Shortlist 2006 A5
 Evan Chen

Twitch Solves ISL

Episode 6

Problem

If a, b, c are the sides of a triangle, prove that

$$
\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 3
$$

Video

https://youtu.be/DGLLEYuvHVA

External Link

https://aops.com/community/p741368

Solution

To deal with the long denominators, let $x=\sqrt{b}+\sqrt{c}-\sqrt{a}$, etc. for brevity. Note that $x>0$, and similarly for the others. Then we have that

$$
0<b+c-a=\left(\frac{x+y}{2}\right)^{2}+\left(\frac{x+z}{2}\right)^{2}-\left(\frac{y+z}{2}\right)^{2}=x^{2}+x y+x z-y z
$$

Thus the problem asks us to prove that

$$
\sum_{\mathrm{cyc}} \frac{\sqrt{x^{2}+x y+x z-y z}}{x} \leq 3 \sqrt{2}
$$

for positive real numbers x, y, z satisfying the extra condition that all radicals are positive.

By Cauchy-Schwarz though, we have that

$$
\left(\sum_{\text {cyc }} \frac{\sqrt{x^{2}+x y+x z-y z}}{x}\right)^{2} \leq 3 \sum_{\text {cyc }} \frac{x^{2}+x y+x z-y z}{x^{2}}
$$

and expanding fully, we see it suffices to show

$$
\sum_{\text {sym }} x y^{2} z^{3} \leq(x y)^{3}+(y z)^{3}+(z x)^{3}+3(x y z)^{2}
$$

which is Schur's inequality applied to $x y, y z, z x$.

