Shortlist 2013 A2 Evan Chen

TWITCH SOLVES ISL

Episode 5

Problem

Prove that in any set of 2000 distinct real numbers there exist two pairs a > b and c > d, with *either* $a \neq c$ or $b \neq d$, such that

$$\left|\frac{a-b}{c-d}-1\right| < \frac{1}{100000}.$$

External Link

https://aops.com/community/p3543341

Solution

WLOG, we denote the set of 2000 real numbers by

$$S = \{0 = x_1 < x_2 < \dots < x_{2000} = 1\}.$$

We proceed by contradiction and assume this is not the case.

Claim. There exists $0 \le x < y \le 1$ in S such that

$$x - y < \left(\frac{1}{1 + 10^{-5}}\right)^{\binom{2000}{2} - 1}$$

Proof. Our contradiction hypothesis assumes that any two differences of elements in S differ by at least a factor of $1 + 10^{-5}$. Since the largest difference is 1 - 0 = 1 and there are $\binom{2000}{2}$ differences, the conclusion follows.

We let $0 \le x < y \le 1$ denote the elements with smallest difference. Let $\rho = x - y$. An arithmetic calculation shows that $\rho < 3 \cdot 10^{-9}$.

$$0$$
 super close $x y$ 1

Note that we have

• If x > 0.499 then

$$0 < \frac{y-0}{x-0} - 1 < \frac{\rho}{0.499} < 10^{-5}$$

as needed.

• If y < 0.501 then similarly

$$0 < \frac{1-x}{1-y} - 1 < \frac{\rho}{0.499} < 10^{-5}$$

as needed.