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TWITCH SOLVES ISL

Episode 6

Problem

Let ABC be a triangle and let T" be the contact point of the A-mixtilinear incircle with
the circumcircle, and let 7”7 be the reflection of T over BC. Prove that the nine-point

circle of T'BC' is tangent to the incircle.
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Solution

The following solution is typeset thanks to Srijon Sarkar. Points defined as in diagram
shown.

Claim. The nine-point circle of 7'BC' coincides with the reflection of the nine-point
circle of ABC over M1.

Proof. It suffices to show that the foot K from B to CT"’, when reflected over M1, is the
foot Y from B to C'A, i.e. we want IK = IY.

e /BKC =/BYC =90° = MB=MC=MY =MK = {K,Y} € &(BO).

e Since AQ and AT are Isogonals w.r.t A-angle bisector, by Mixtilinear copying
(property of T') and angle chase we have:

/BCT = /BAT = /QAC = /T'CB = /KCB = /QAC = /KCB.

e Since D and @ are the A-intouch point and A-extouch point respectively, hence by
Diameter of the Incircle lemma BD = QC = MD = MQ. In AADQ, we
had N as the midpoint of AD and now M as the midpoint of D@, so NM || AQ.

If D’ is the antipode of D w.r.t ®(I), then A, D', Q are collinear by Diameter of
the Incircle lemma. Now, by homothety at D with a ratio of +% we get A, D’
and @) mapped to N, I and M respectively, thus N, I, M are collinear.

Hence, IM || AQ. Now, we reflect K over BC, the reflected point K’ falls on
O(BKY(C).
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e Next, we note that:
/BMI = /BQA
=ZLQAC + LQCA
=/ZKCB+ £ZBCA
=/K'CB+ Z/BCA
=/TCA
= /BMI = /TCA.

e As /UKMK' =2/KCT and ZKMY =2/KCY we get

1 1
== iéK'MY:LTCA = /BMI = 3 /K'MY .
e Now, since /KM B = /K'M B, using the above result we get /YMI = /KMI —
MT is the bisector of /ZYMK. e also had MK = MY, so IK = IY.
O

And thus, the nine-point circle of AT'BC' is tangent to the incircle of AABC (by
appealing to Feuerbach theorem).



