Shortlist 2005 G3
 Evan Chen

Twitch Solves ISL

Episode 3

Problem

Let $A B C D$ be a parallelogram. A variable line g through the vertex A intersects the rays $B C$ and $D C$ at the points X and Y, respectively. Let K and L be the A-excenters of the triangles $A B X$ and $A D Y$. Show that the measure of angle $\angle K C L$ is independent of the line g.

External Link

https://aops.com/community/p512720

Solution

Here is a synthetic solution. Let $\alpha=\angle B A K=\angle K A X$ and $\beta=\angle X A L=\angle L A D$. Since $\angle A B K=\angle A D L=180^{\circ}-(\alpha+\beta)$, it follows that

$$
\triangle A B K \sim \triangle L D A \Longrightarrow \frac{A B}{L D}=\frac{B K}{D A} \Longrightarrow \frac{C D}{L D}=\frac{B K}{B C} \Longrightarrow \triangle L D C \sim \triangle C B K
$$

Then, $\angle B C K+\angle L C D=180^{\circ}-(\alpha+\beta)$, which is fixed. On the other hand, $\angle B C D=$ $2(\alpha+\beta)$ is fixed too. Therefore $\angle K C L$ is fixed as desired.

Moving points should also work; see https://aops.com/community/c6h87927p8743952 for example.

