Shortlist 2007 C1

Evan Chen

Twitch Solves ISL

Episode 2

Problem

Let $n \geq 1$ be an integer. Find all sequences $a_{1}, a_{2}, \ldots, a_{n^{2}+n}$ consisting of 0 and 1 such that

$$
a_{i+1}+a_{i+2}+\cdots+a_{i+n}<a_{i+n+1}+a_{i+n+2}+\cdots+a_{i+2 n}
$$

for all $0 \leq i \leq n^{2}-n$.

External Link

https://aops.com/community/p1187174

Solution

We give an example for $n=5$ which generalizes readily:

$$
\text { 00000 | } 00001 \text { | } 00011|00111| 011111 \text { | } 0111 .
$$

It's obvious this works. One can actually prove this is the only one.
Now:

- First, split the $n^{2}+n$ numbers into $n+1$ blocks of size n (as in the example above). Then evidently, they must have $0,1, \ldots, n$ ones in that order.
- TODO finish this up.

