Shortlist 2012 C2
 Evan Chen

Twitch Solves ISL

Episode 1

Problem

Let $n \geq 1$ be an integer. What is the maximum number of possible disjoint pairs of elements of the set $\{1,2, \ldots, n\}$ such that the sums of the pairs are different integers not exceeding n ?

External Link

https://aops.com/community/p3160560

Solution

The answer is $N=N(n) \leq\left\lfloor\frac{2 n-1}{5}\right\rfloor$. The proof is nearly identical to that of IMO SL 2009 C2.

To prove the bound, suppose the pairs are $\left(a_{1}, b_{1}\right), \ldots,\left(a_{N}, b_{N}\right)$. Then on the one hand

$$
\sum_{1}^{N}\left(a_{i}+b_{i}\right) \leq \underbrace{n+\cdots+(n-N+1)}_{N \text { largest sums }<n}=\frac{1}{2} N(2 n-N+1) .
$$

On the other hand,

$$
\sum_{1}^{N}\left(a_{i}+b_{i}\right) \geq \underbrace{1+2+\cdots+2 N}_{2 N \text { smallest possible entries }}=N \cdot(2 N+1)
$$

Putting these two bounds together and solving works.
For the construction, it suffices to exhibit the construction when $n \equiv 1(\bmod 5)$ and $n \equiv 3(\bmod 5)$, since for all other n we have $N(n)=N(n-1)$. We just give examples which generalize readily.

- When $n=18$, we use the following:

1	2	3	4	5	6	7
+	+	+	+	+	+	+
14	12	10	8	13	11	9

The general construction for $n=5 k+3$ is analogous, using $(k+1)+k=2 k+1$ pairs.

- When $n=21$, we use the following:

1	2	3	4	5	6	7	8
+	+	+	+	+	+	+	+
14	12	10	17	15	13	11	9

The general construction for $n=5 k+1$ is analogous, using $(k-1)+(k+1)=2 k$ pairs.

