Shortlist 2004 A2

Evan Chen

TWITCH SOLVES ISL

Episode 7

Problem

Let a_0, a_1, a_2, \ldots be an infinite sequence of real numbers satisfying the equation

$$a_n = |a_{n+1} - a_{n+2}|$$

for all $n \ge 0$, where a_0 and a_1 are two different positive reals. Can this sequence a_0 , a_1 , a_2 , ... be bounded?

Video

https://youtu.be/ESnvvXnOB6Q

Solution

Answer: the sequence cannot be bounded.

By induction one may verify easily that:

- all terms of the sequence are positive;
- no two adjacent terms are equal;

Call an index n nice if $a_n < a_{n+1}$.

Claim. If n is not nice, then n+1 must be.

Proof. If
$$a_n > a_{n+1}$$
 then $a_{n+2} = a_n + a_{n+1} > a_{n+1}$.

If n is a nice index, then we define $\psi(n) = (a_n, a_{n+1} - a_n)$, a pair of two positive real numbers. Equivalently, by $\psi(n) = (x, y)$ we mean that $a_n = x$ and $a_{n+1} = x + y$.

Claim. If n is nice and $\psi(n) = (x, y)$ then either

- n+1 is nice and $\psi(n)=(x+y,x)$; or
- n+2 is nice and $\psi(n)=(y,x+y)$.

Proof. This follows by computation. Let $a_n = x$ and $a_{n+1} = x + y$. Then $a_{n+2} = a_{n+1} \pm a_n$.

- If the sign is +, we get $a_{n+2} = 2x + y = (x + y) + x$.
- If the sign is -, we get $a_{n+2} = y$, and then $a_{n+3} = (x+y) + y$.

Thus the sequence of ψ -pairs obviously grows without bound starting from the first nice index.