Shortlist 2007 G2

Evan Chen

Twitch Solves ISL

Episode 2

Problem

Denote by M midpoint of side $B C$ in an isosceles triangle $\triangle A B C$ with $A C=A B$. Take a point X on a smaller arc $\widehat{M A}$ of circumcircle of triangle $\triangle A B M$. Denote by T point inside of angle $B M A$ such that $\angle T M X=90^{\circ}$ and $T X=B X$.

Prove that $\angle M T B-\angle C T M$ does not depend on choice of X.

Video

https://youtu.be/vA1iwW41Jmw

External Link

https://aops.com/community/p1143932

Solution

Construct parallelogram $C T B S$ whose diagonals meet at M. Also, let N be the midpoint of $\overline{B T}$.

We first eliminate C from the diagram by noting that

$$
\angle C T M=\angle M S B=\angle T S B=\frac{1}{2} \angle T X B=\angle N X B .
$$

Also, noting that $X M T N$ are cyclic (as $\angle X M T=\angle X N T=90^{\circ}$), we have

$$
\angle M T B=\angle M T N=\angle N X M .
$$

Thus $\angle M T B-\angle C T M=\angle N X M-\angle N X B=\angle M X B$ which is fixed.

