we must have $x=2^{2 a-2}$, as desired.

