Shortlist 2007 C1 Evan Chen

TWITCH SOLVES ISL

Episode 2 $\,$

Problem

Let $n \ge 1$ be an integer. Find all sequences $a_1, a_2, \ldots, a_{n^2+n}$ consisting of 0 and 1 such that

 $a_{i+1} + a_{i+2} + \dots + a_{i+n} < a_{i+n+1} + a_{i+n+2} + \dots + a_{i+2n}$

for all $0 \le i \le n^2 - n$.

External Link

https://aops.com/community/p1187174

Solution

We give an example for n = 5 which generalizes readily:

00000 | 00001 | 00011 | 00111 | 01111 | 11111.

It's obvious this works. One can actually prove this is the only one. Now:

- First, split the $n^2 + n$ numbers into n + 1 blocks of size n (as in the example above). Then evidently, they must have $0, 1, \ldots, n$ ones in that order.
- TODO finish this up.