Shortlist 2012 G2
 Evan Chen

Twitch Solves ISL

Episode 1

Problem

Let $A B C D$ be a cyclic quadrilateral and let $E=\overline{A C} \cap \overline{B D}$. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that the points D, H, F, G are concyclic.

External Link

https://aops.com/community/p3160578

Solution

We present two approaches.
Complex numbers. Let A, B, C, D be the unit circle in the usual manner. In what follows, the notation $z_{1} \asymp z_{2}$ means that z_{1} / z_{2} is real.

Note that $e=\frac{a c(b+d)-b d(a+c)}{a c-b d}$. Also, $g=c+d-e$ and $h=a+d-a d \bar{e}$. We calculate

$$
\begin{aligned}
\frac{g-h}{f-h} & \asymp \frac{g-h}{\frac{(f-d)^{2}}{f-e}}=\frac{(c+d-e)-h}{\frac{(a-d)^{2}}{f-e}}=(f-e) \cdot \frac{c-a-e+a d \bar{e}}{(a-d)^{2}} \\
& =(f-e) \cdot \frac{c-a-\frac{a c(b+d)-b d(a+c)}{a c-b d}+a d \cdot \frac{a+c-b-d}{a c-b d}}{(a-d)^{2}} \\
& =\frac{f-e}{(a-d)^{2}} \cdot \frac{(c-a)(a c-b d)-[a c(b+d)-b d(a+c)]+a d(a+c-b-d)}{a c-b d} \\
& =\frac{f-e}{(a-d)^{2}} \cdot \frac{a c^{2}-a^{2} c-a b c+a b d+a^{2} d-a d^{2}}{a c-b d} \\
& =\frac{f-e}{(a-d)^{2}} \cdot \frac{a(c-d)(c+d-a-b)}{a c-b d} .
\end{aligned}
$$

To handle E and F, we cop out using Brokard's Theorem: taking the final intersection $\frac{a b(c+d)-c d(a+b)}{a b-c d}$, we have

$$
f-e \sim i \cdot \frac{a b(c+d)-c d(a+b)}{a b-c d} .
$$

In summary,

$$
\frac{g-h}{f-h} \asymp \frac{a b(c+d)-c d(a+b)}{(a-d)^{2}(a b-c d)} \cdot \frac{a(c-d)(c+d-a-b)}{a c-b d}
$$

On the other hand,

$$
\frac{g-d}{f-d} \asymp \frac{c-a}{a-d} .
$$

Thus, we have

$$
\frac{g-h}{f-h} \div \frac{g-d}{f-d} \asymp \frac{a b(c+d)-c d(a+b)}{(a-d)(c-a)(a b-c d)} \cdot \frac{a(c-d)(c+d-a-b)}{a c-b d}
$$

This expression is easily seen to be self-conjugate, completing the proof.
Synthetic approach. By the so-called isogonality lemma (see Geometry Revisited 1.9§3) on $\triangle F C D$, we find that lines $F E$ and $F G$ are isogonal with respect to $\angle C F D$.

In particular, since

$$
\measuredangle F B E=\measuredangle C B E=\measuredangle C A D=\measuredangle A D G=\measuredangle F D G
$$

the isogonality implies that

$$
\triangle F B E \approx \triangle F D G
$$

Thus

$$
\measuredangle F G D=\measuredangle B E F=\measuredangle D E F=\measuredangle F H D
$$

which finishes the problem.

