Shortlist 2006 A2
 Evan Chen
 Twitch Solves ISL
 Episode 4

Problem

The sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined recursively by

$$
a_{0}=-1, \quad \sum_{k=0}^{n} \frac{a_{n-k}}{k+1}=0 \quad \text { for } n \geq 1 .
$$

Show that $a_{n}>0$ for all $n \geq 1$.

External Link

https://aops.com/community/p821388

Solution

In fact, it suffices to take the two consecutive equations

$$
\begin{aligned}
& 0=\frac{a_{n}}{1}+\frac{a_{n-1}}{2}+\frac{a_{n-2}}{3}+\cdots+\frac{a_{0}}{n+1} \\
& 0=\frac{a_{n+1}}{1}+\frac{a_{n}}{2}+\frac{a_{n-1}}{3}+\frac{a_{n-2}}{4}+\cdots+\frac{a_{0}}{n+2}
\end{aligned}
$$

and subtract $\frac{n+1}{n+2}$ times the first equation from the second (eliminating the a_{0}) to obtain a new recursion

$$
\begin{aligned}
a_{n+1}= & \left(\frac{n+1}{n+2} \cdot \frac{1}{1}-\frac{1}{2}\right) a_{n}+\left(\frac{n+1}{n+2} \cdot \frac{1}{2}-\frac{1}{3}\right) a_{n-1} \\
& +\left(\frac{n+1}{n+2} \cdot \frac{1}{3}-\frac{1}{4}\right) a_{n-2}+\cdots+\left(\frac{n+1}{n+2} \cdot \frac{1}{n}-\frac{1}{n+1}\right) a_{1}
\end{aligned}
$$

This recursion has the property that all the coefficients in parentheses are positive. Since $a_{1}=1 / 2>0$, this implies the result by induction.

