# Shortlist 2013 A2 <br> Evan Chen <br> Twitch Solves ISL <br> Episode 5 

## Problem

Prove that in any set of 2000 distinct real numbers there exist two pairs $a>b$ and $c>d$, with either $a \neq c$ or $b \neq d$, such that

$$
\left|\frac{a-b}{c-d}-1\right|<\frac{1}{100000}
$$

## External Link

https://aops.com/community/p3543341

## Solution

WLOG, we denote the set of 2000 real numbers by

$$
S=\left\{0=x_{1}<x_{2}<\cdots<x_{2000}=1\right\} .
$$

We proceed by contradiction and assume this is not the case.
Claim. There exists $0 \leq x<y \leq 1$ in $S$ such that

$$
x-y<\left(\frac{1}{1+10^{-5}}\right)^{(2000)-1} .
$$

Proof. Our contradiction hypothesis assumes that any two differences of elements in $S$ differ by at least a factor of $1+10^{-5}$. Since the largest difference is $1-0=1$ and there are $\binom{2000}{2}$ differences, the conclusion follows.

We let $0 \leq x<y \leq 1$ denote the elements with smallest difference. Let $\rho=x-y$. An arithmetic calculation shows that $\rho<3 \cdot 10^{-9}$.


Note that we have

- If $x>0.499$ then

$$
0<\frac{y-0}{x-0}-1<\frac{\rho}{0.499}<10^{-5}
$$

as needed.

- If $y<0.501$ then similarly

$$
0<\frac{1-x}{1-y}-1<\frac{\rho}{0.499}<10^{-5}
$$

as needed.

