Shortlist 2008 N2
 Evan Chen

Twitch Solves ISL

Episode 1

Problem

Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers for $n \geq 3$. Prove that there exist distinct indices i and j such that $a_{i}+a_{j}$ does not divide any of $3 a_{1}, 3 a_{2}, \ldots, 3 a_{n}$.

External Link

https://aops.com/community/p1555929

Solution

Assume for contradiction this is not true. By sorting, we assume $a_{1}>a_{2}>\cdots>a_{n}$. We will suppose that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$, else divide through.

Claim. We have $a_{i} \equiv-a_{1}(\bmod 3)$ for all $i>1$.
Proof. If not then $a_{1}+a_{i}$ divides some $3 a_{k}$. But $a_{1}+a_{i} \perp 3$, so $a_{1}+a_{i}$ divides some a_{k}. This is impossible for size reasons.

Since we assumed the sequence was relatively prime, we have now that

$$
a_{2} \equiv a_{3} \equiv \cdots \equiv a_{n} \equiv-a_{1} \not \equiv 0 \quad(\bmod 3) .
$$

We now work with only a_{1}, a_{2}, a_{3}. The proof proceeds in three steps.

- Again, $a_{2}+a_{3}$ divides $3 a_{k}$ for some k, but since $a_{2}+a_{3} \not \equiv 0(\bmod 3)$, we find that $a_{2}+a_{3} \mid a_{k}$ for some k. Hence in fact $a_{2}+a_{3} \mid a_{1}$.
- Meanwhile, $a_{1}+a_{2}$ divides either $3 a_{1}$ or $3 a_{2}$ for size reasons. But actually, these two statements are equivalent, since $a_{1}+a_{2}$ divides their sum $3 a_{1}+3 a_{2}$. Now from $2 a_{2}<a_{1}+a_{2} \mid 3 a_{2}$, we must have $a_{1}=2 a_{2}$.
- Now $a_{2}<a_{2}+a_{3} \mid a_{1}=2 a_{2}$, so we must have $a_{2}+a_{3}=2 a_{2}$ but then $a_{2}=a_{3}$, contradiction.

This concludes the proof.
Remark. Note that we can find pretty early on that the $n=3$ case of the problem is sufficient: the three largest numbers satisfy the condition anyways, so there is no need any longer to look at a_{4}, a_{5}, \ldots.

