Shortlist 2006 G2
 Evan Chen

Twitch Solves ISL

Episode 5

Problem

Let $A B C D$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $A K / K B=D L / L C$. Suppose points P and Q on segment $K L$ obey

$$
\angle A P B=\angle B C D \quad \text { and } \quad \angle C Q D=\angle A B C .
$$

Prove that P, Q, B, C are concyclic.

Video

https://youtu.be/--mpFb3GbBA

External Link

https://aops.com/community/p875014

Solution

We begin with two simple observations:
Claim. Lines $B C, A D, K L$ are concurrent at a point E.
Proof. Follows from $\overline{A B} \| \overline{C D}$ and $A K / K B=D L / L C$.
Claim. Line $B C$ is tangent to $(A B P)$ and $(C Q D)$.
Proof. Follows from $\angle A P B=\angle B C D=180^{\circ}-\angle E B A$ and $\angle C Q D=\angle A B C=\angle E C D$ respectively.

Let R denote the second intersection of $\overline{E K Q}$ with ($C Q D$). Thus there is a homothety at E which maps $\triangle D R C$ to $\triangle A P B$, say.

Since $E R \cdot E P=E B^{2}$ it follows now that

$$
E Q \cdot E P=E B \cdot E C
$$

and we're done.

