Shortlist 2008 N2 Evan Chen

TWITCH SOLVES ISL

Episode 1

Problem

Let a_1, a_2, \ldots, a_n be distinct positive integers for $n \ge 3$. Prove that there exist distinct indices i and j such that $a_i + a_j$ does not divide any of $3a_1, 3a_2, \ldots, 3a_n$.

External Link

https://aops.com/community/p1555929

Solution

Assume for contradiction this is not true. By sorting, we assume $a_1 > a_2 > \cdots > a_n$. We will suppose that $gcd(a_1, \ldots, a_n) = 1$, else divide through.

Claim. We have $a_i \equiv -a_1 \pmod{3}$ for all i > 1.

Proof. If not then $a_1 + a_i$ divides some $3a_k$. But $a_1 + a_i \perp 3$, so $a_1 + a_i$ divides some a_k . This is impossible for size reasons.

Since we assumed the sequence was relatively prime, we have now that

 $a_2 \equiv a_3 \equiv \cdots \equiv a_n \equiv -a_1 \not\equiv 0 \pmod{3}.$

We now work with only a_1 , a_2 , a_3 . The proof proceeds in three steps.

- Again, $a_2 + a_3$ divides $3a_k$ for some k, but since $a_2 + a_3 \not\equiv 0 \pmod{3}$, we find that $a_2 + a_3 \mid a_k$ for some k. Hence in fact $a_2 + a_3 \mid a_1$.
- Meanwhile, $a_1 + a_2$ divides either $3a_1$ or $3a_2$ for size reasons. But actually, these two statements are equivalent, since $a_1 + a_2$ divides their sum $3a_1 + 3a_2$. Now from $2a_2 < a_1 + a_2 \mid 3a_2$, we must have $a_1 = 2a_2$.
- Now $a_2 < a_2 + a_3 \mid a_1 = 2a_2$, so we must have $a_2 + a_3 = 2a_2$ but then $a_2 = a_3$, contradiction.

This concludes the proof.

Remark. Note that we can find pretty early on that the n = 3 case of the problem is sufficient: the three largest numbers satisfy the condition anyways, so there is no need any longer to look at a_4, a_5, \ldots