Shortlist 2007 G2

Evan Chen

TWITCH SOLVES ISL

Episode 2

Problem

Denote by M midpoint of side BC in an isosceles triangle $\triangle ABC$ with AC = AB. Take a point X on a smaller arc \widehat{MA} of circumcircle of triangle $\triangle ABM$. Denote by T point inside of angle BMA such that $\angle TMX = 90^\circ$ and TX = BX.

Prove that $\angle MTB - \angle CTM$ does not depend on choice of X.

Video

https://youtu.be/vA1iwW41Jmw

External Link

https://aops.com/community/p1143932

Solution

Construct parallelogram CTBS whose diagonals meet at M. Also, let N be the midpoint of \overline{BT} .

We first eliminate C from the diagram by noting that

$$\angle CTM = \angle MSB = \angle TSB = \frac{1}{2} \angle TXB = \angle NXB.$$

Also, noting that XMTN are cyclic (as $\angle XMT = \angle XNT = 90^{\circ}$), we have

$$\angle MTB = \angle MTN = \angle NXM$$
.

Thus $\angle MTB - \angle CTM = \angle NXM - \angle NXB = \angle MXB$ which is fixed.