Twitch 006.1

Evan Chen

Twitch Solves ISL
Episode 6

Problem

Let $A B C$ be a triangle and let T be the contact point of the A-mixtilinear incircle with the circumcircle, and let T^{\prime} be the reflection of T over $B C$. Prove that the nine-point circle of $T^{\prime} B C$ is tangent to the incircle.

Solution

The following solution is typeset thanks to Srijon Sarkar. Points defined as in diagram shown.

Claim. The nine-point circle of $T^{\prime} B C$ coincides with the reflection of the nine-point circle of $A B C$ over $\overline{M I}$.

Proof. It suffices to show that the foot K from B to $C T^{\prime}$, when reflected over $\overline{M I}$, is the foot Y from B to $C A$, i.e. we want $I K=I Y$.

- $\angle B K C=\angle B Y C=90^{\circ} \Longrightarrow M B=M C=M Y=M K \Longrightarrow\{K, Y\} \in \odot(B C)$.
- Since $A Q$ and $A T$ are Isogonals w.r.t A-angle bisector, by Mixtilinear copying (property of T) and angle chase we have:

$$
\angle B C T=\angle B A T=\angle Q A C=\angle T^{\prime} C B=\angle K C B \Longrightarrow \angle Q A C=\angle K C B .
$$

- Since D and Q are the A-intouch point and A-extouch point respectively, hence by Diameter of the Incircle lemma $B D=Q C \Longrightarrow M D=M Q$. In $\triangle A D Q$, we had N as the midpoint of $A D$ and now M as the midpoint of $D Q$, so $N M \| A Q$. If D^{\prime} is the antipode of D w.r.t $\odot(I)$, then A, D^{\prime}, Q are collinear by Diameter of the Incircle lemma. Now, by homothety at D with a ratio of $-\frac{1}{2}$ we get A, D^{\prime} and Q mapped to N, I and M respectively, thus N, I, M are collinear.
Hence, $I M \| A Q$. Now, we reflect K over $B C$, the reflected point K^{\prime} falls on $\odot(B K Y C)$.
- Next, we note that:

$$
\angle B M I=\angle B Q A
$$

$$
\begin{aligned}
& =\angle Q A C+\angle Q C A \\
& =\angle K C B+\angle B C A \\
& =\angle K^{\prime} C B+\angle B C A \\
& =\angle T C A \\
\Longrightarrow & \angle B M I=\angle T C A .
\end{aligned}
$$

- As $\angle K M K^{\prime}=2 \angle K C T$ and $\angle K M Y=2 \angle K C Y$ we get

$$
\Longrightarrow \frac{1}{2} \angle K^{\prime} M Y=\angle T C A \Longrightarrow \angle B M I=\frac{1}{2} \angle K^{\prime} M Y .
$$

- Now, since $\angle K M B=\angle K^{\prime} M B$, using the above result we get $\angle Y M I=\angle K M I \Longrightarrow$ $\overline{M I}$ is the bisector of $\angle Y M K$. We also had $M K=M Y$, so $I K=I Y$.

And thus, the nine-point circle of $\triangle T^{\prime} B C$ is tangent to the incircle of $\triangle A B C$ (by appealing to Feuerbach theorem).

