Shortlist 2004 G3 Evan Chen

Twitch Solves ISL

Episode 7

Problem

Let O be the circumcenter of an acute-angled triangle ABC with $\angle B < \angle C$ and let $D = \overline{AO} \cap \overline{BC}$. Let E and F denote the circumcenters of triangles ABD and ACD. Extend the sides BA and CA beyond A, and choose on the respective extensions points G and H such that AG = AC and AH = AB. Prove that the quadrilateral EFGH is a rectangle if and only if $\angle ACB - \angle ABC = 60^{\circ}$.

Video

https://youtu.be/3W4kkTPJup0

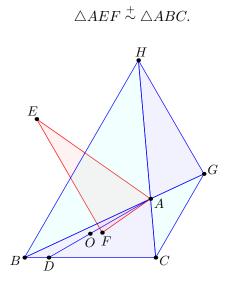
External Link

https://aops.com/community/p205737

Solution

We start with a few observations which are always true regardless of the condition.

- Quadrilateral HGCB is always an isosceles trapezoid, and in particular BC = GH.
- By angle chasing $\overline{AO} \perp \overline{GH}$ always holds. (One clean way to see this is to note that \overline{GH} and \overline{BC} are antiparallel through $\angle A$.) This implies $\overline{EF} \parallel \overline{GH}$.
- By Salmon theorem, we always have



We begin now with:

Claim. We have $\triangle AEF \cong \triangle ABC$ if and only if $\angle C - \angle B = 60^{\circ}$.

Proof. The congruence just means FA = AC. Since FA = FC always, triangle AFC is equilateral if and only if $\angle AFC = 60^{\circ} \iff \angle ADC = 30^{\circ}$. As $\angle ADC = (90^{\circ} - \angle C) + \angle B$, and the result follows.

Claim. We have EFGH is a parallelogram if and only if $\triangle AEF \cong \triangle ABC$.

Proof. Since we already know $\overline{EF} \parallel \overline{GH}$, the parallelogram condition is equivalent to EF = GH, but as GH = BC we get the earlier congruence.

It remains only to show that if EFGH is a parallelogram then it is also a rectangle. In the situation of the claims, note that EG = FH by symmetry through the oppositely congruent triangles $\triangle AEF$ and $\triangle AHG$ as needed.