Shortlist 2006 G2 Evan Chen

TWITCH SOLVES ISL

Episode 5

Problem

Let ABCD be a trapezoid with parallel sides AB > CD. Points K and L lie on the line segments AB and CD, respectively, so that AK/KB = DL/LC. Suppose points P and Q on segment KL obey

 $\angle APB = \angle BCD$ and $\angle CQD = \angle ABC$.

Prove that P, Q, B, C are concyclic.

Video

https://youtu.be/--mpFb3GbBA

External Link

https://aops.com/community/p875014

Solution

We begin with two simple observations:

Claim. Lines BC, AD, KL are concurrent at a point E.

Proof. Follows from $\overline{AB} \parallel \overline{CD}$ and AK/KB = DL/LC.

Claim. Line BC is tangent to (ABP) and (CQD).

Proof. Follows from $\angle APB = \angle BCD = 180^{\circ} - \angle EBA$ and $\angle CQD = \angle ABC = \angle ECD$ respectively.

Let R denote the second intersection of \overline{EKQ} with (CQD). Thus there is a homothety at E which maps $\triangle DRC$ to $\triangle APB$, say. Since $ER \cdot EP = EB^2$ it follows now that

$$EQ \cdot EP = EB \cdot EC$$

and we're done.