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Problem
If a, b, c are the sides of a triangle, prove that

√
b+ c− a√

b+
√
c−

√
a
+

√
c+ a− b

√
c+

√
a−

√
b
+

√
a+ b− c

√
a+

√
b−

√
c
≤ 3.

Video
https://youtu.be/DGLLEYuvHVA

External Link
https://aops.com/community/p741368
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https://www.youtube.com/watch?v=DGLLEYuvHVA&list=PLi6h8GM1FA6yHh4gDk_ZYezmncU1EJUmZ
https://aops.com/community/p741368
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Solution
To deal with the long denominators, let x =

√
b+

√
c−

√
a, etc. for brevity. Note that

x > 0, and similarly for the others. Then we have that
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= x2 + xy + xz − yz

Thus the problem asks us to prove that

∑
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for positive real numbers x, y, z satisfying the extra condition that all radicals are
positive.

By Cauchy-Schwarz though, we have that(∑
cyc
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≤ 3
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and expanding fully, we see it suffices to show∑
sym

xy2z3 ≤ (xy)3 + (yz)3 + (zx)3 + 3(xyz)2

which is Schur’s inequality applied to xy, yz, zx.
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