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1 Prerequisites

This chapter covers some theory that is considered “prerequisite” for all the fancy
number theory to follow, but isn’t already covered in Napkin.

§1.1 Fourier transforms
As usual, e(t) is shorthand for exp(2πit).

§1.1.1 Fourier transform of a periodic function
We’ll repeatedly need the following.

Theorem 1.1.1 (Fourier coefficients of a periodic function)
Suppose that g : R → C is smooth and satisfies g(x+ 1) = g(x) + 1. In that case, it
can be expressed in terms of the basis t 7→ e(nt) by

g(x) =
∑
n

ane(nx) where am =

∫ 1

0
g(x) e(−nx) dx.

Thus if f : H → C is holomorphic that satisfies f(z + 1) = f(z), then we will also have
the relation

f(z) =
∑
n

ane(nz) =
∑
n

anq
n where an =

∫ w+1

w
f(z) e(−nz) dz

for the same reason. Here w may be any complex number in H; by the contour theorem,
the choice doesn’t matter.

If we write z = x+ yi it’s often more economical to divorce x and y:

f(z) =
∑
n

an(y)e(nx) where an(y) =

∫ 1

0
f(x+ yi)e(−nx) dx

§1.1.2 Fourier transform of a real function
Now let us suppose f : R → C. We say it is

• of moderate decrease if |f(x)| = O((1 + x2)−1), and

• a Schwartz function (or of rapid decrease) if all derivatives decay faster than any
polynomial.

In either case, one can define the Fourier transform by

f̂(ξ) =

∫
R
f(x)e(−ξ · x) dx

which converges for any x. The advantage of the Schwartz functions is that •̂ is actually
a bijection on this space; whereas f̂ may not be of moderate decrease even if f is.

We’ll repeatedly use the following.
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Theorem 1.1.2 (Poisson summation formula)
If both f and f̂ are both of moderate decrease then∑

n

f(n) =
∑
n

f̂(n).

Proof. More generally, the following is true:∑
n

f(x+ n) =
∑
n

f̂(n)e(nx).

You can prove this by applying the previous result to g(x) =
∑

n f(x+ n). Indeed, the
mth Fourier coefficients of this g is

am =

∫ 1

0

∑
n

f(x+ n)e(−mx) dx

=
∑
n

∫ 1

0
f(x+ n)e(−mx) dx

=

∫
R
f(x)e(−m(x− bxc)) dx

=

∫
R
f(x)e(−mx) dx = f̂(m).

We’ll also occasionally use:

Theorem 1.1.3 (Fourier inversion)
If f is a Schwartz function then ““f(x) = f(−x).

§1.1.3 Applications of Fourier stuff
We do now a few calculations which we will use later.

Proposition 1.1.4
Fix t > 0. The Fourier transform of ht = exp(−πtx2) is “ht = 1√

t
h1/t.

Proof. We calculate

ĥt(ξ) =

∫
R

exp(−πtx2) exp(−2πiξx) dx

=

∫
R

exp
(
−π
t
[tx+ iξ]2

)
exp

(
−πξ

2

t

)
dx

= exp
(
−πξ

2

t

)∫
=z=c

exp
(
−π(

√
tz)2

)
dz

=
1√
t

exp
(
−πξ

2

t

)∫
=z=c

exp
(
−πz2

)
dz
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=
1√
t

exp
(
−πξ

2

t

)
=

1√
t
h1/t(ξ).

Here we used the Cauchy residue theorem to assert that
∫
=z=c exp

(
−πz2

)
dz is inde-

pendent of the choice of c, and thus we may replace it with 0 at which point we get the
famous Gaussian integral.

Proposition 1.1.5
Fix t > 0. The Fourier transform of ht(x) = x exp(−πtx2) is “ht = i

t3/2
h1/t.

Proof. Integrate by parts and repeat previous proposition.

§1.2 Mellin transform
§1.2.1 Generalized Mellin transform
We’ll follow Zagier’s appendix.

Initially, suppose φ : (0,∞) → C is a smooth function which decays rapidly at infinity.
We will not assume φ decays rapidly at zero since this restriction is too much; we will
instead just assume it is has an asymptotic expansion

φ(t) =
∑
n

ant
αn t→ 0

where α1, α2, . . .are complex numbers say with <α1 ≤ <α2 ≤ · · · . We allow this sequence
to be finite, or also infinite if limn→∞<αn = ∞. In the most common case this will be a
sort of “Taylor series” at 0. It’s not required that this series actually converges at any
point.

Then we define its Mellin transform Mφ : C → C by

M(φ, s) =

∫ ∞

0
tsφ(t)

dt

t

which is initially defined as long as <s > −<α1. (For example, φ is smooth at 0, the
above equation is okay for Re s > 0.) The following result will be indispensable as a
source of meromorphic continuations:

Theorem 1.2.1 (Generalized Mellin transform for rapidly decaying functions)
This Mellin transform M(φ, s) has a meromorphic continuation to C with (at most)
simple poles of residue an at s = −αn (and no other poles).

Proof. Let T > 0 be arbitrary. For each N > 0 write

M(φ, s) =

∫ ∞

0
tsφ(t)

dt

t

=

∫ T

0
tsφ(t)

dt

t
+

∫ ∞

T
tsφ(t)

dt

t

=

∫ T

0
ts

(
φ(t)−

N∑
n=1

ant
αn

)
dt

t
+
∑
n≤N

an
s+ αn

T s+αn +

∫ ∞

T
tsφ(t)

dt

t

8
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which gives a desired meromorphic continuation to <s > −<αN with poles in the
specified places, of residue an. (Moreover, this choice is independent of T ; a meromorphic
continuation is going to be unique, anyways.)

§1.2.2 Applications of Mellin
• Let φ(t) = e−t which has a Taylor expansion 1− t+ t2

2 − · · · near zero. Then by
definition

M(φ, s) =

∫ ∞

0
tse−t dt

t
= Γ(s)

is the famous Gamma function. We now immediately know that Γ has meromorphic
continuation with poles of residue (−1)n

n! at s = −n, for n = 0, 1, . . . . Note that
integration by parts gives the functional equation Γ(s + 1) = sΓ(s), and since
Γ(1) = 1, we could have deduced the result a similar way.

• More generally, if φ(t) = e−λt for some λ > 0 then

M(φ, s) = λ−s · Γ(s)

by a change of variables. (Actually, for λ = 0 we also find that the Mellin transform
of a constant function is zero.)

Strong use: we can take φ a sum of such exponentials. Consider

φ(t) =
1

et − 1

=
1

t+ t2

2! + . . .
=
∑
n≥−1

Bn+1

(n+ 1)!
tn

= e−t + e−2t + e−3t + · · ·

where Bn+1 are the Beronulli numbers. Taking the Mellin transform of the last expression
now gives

M(φ, s) =
∑
n≥1

n−sΓ(s) = Γ(s)ζ(s)

where ζ is the Riemann zeta function. This gives an identity

ζ(s) =
M(φ, s)

Γ(s)

which is now the meromorphic continuation of ζ!
Let’s see what we can extract about its poles. For n ≥ −1, note that M(φ, s) has

simple poles at s = −n of residue Bn+1

(n+1)! . For n ≥ 0, the function Γ has simple poles
at s = −n of residue (−1)n

n! . That means ζ has only a simple pole of residue 1 at s = 1
(since B0/0! = 1). And the values of the zeta function for n ≥ 0 are now given by

ζ(−n) = (−1)n
Bn+1

n+ 1
.

In particular, n ≥ 0 is odd then Bn+1 = 0.

9



Evan Chen《陳誼廷》 — 10 November 2021 Evan’s PhD Notebook

§1.2.3 Mellin transforms for functions not decaying at infinity
This is still not general enough for us. For example, we will later want to take the Mellin
transform of a certain θ function corresponding to the Riemann zeta function. However,
this function behaves like 1

2
√
t

for t → 0 and 1/2 for t → ∞. This makes the previous
definition fail.

We will now consider a case where t may not decay rapidly at either 0 or ∞, but
having asymptotic expansions at both

φ(t) =
∑
n

ant
αn as t→ 0

φ(t) =
∑
n

bnt
βn as t→ ∞

where α1, α2, . . .and β1, β2, . . .are complex numbers with <α1 ≤ <α2 ≤ · · · and
<β1 ≥ <β2 ≥ · · · ; again we assume limn→∞<αn = ∞ and limn→∞<βn = −∞ if either
sequence is infinite. In that case, the original integral

∫∞
0 tsφ(t)dtt is defined if <s > −<α1

and <s < −<β1. The problem is that this might not hold for any values of s at all!
This means even defining the function which we want to take extend requires some

straightforward but annoying work. Here is the specification. Again pick a real number
T > 0. The idea is that

∫∞
0 tsφ(t)dtt maybe split into

∫ T
0 tsφ(t)dtt +

∫∞
T tsφ(t)dtt and each

of the two halves will be defined somewhere and can be extended analytically as before.
The explicit definition is to consider

M(φ, s) =

∫ T

0

(
φ(t)−

N∑
n=1

ant
αn

)
dt

t
+

N∑
n=1

an
s+ αn

T s+αn

+

∫ ∞

T

(
φ(t)−

N∑
n=1

bnt
βn

)
dt

t
−

N∑
n=1

bn
s+ βn

T s+βn

as N → ∞. The first line is defined as long as <s > −<αN while the second line is
defined as long as <s < −<βN . Of course, the overall sum is also independent of T .
Thus:

Theorem 1.2.2 (Generalized Mellin transform)
Let φ : (0,∞) → C be a function with asymptotic expansions at 0 and ∞ as above.
Then M(φ, s) as given above is a meromorphic function with at most simple poles
only at s = −αn and s = −βn, of residue an and −bn (respectively, and additively).

This means that M(−, s) is gives an C-linear map from the set of functions (0,∞) → C
with asymptotic expansions at 0 and ∞, to the space of meromorphic functions.

An important example we can now note:

Example 1.2.3 (Kernel of the generalized Mellin transform)
Suppose φ(t) = 1. Then M(1, s) ≡ 0, because we have a1 = b1 = 1 and α1 = β1 = 0,
and a1 − b1 = 0 means the pole there gets cancelled out. More generally, if φ(t)
is any polynomial in t, or any finite sum of tα terms, then its generalized Mellin
transform vanishes.

This means we can shift away any constants when discussing the Mellin transform. One
just has to keep in mind the definition.

In general, the following result can be proven by change of variables.
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Proposition 1.2.4 (What happens if you u-sub a Mellin transform)
Let φ : (0,∞) → C be a function with asymptotic expansions at 0 and ∞ as above.
Then for any c > 0, d ∈ R and α ∈ C,

M(tαφ(ctd), s) =
M(φ, s+α

d )

(c1/d|d|)s+α
.

Proof. This is actually a compact way of abbreviating three changes of variables; the
idea is

M(tαφ(ctd), s) = M(φ(ctd), s+ α) = |d|−(s+α)M
(
φ(ct),

s+ α

d

)
= c

−(s+α)
d |d|−(s+α)M

(
φ(t),

s+ α

d

)
.

§1.3 Dirichlet characters
§1.3.1 Sums involving Dirichlet characters
Let χ : (Z/N)× → C be a primitive Dirichlet character with conductor N .

We need two things:

• Recall that the Gauss sum is defined by

τ(χ) =
∑

n mod N

χ(n)e(n/N)

which satisfies the famous identity |τ(χ)| =
√
N .

• We need the interpolation formula for primitive Dirichlet characters:

χ(n) =
χ(−1)τ(χ)

N

∑
r mod N

χ(r)e(nr/N).

The point of this formula is to re-express χ(n) as a sum of exponentials in n with
certain coefficients (given by χ).
In particular, this extends χ : R → C. For example, this means we could, if we
wanted to, speak of the Fourier transform of χ (viewed as a function of period N).

Here is one application of the interpolation formula.

Corollary 1.3.1 (Twisted Poisson summation)
If f is of moderate decay then∑

n

χ(n)f(n) =
τ(χ)

N

∑
n

χ(n)f̂
( n
N

)
.

Proof. Let F (n) = χ(n)f(n). Then by the interpolation formula, we can extend to

F (x) =
χ(−1)τ(χ)

N

∑
r mod N

χ(r)f(x)e(xr/N)

11
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Now the Fourier transform of f(x)e(xr/N) is given by∫
R
f(x)e(xr/N)e(−ξx) dx = f̂

(
ξ − r

N

)
Thus, by Poisson summation formula,∑

n

χ(n)f(n) =
χ(−1)τ(χ)

N

∑
r mod N

∑
m

χ(r)f̂
(
n− r

N

)
=
τ(χ)

N

∑
m

∑
r mod N

χ(−r)f̂
(
m− r

N

)
=
τ(χ)

N

∑
n

χ(n)f̂
( n
N

)
.

§1.3.2 The L-function of a Dirichlet character
We then attach the L-function defined by

L(s, χ) =
∑
n

χ(n)n−s =
∏
p

(
1− χ(p)

p−s

)
for <s > 1. For example, if χ is the trivial character (so N = 1), then L(s, χ) = ζ is the
Riemann zeta function.

Any time we have an L-function our goal will to be get an analytic continuation and a
functional equation. For Dirichlet characters, both goals will be achieved by using the
following so-called theta function.

Definition 1.3.2. Let ε = 1−χ(−1)
2 and define

θχ(t) =
1

2

∑
n

nεχ(n) exp(−πn2t).

Note that χ(0) = 0 unless N = 1, which would cause χ(0) = 1 (and actually χ ≡ 1).
It is clear that θχ(t) − 1

2χ(0) decays rapidly as t → ∞. We’ll now show the following
functional equation:

Proposition 1.3.3 (Functional equation of the theta function)
We have

θχ(t) =
(−i)ετ(χ)
N1+εtε+1/2

θχ

(
1

N2t

)
.

Proof. By cases on whether ε = 0 or ε = 1; just apply twisted Poisson summation on
exp(−πx2t) and x exp(−πx2t) respectively.

When N > 1, this means θχ(t) decays rapidly to 0 as well. Let’s assume momentarily
that N > 1, and see what falls out when we compute the Mellin transform of θχ. It
equals

M (θχ, s) =
∑
n>0

nεχ(n)M(exp(−πn2t), s)

12
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=
∑
n>0

nεχ(n)(πn2)−sΓ(s)

= Γ(s)π−s
∑
n>0

nεχ(n)n−2s

= Γ(s)π−sL(2s− ε, χ)

Replacing s with 1
2(s+ ε) and rearranging:

M
(
θχ,

s+ ε

2

)
= π−

1
2
(s+ε)Γ

(
s+ ε

2

)
L(s, χ).

Since Γ never vanishes, this gives the analytic continuation of L(s, χ).
When N = 1 and χ = 1 is the trivial character we get θχ(t) = 1√

t
θχ(1/t), and so θχ(t)

behaves like 1
2
√
t

at zero, and the Mellin transform is defined. The same calculation gives

M (θ1, s) = M(1/2, 0) +
∑
n>0

M(exp(−πn2t), s)

= 0 + Γ(s)π−sL(2s− ε,1) = Γ(s)π−sζ(2s)

so
M (θ1, s/2) = Γ(s)π−sL(2s− ε,1) = Γ(s/2)π−s/2ζ(s)

In this case, M (θ1, s/2) is meromorphic except for simple poles at s = 0 and s = 1 of
residue 1.

The Mellin transforms we mentioned are usually called the completed L-functions as
follows:

Theorem 1.3.4 (The Mellin transform of the theta function)
Define

Λ(s, χ) = M
(
θχ,

s+ ε

2

)
= π−

1
2
(s+ε)Γ

(
s+ ε

2

)
L(s, χ).

Then Λ(s, χ) is analytic if χ 6= 1; otherwise it is meromorphic, with simple poles at
s = 0 and s = 1 of residue 1. Moreover, we have the functional equation

Λ(s, χ) = Λ(1− s, χ).

Proof. The first half of the theorem follows from Mellin transform properties. To show
the functional equation, use Proposition 1.2.4 to clean everything up once the theta
function is used.

Λ(s, χ) = M
(
θχ(t),

s+ ε

2

)
= M

(
(−i)ετ(χ)
N1+εtε+1/2

θχ

(
1

N2
t−1

)
,
s+ ε

2

)
=

(−i)ετ(χ)
N1+ε

· M
(
t−(ε+1/2)θχ

(
1

N2
t−1

)
,
s+ ε

2

)

=
(−i)ετ(χ)
N1+ε

·
M
(
θχ,

s+ε
2

−(ε+1/2)

−1

)
(N2)

s+ε
2

−(ε+1/2)
=

(−i)ετ(χ)
N s

· M
(
θχ,

(1− s) + ε

2

)
=

(−i)ετ(χ)
N s

Λ(θχ, 1− s).

13
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§1.4 Linear algebraic groups
§1.4.1 Reductive groups
Definition 1.4.1. A linear algebraic group G over a field k is a closed subscheme of
GLn(k), i.e. a smooth affine group scheme over k.

Recall that a generic group H is

• solvable if the map X 7→ [X,X] starting from H eventually stabilizes; equivalently,
there needs to be a normal series

1 = G0 E G1 E G2 E · · · E Gn = G

where each Gi/Gi−1 is abelian.

• unipotent if every element of the group is unipotent; this implies H is a closed
subgroup of Un.

Definition 1.4.2. Given a LAG G, we define

• its radical is the largest connected solvable normal subgroup;

• its unipotent radical is the largest connected unipotent normal subgroup.

We say G is

• semisimple if the radical is trivial;

• reductive if the unipotent radical is trivial.

Semisimple groups are considered pretty rigid, but reductive groups are not too much
worse; from https://mathoverflow.net/a/223895/70654:

From the modern perspective the class of (connected) reductive groups is
more natural than that of (connected) semisimple groups for the purposes
of setting up a robust general theory, due to the fact that Levi factors of
parabolics in reductive groups are always reductive but generally are not
semisimple when the ambient group is semisimple. However, after some
development of the basic theory one learns that reductive groups are just
a fattening of semisimple groups via a central torus (e.g., GLn versus SLn),
so Harish-Chandra had no trouble to get by in the semisimple case by just
dragging along some central tori here and there in the middle of proofs.

Following non-obvious theorem is another motivation for why reductive groups are
considered really nice:

Theorem 1.4.3
A smooth connected affine group over a field of characteristic 0 is reductive if and
only if all of its algebraic representations are completely reducible.

14
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§1.4.2 Parabolic and Borel subgroups
Definition 1.4.4. A Borel subgroup of G is

• a connected solvable subgroup variety B for which G/B is complete;

• or equivalently, a maximal Zariski-closed solvable subgroup (but not necessarily
normal).

The Borel subgroups are all conjugate to each other.

Definition 1.4.5. A parabolic subgroup P of G is

• any subgroup containing a Borel subgroup;

• over an algebraically closed field, equivalently, such that G/P is a complete variety.

Example copied from Wikipedia: for G = GL4(C), a Borel subgroup isA =


a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

 : det(A) 6= 0


and the maximal proper parabolic subgroups of G containing B are:


a11 a12 a13 a14
0 a22 a23 a24
0 a32 a33 a34
0 a42 a43 a44


 ,



a11 a12 a13 a14
a21 a22 a23 a24
0 0 a33 a34
0 0 a43 a44


 ,



a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 0 a44




Also, a maximal torus in B is

a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44

 : a11 · a22 · a33 · a44 6= 0

 ∼= G4
m

§1.4.3 Table

G Radical Unipotent radical Borel subgroup

GL(n) C (diagonal matrices) 1 Upper tri
SL(n) 1 1
O(n) 1
SO(n) 1
Sp(n) 1
U(n) 1
Ga Ga Ga

§1.4.4 Tori
split vs anisotropic

15



2 Modular forms

§2.1 The half-plane and the modular group
§2.1.1 The action of SL2(R) on the half-plane
As usual, let H = {z | =z > 0} be the half-plane. Then there is a famous action of
SL2(R) on H given by [

a b
c d

]
: z 7→ az + b

cz + d
.

This action is not quite faithful, so commonly one will work in PSL2(R) = SL2(R)/{±I}
instead. The action on H is transitive though;[

y1/2 xy−1l2

0 y−1/2

]
: i 7→ x+ yi.

Let’s record a few properties of the action. First, an identity that will come into play
surprisingly often.

Proposition 2.1.1 (The stupid identity)
For any γ ∈ SL2(R) and z = x+ yi ∈ H,

=γ(z) = y

|cz + d|2
.

Proof. Trivial. Compute it directly.

Definition 2.1.2. An element γ ∈ SL2(R) with γ 6= ±I is called

• elliptic if |Tr γ| < 2;

• parabolic if |Tr γ| = 2;

• hyperbolic if |Tr γ| > 2.

We extend the action of γ to include the “boundary” of H, which is RP1 = R ∪ {i∞}.
It still has the same formula z 7→ az+b

cz+d on RP1. Warning: in pictures, ∞ is typically
drawn at i∞.

Proposition 2.1.3 (Number of fixed points)
For γ 6= ±I,

• An elliptic element has exactly one fixed point in H.

• A parabolic element has two fixed points, both in RP1.

• A hyperbolic element has exactly one fixed point in RP1.

16
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Proof. Set z = az+b
cz+d and look at the corresponding quadratic cz2 +(d− a)z− b = 0. It is

a quadratic in z with real coefficients, so either it has a pair of complex conjugate roots,
or it has 1-2 real roots. Its discriminant is (d− a)2 + 4bc = (d+ a)2 − 4, and the cases
correspond to whether the determinant is positive, zero, or negative.

Proposition 2.1.4
The stabilizer of an elliptic element is a cyclic group.

Proof. Let γ be an elliptic element fixing z. By conjugating (since the action on H is
transitive), we may as well assume z = i. The stabilizer of i in SL2(R) is

SO(2) =

{[
a b
b −a

]
: a2 + b2 = 1

}
and any discrete subgroup of SO(2) is cyclic.

§2.1.2 Fuchsian groups
Generally, we’re going to mod out H by the action of subgroups of SL2(R) which are
discrete. We name them now:

Definition 2.1.5. A Fuchsian group is a discrete subgroup of SL2(R).

Proposition 2.1.6
A subgroup of SL2(R) is Fuchsian if and only if it acts discontinuously on H, meaning
for any two compact subsets K1 and K2, the set {γ | γ(K1) meets K2} is finite.

The most important Fuchsian groups are the so-called congruence subgroups.

Definition 2.1.7. For every positive integer N , we will let

Γ(N) =

{[
a b
c d

]
∈ SL2(Z) | a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}
.

In other words, these are matrices congruent to the identity modulo N . (In still other
words, Γ(N) is the kernel of the map SL2(Z) → SL2(Z/N).) Note in particular Γ(1) =
SL2(Z). A subgroup of Γ(1) is a congruence subgroup if it contains Γ(N) for some N .

Note that “most congruence subgroups contain no elliptic elements”.

§2.1.3 Cusps
Let Γ be a Fuchsian group, and consider its action on RP1.

Definition 2.1.8. A cusp of Γ is an element of RP1 which is fixed by some parabolic
element of Γ. By abuse of language we refer to an equivalence class of cusps under the
action of Γ as “a” cusp as well.

17
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Proposition 2.1.9
The cusps of Γ(1) are exactly Q ∪ {i∞}.

Proof. Note i∞ is a cusp by
[
1 1
0 1

]
∈ Γ(1). And if q = m/n for gcd(m,n) = 1,

γ(q) = q for γ =

[
1 +mn −m2

n2 1−mn

]
Conversely, if r ∈ R is the cusp of some γ ∈ Γ(1), then r is the double root of az+b

cz+d = z,
so it must be rational.

In general, given a Fuchsian group Γ, we denote by H∗
Γ (or just H∗ if Γ is implied) the

extended half-plane with the cusps added. Thus Γ acts on H∗ too.

§2.1.4 The classical picture of SL2(Z)

TO BE WRITTEN

§2.1.5 Compactification
The quotient space Γ\H∗ can be made into a Riemann surface.

§2.2 Modular forms
§2.2.1 Definition on Γ(1)

Let k be an even nonnegative integer.

Definition 2.2.1. A modular form for Γ(1) of weight k is a holomorphic function
f : H → C satisfying

f

(
az + b

cz + d

)
= (cz + d)kf(z)

and which is holomorphic at the cusp i∞. If it also vanishes at the cusp, we say it is
cuspidal.

To explain “holomorphic at the cusp”, note that f(z + 1) = f(z) + 1 and so one ought
to be able to write the Fourier expansion

f(z) =
∑
n

ane(nz) =
∑
n

anq
n

for some coefficients an, with q = e(z) the nome. One can then discuss holomorphic/mero-
morphic/vanishing at the cusp by taking z → i∞ (equivalently, q → 0); we say f is
holomorphic at the cusp if an = 0 for all n < 0, vanishes at the cusp if an = 0 for all
n ≤ 0 and is meromorphic at the cusp if an = 0 for all n < −N for some N .

We may as well define the slash operator now for notational convenience.

Definition 2.2.2. If f : H → C is holomorphic, and γ =
[
a b
c d

]
∈ GL+

2 (R), then we let

(f |γ)(z) = (det γ)k/2(cz + d)−kf

(
az + b

cz + d

)
The symbol is called a slash operator. Then the modularity of f is just asserting

f |γ = f for γ ∈ SL2(Z).

18
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Proposition 2.2.3 (Slash operator is a right acttion)
We have f |(γ1γ2) = (f |γ1)|γ2 for any γ1, γ2 ∈ GL+

2 (R).

Proof. Obvious.

§2.2.2 Definition for a general Fuchsian group
We may as well introduce the notation now for these forms.

Let Γ be a Fuchsian group.

Definition 2.2.4. A modular form for Γ of weight k is a holomorphic f : H → C for
which f |γ = f holds for any γ ∈ Γ, and which is holomorphic at every cusp in the
following sense:

Given a cusp t ∈ R∪{i∞}, we choose ρ =
[
a b
c d

]
∈ SL2(R) with ρ(t) = i∞, and consider

f |ρ−1 instead. There will exist h with f(z + h) = f(z), and we can thus take a Fourier
expansion f(z) =

∑
n anq

n/h. We can then define holomorphic/vanishing/meromorphic
at the cusp.

Then Mk(Γ) denotes the set of modular forms for Γ, and Sk(Γ) the set of cusp forms.
We will not usually need this level of generality:

• When Γ is a congruence group, there will exist
[
1 h
0 1

]
∈ Γ for some h, so i∞ will be

a cusp anyways (ρ = id).

• If we specialize further to Γ = Γ0(N) or Γ = Γ1(N), defined later, then we may
take h = 1.

We will almost always restrict to the case we mentioned where Γ is a congruence subgroup
containing [ 1 1

0 1 ]; in which case the modular form f simply obeys f(z + 1) = f(z) and no
further antics are needed to discuss the Fourier coefficients.

§2.2.3 Growth rate
It will be useful to know that cusp forms decay quickly as y → ∞.

Lemma 2.2.5 (Cusp forms decay rapidly at infinity and are bounded)
For any cusp form f for a congruence group, we have |f(z)| = O(e−cy) as y → ∞,
uniformly in x,i for some constant c in terms of f .

Moreover, there is a constant Cf such that |f(z)| < Cfy
−k/2 for all complex

numbers z.

Proof. We know f(z) =
∑

n anq
n/h, and since |q| = e−2πy we have

|f(z)| ≤
∑
n≥1

ane
−2πny/h = O(e−2πy/h)

as claimed, as y → ∞.
To get the bound for all y, the stupid identity implies that the function z 7→ |f(z)yk/2|

is invariant under Γ(1), and (since f is a cusp form) approaches zero rapidly as y → ∞.
In particular, this function is bounded on some fundamental domain, and thus is bounded
above by some constant Cf .
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§2.2.4 Important special case with Γ0(N) and Γ1(N); twisting by nebentypus
In particular, we now define two important congruence subgroups that will become
relevant later on.

Definition 2.2.6. We let

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) | c ≡ 0 mod N

}
and

Γ1(N) =

{[
a b
c d

]
∈ SL2(Z) | a ≡ d ≡ 1 (mod N), c ≡ 0 mod N

}
Note that Γ0(N) ⊃ Γ1(N) ⊃ Γ(N).

It’s common to call Γ0(N) the level group, and we will use it more than Γ1(N). For
Γ0(N) we will also permit twisting by a Dirichlet character:

Definition 2.2.7. Let χ be a Dirichlet character modulo N (not necessarily primitive).
A modular form of level N with weight k and nebentypus χ is an element of Mk(Γ1(N))
which satisfies the additional relation

f

(
az + b

cz + d

)
= (cz + d)kχ(d)f(z)

for
[
a b
c d

]
∈ Γ0(N). The set is denoted Mk(Γ0(N), χ).

The cusp forms of level N with weight k and nebentypus χ are denoted similarly by
Sk(Γ0(N), χ); they are the above modular forms which also vanish at the cusp.

Note that Sk(Γ0(N),1) = Sk(Γ1(N)). In fact,

Theorem 2.2.8
We have

Mk(Γ1(N)) =
⊕

χ mod N

Mk(Γ0(N))

where the direct sum is over all Dirichlet characters modulo N , not necessarily
primitive.

Proof.

We remind the reader that [ 1 1
0 1 ] ∈ Γ1(N), so any modular forms in this group will

satisfy f(z + 1) = f(z) and thus have a Fourier expansion
∑

n anq
n (with no floating h).

§2.3 Classification of modular forms for Γ(1)

§2.3.1 First important example
To proceed further, it will be convenient to know there exists some modular forms.

When k = 0, a modular form of weight zero must be constant according to the
maximum modulus principle. We will show later on that there are no modular forms of
weight 2 either; but there is a modular form of any even weight k ≥ 4, and we construct
it as follows.

20



Evan Chen《陳誼廷》 — 10 November 2021 Evan’s PhD Notebook

Definition 2.3.1. For k ≥ 4 an even integer, the Eisenstein series is defined by

Ek(z) =
1

2

∑
m,n∈Z

(m,n) 6=(0,0)

(mz + n)−k.

The sum is absolutely convergent for z ∈ H. Indeed, the contribution of terms with
m = 0 is ζ(k), the contribution of (absolute values) of remaining terms is∑

m6=0

∑
n

|mz + n|−k =
∑
m6=0

∑
n

1

((n+m<z)2 + (m=z)2)k/2

<
∑
m6=0

 3

(m=z)k
+
∑
n6=0

1

(n2 + (m=z)2)k/2


<
∑
m6=0

 3

(m=z)k
+
∑
n6=0

1

(2mn=z)k/2


=

6ζ(k)

(=z)k
+

4

(2=z)k/2
ζ(k/2)2 <∞.

It also satisfies the functional equation as

Ek

(
az + b

cz + d

)
= (cz + d)−k

∑
m,n∈Z

(m,n)6=(0,0)

((ma+ nc)z + (mb+ nd))−k

and since ad−bc = 1, the map (m,n) 7→ (ma+nc,mb+nd) is a bijection on Z2−{(0, 0)}
(multiplying by a matrix in SL2(Z)), so the right-hand side is (cz + d)−kEk(z).

§2.3.2 Second important example
Consider the Dedekind eta function

η(z) =
∞∑
n=1

χ(n)qn
2/24

where χ is primitive quadratic with conductor 12 (unique). Then we define

∆(z) = η(z)24 = q
∞∏
1

(1− qn)24

which is a weight 12 modular form with only a simple zero at i∞, vanishing nowhere
else. The equality here comes from Jacobi triple product formula.

§2.3.3 Main result

Proposition 2.3.2
The space of cusp forms of weight 12 is one-dimensional.

Proof. ∆ is in it. Also if f is in it, then f/∆ is an modular form of weight 0 with no
poles, ergo it is constant.
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Theorem 2.3.3
The space of modular forms for Γ(1) is generated by E4 and E6.

Proof. Analogous to the earlier the argument, dimension counting: multiplication by ∆
generally gives an isomorphism

Mk−12(Γ(1)) → Sk(Γ(1)).

§2.4 The L-function of a modular form for a congruence group
§2.4.1 Definition
Let f ∈Mk(Γ1(N)). Consider its Fourier expansion f(z) =

∑
n anq

n. We want to attach
to it an L-function defined by

L(s, f) =
∑
n

ann
−s.

For this to work, we need to first prove that the Fourier coefficients an decay quickly
enough that L(s, f) converges.

Lemma 2.4.1 (Trivial estimate, due to Hardy and Hecke)
If f =

∑
n anq

n is a cusp form, then an = Cfn
k/2 (with the implied constant

depending on f).

Proof. Recall that

an =

∫ w+1

w
f(z)e(−nz) dz.

We choose [w,w + 1] to be [yi, 1 + yi] and calculate

|an| <
∫ yi+1

yi
|f(z)e(−nz)| dz =

∫ yi+1

yi
|f(z)| e2πny dz

= e2πny
∫ 1

0
|f(x+ yi)| dx < e2πny

∫ 1

0
Cfy

−k/2 dx

= e2πnyCfy
−k/2.

Taking y = 1/n completes the proof.

Remark 2.4.2. In fact, the so-called Ramanujan conjecture (proved in 1970) implies
an ≤ Cf,εn

(k−1)/2+ε.

If f is not a cusp form, then we can choose a constant c such that f − cEk(z) is a cusp
form. Since the coefficients of Ek(z) are bounded by nk−1 logn, we conclude altogether
that L(s, f) converges if <s > 1 + (k − 1) = k. This completes our definition of the
L-function.
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§2.4.2 Completed L-function
Much like for ζ, we may consider the generalized Mellin transform

Λ(s, f)
def
= M [y 7→ f(iy)] .

Note that f(iy) approaches a constant c rapidly as y → ∞. From
[
0 −1
1 0

]
∈ Γ(1), we have

f(iy) = (−1)k/2y−kf(i/y)

so as y → 0 we have f(iy) → c(−1)k/2y−k rapidly. Thus, the generalized Mellin transform
will have at most simple poles at s = 0 and s = k, and otherwise be analytic.

Now, we go ahead and actually compute

Λ(s, f) = M [y 7→ f(iy)] =

∫ ∞

0
ysf(iy)

dy

y

=

∫ ∞

0
ys−1

∑
n

ane
−2πnydy =

∑
n

∫ ∞

0
ys−1ane

−2πnydy

=
∑
n

an(2πn)
−sΓ(s) = (2π)−sΓ(s)

∑
n

ann
−s

= (2π)−sΓ(s)L(s, f).

Also, from a change of variables y 7→ 1/y, we can also get that Λ(s, f) = Λ(k − s, f).
As before, it is more conventional to define Λ through the L-function and hide the role

of the Mellin transform. So we have proved the following:

Theorem 2.4.3 (L-function for Γ(1))
Let f be a modular form for Γ(1). The function

Λ(s, f) = (2π)−sΓ(s)L(s, f)

has analytic continuation; it has simples poles at s = 0 and s = k if f is not
cuspidal, and otherwise is analytic. Moreover, it satisfies a functional equation
Λ(s, f) = Λ(k − s, f).
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§2.5 Petersson inner product
We will now make the space of modular/cusp forms into a Hilbert space.

§2.5.1 Poincaré metric
The space H is usually endowed with the metric

dµ =
dx dy

y2
.

The reason is that:

Proposition 2.5.1
This measure is invariant under the action of SL2(R).

Proof. Let γ =
[
a b
c d

]
∈ SL2(R) and let S ⊆ H be measurable. Define u(x, y) = <γ(z)

and v(x, y) = =γ(z). We wish to show∫
γ(S)

du dv

v2
=

∫
S

dx dy

y2
.

The change-of-variables formula implies that the right-hand side can be transformed by
multiplying by Jacobian:∫

γ(S)

du dv

v2
=

∫
S

1

v(x, y)2
det

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
dx dy

At this point, we can verify the identity be explicitly calculating u(x, y) = (ad+bc)x+bd+ac(x2+y2)
c2(x2+y2)+2cdx+d2

and v(x, y) = y
c2(x2+y2)+2cdx+d2

, and then bashing the right-hand side until it simplifies
to 1/y2.

This is almost comedically painful, so we mention that a less obnoxious approach is
possible if one knows that SL2(R) is generated by

[
0 −1
1 0

]
and

[
1 b
0 1

]
, so it suffices to just

check these two special cases which is much easier.

This makes it possible to integrate over Γ\H whenever Γ is a congruence subgroup.
We may as well do the following classical calculation now.

Proposition 2.5.2
We have

∫
Γ(1)\H

dx dy
y2

= 1
3π

2.

Proof. Take the classical fundamental domain. . .

We won’t need the value, just the finiteness.
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§2.5.2 The Petersson inner product
Definition 2.5.3. If Γ is a congruence subgroup of SL2(Z) and f, g ∈ Sk(Γ) we define
the Petersson inner product by

〈f, g〉 = 1

[Γ(1) : Γ(N)]

∫
Γ(N)\H

f(z)g(z)
dx dy

y2

where N is large enough that f and g are modular forms for Γ(N).

Here, the stupid identity implies f(z)g(z)yk is invariant under the action of Γ(N), so
this is well-defined. In addition, because f(z) and g(z) decay rapidly as z → ∞ (they
are cusp forms), the integral is bounded on the typical (and hence every) fundamental
domain of Γ(1), and thus converges.

§2.5.3 Genus

§2.6 Hecke operators for Γ(1)

§2.6.1 Double cosets of Γ(1) in GL+
2 (Q)

In order to define the Hecke operators, we’ll need to discuss double cosets of GL+
2 (Q). It

turns out we can actually just describe all the double cosets of Γ(1)\GL+
2 (Q)/Γ(1).

Theorem 2.6.1 (Complete description of double cosets of Γ(1) in GL+
2 (Q))

The double coset Γ(1)

[
d1 0
0 d2

]
Γ(1) consists of all matrices

[
a b
c d

]
∈ GL+

2 (Q) with

determinant d1d2 and gcd(a, b, c, d) = d2 (with gcd defined over the rational num-
bers).

Consequently, there is a disjoint union

GL+
2 (Q) =

⊔
d1|d2

Γ(1)

[
d1 0
0 d2

]
Γ(1).

Proof.

Theorem 2.6.2 (Double coset partition into right cosets)
If d1 and d2 are positive integers with d2 | d1 then

Γ(1)

[
d1 0
0 d2

]
Γ(1) =

⊔
a,d>0

ad=d1d2
b mod d

gcd(a,b,d)=d2

Γ(1)

[
a b
0 d

]
.

If d1 and d2 are not integers, then one can factor out the common denominator and then
appeal to the theorem.

Proof.

Okay, that is all for double cosets for now.
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§2.6.2 The Hecke operator

(T (n)f)(z) =
∑
ad=n

∑
b mod d

(a
d

)k/2
f

(
az + b

d

)
.

Also defined via double cosets.

Proposition 2.6.3
The Hecke operators commute, and are self-adjoint.

This means you can find a basis of eigen-stuff.
If f is a Hecke eigenform, that means it has an eigenvalue λ(n). We can then expand

and normalize the coefficients: A(1) 6= 0, and scaling so that A(1) = 1, we have A(•) is
multiplicative and

L(s, f) =
∏
p

(
1−A(p)p−s + pk−1−2s

)−1
.
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II
Towards adeles
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3 Adeles

§3.1 The adele ring
Let K be a global field.

Definition 3.1.1. The adele ring of K is defined as the restricted product

AK =
restrict∏

v

(Kv,Ov)

across all the places v of K, both Archimedean and non-Archimedean. Elements of AK

are called adeles.

This means that it consists of tuples (av)v for which av ∈ Ov for all but finitely many
v.

Definition 3.1.2. The idele group of K is defined as the restricted product

A×
K =

restrict∏
v

(K×
v ,O×

v )

across all the places v of K, both Archimedean and non-Archimedean. Elements of A×
K

are called ideles.

(The topology of the idele group is not the subspace topology of AK , so the inclusion
A×
K ⊆ AK occurs only at the level of sets.)
There are obviously diagonal inclusions K ↪→ AK and K× ↪→ A×

K . By abuse of notation
we’re going to just treat K and K× as subsets of AK and A×

K , hence e.g. AK/K refers
to the coimage of the former map.

The adelic absolute value is the map

A×
K → R>0

given by (av) 7→
∏

v |av|v.

Proposition 3.1.3 (Product formula)
We have |a| = 1 for a ∈ K×.

§3.2 Example
By “strong approximation”,

A×
Q = Q>0 × R×

∏
p

Z×
p .

But if K is a number field with class number greater than 1 then such a clean decompo-
sition is usually impossible.
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§3.3 First properties of the adele ring
Upshots of using the restricted pruduct include the following results.

Theorem 3.3.1 (AK is LCA Hausdorff and self-dual)
AK is locally compact and Hausdorff, and in fact equal to its own Pontryagin dual.

Theorem 3.3.2 (K is the Pontryagin dual of AK/K)
K is a discrete co-compact subgroup of AK . In fact, K and AK/K are Pontryagin
duals.

Remark. In fact, it’s also true that K× is discrete and co-compact in

A1
K

def
= ker

(
|•| : A×

K → R×)
the set of ideles of adelic absolute value 1.

In general, it may be shown there is a short exact sequence

1 →
K1

∞ ×
∏

v<∞ O×
v

O×
K

→ A1
K

K× → ClassGrp(K) → 1

which does not necessarily split, though when K has trivial class group it does explicitly
characterize A1 (e.g. K = Q, as we saw in the earlier example).

This short exact sequence is conceptually nice because it implies both Dirichlet’s unit
theorem, and the finiteness of the class group, solely from the compactness of the center
term.

citation
needed on
Dirichlet unit
theorem§3.4 Calculus on adeles

The following results are included here for completeness, to signal that they do not
depend on any of the automorphic-flavored stuff to follow. But you could skip this section
for now and come back to it later when it’s quoted, if you prefer.

§3.4.1 Fourier setup for local fields
In this section, let F be a local field, and define the following standard character on it:

ψF (x) =


e−2πix F = R
e−2πi|x|p F = Qp

e2πia−1/p F = Fp((t))

ψ0

(
TrF/F0

(x)
)

F/F0 separable, F0 and ψ0 as above

These choices are contrived so that later, if K is a global field, then
∏

v ψKv : A → C will
vanish on K.

Moreover, we can choose a Haar measure such that

• dx is the standard Lebesgue measure for F = R

• dx is twice the standard Lebesgue measure on F = C
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• dx is selected such that Vol(O) = (#O/D)−1/2, where D is the different, when F
is a non-Archimedean local field.

This lets us define a Fourier transform

f̂ =

∫
F
f(x)ψF (xy) dx.

§3.4.2 Poisson summation
write this
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4 Tate’s thesis

§4.1 Goals moving forward (road map of the future)
In brief, take a unitary character ω : A×/K× → C, known as a Hecke character (analogous
to the nebentypus Dirichlet character from earlier). An adelic automorphic form with
central quasicharacter ω will be a function

φ : GLn(AK) → C

obeying the conditions

• For all g ∈ GLn(AK) and z ∈ A×
K , we have

φ


z . . .

z

 g
 = ω(z)φ(g).

The choice of the letter z comes from the fact that the center of the group GL(n,AK)
is exactly the diagonal matrices appearing above.

• For all g ∈ GLn(AK) and γ ∈ GLn(K
×) we have

φ(γg) = φ(g).

The name “automorphic” comes from here, and means we may equally regard φ as
a function on GLn(K

×)\GLn(AK).

• Four other technical niceness conditions defined later.

We are going to have two goals:

First goal — tying forms to representations Connect automorphic forms to certain
“representations” on some space of functions GLn(K

×)\GLn(AK) → C. This
is analogous to how we saw that modular forms and Maass forms turned out to
correspond exactly with representations of L2(Γ\SL(2,R)).

Second goal — L-functions For each such representation, construct an L-function, give
it an analytic continuation, and exhibit a functional equation. (One common trend
in analytic number theory is that L-functions are worth their weight in gold.)

There is one place where the analogy is slightly weaker. Rather than attaching L-functions
directly to the automorphic forms, it turns out to be more convenient to attach them to
the automorphic representations directly. make a table?

§4.2 Motivation
Even for n = 2, this task we described will be rather technical (let alone replacing GLn

with a general algebraic group).
So we will first examine the case where n = 1; a result widely known now as Tate’s

thesis. In this case much of the theory simplifies immensely:
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Exercise 4.2.1. When n = 1, in the notation of the earlier section, prove that φ = cω
for some constant c.

In other words, there’s only a one-dimensional space of forms anyways (once ω is fixed)
and they are literally just multiples of ω. Hence Tate’s thesis only involves constructing
L-functions for each given Hecke character ω.

It is traditional that for Tate’s thesis, the Hecke character is denoted by χ rather than
ω.

§4.3 Local functional equation
Let F be a local field, and η : F× → S1 a unitary character on it. Recall that η is
unramified if it is trivial on O×, which is equivalent to η(x) = |x|iλ for λ ∈ R

§4.3.1 Non-Archimedean definition
If F is non-Archimedean, the local L-factors are defined in the following way:

L(s, η) =

{
1 ramified
(1− η($)q−s)

−1 unramified.

More generally, we may define for any Schwartz function f the local zeta integral

Z(s, η, f) =

∫
F×

|x|sη(x)f(x) dx×.

We justify “more generally” right away with the following calculation.

Proposition 4.3.1 (Zeta integral generalizes L-factor, at least in unramified case)
Suppose F is non-Archimedean and η is a unramified unitary character on F . Then
we have

L(s, η) = Z(s, η, 1O).

In other words, L is a special case of Z with f = 1O.

Proof. By condition, η(x) = |x|iλ for some λ ∈ R with η trivial on O. Show both equal
to Z(s+ iλ, 1, 1O). Poonen left this as homework so I didn’t do it.

The ramified case is more annoying.

Proposition 4.3.2 (Ramified case)
Suppose F is non-Archimedean and η is a unitary character on F with conductor
pn. Then

Z(s, η, 11+pn) = q−n.

Of course since L(s, η) = 1 in this situation we could also write Z(s, η, 11+pn) = q−nL(s, η),
but that would be silly.
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§4.3.2 Archimedean definition
If F = R, we instead have the complicated formula

L(s, |x|λ sign(x)ε︸ ︷︷ ︸
=η

) = π−
1
2
(s+λ+ε)/2Γ

(
s+ λ+ ε

2

)

and when F = C the formula

L(s, |x|2λ(x/|x|)n︸ ︷︷ ︸
=η

) = 2(2π)−(s+λ+ 1
2
|n|)Γ

(
s+ λ+

|n|
2

)
.

Again, these can be viewed as special cases of the zeta integral.

Proposition 4.3.3 (Archimedean relation)
We have

L(s, η) =


Z(s, e−πx2

, η) η = |x|λ, F = R
iZ(s, e−πx2

, η) η = |x|λ sign(x), F = R
(−i)a . . . Z(s, . . . , . . . ) F = C

Proof. Bash.

§4.3.3 The local functional equation for a test function
We can coalesce the earlier three results in the following lemma.

Proposition 4.3.4 (The local functional equation holds for our test function)
Let F be a local field, and η a unitary character on it. Then there exists single, nice
explicit choice, of function f , such that

Z(1− s, f̂ , η)

L(1− s, η)
= ε(s, η) · Z(s, f, η)

L(s, η)
.

holds for 0 < σ < 1, with ε of exponential type in s. Moreover, the left-hand side is
nonvanishing holomorphic when σ > 0, while the right-hand side is nonvanishing
holomorphic when σ < 1.

The choice of f is called a test function, and it’s just the function we chose in the earlier
proofs. We will see this lemma verifies the functional equation for a single value of f .

Proof. Earlier, we saw that each L(s, η) is basically equal (up to some constant) to
Z(f, s, η) for some choice of f :

• f = O if η is unramified on non-Archimedean F

• f = 11+pn if η is ramified on non-Archimedean F

• f = e−πx2 if F = R

• . . .if F = C.
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So naturally, we use this as our function f . This means the right-hand side is basically
known at this point. The difficulty is to calculate the left-hand side.

For the R and C case, this is not much different. It’s more difficult in the non-
Archimedean case and requires a Gauss sum.

§4.3.4 The local functional equation
The main result is the earlier local functional equation holds for any function f and the
epsilon factor does

Theorem 4.3.5 (Local functional equation)
For any Schwartz function f and unitary character η,

Z(1− s, f̂ , η)

L(1− s, η)
= ε(s, η) · Z(s, f, η)

L(s, η)
.

Moreover, the left-hand side is nonvanishing holomorphic when σ > 0, while the
right-hand side is nonvanishing holomorphic when σ < 1.

Proof. It suffices to prove that for arbitrary Schwartz functions f and g we have

Z(s, η, f)Z(1− s, η, ĝ) = Z(s, η, g)Z(1− s, η, f̂).

Bash with Fubini theorem.

§4.4 Global functional equation
A Schwartz function on AK is a function

∏
v∈K fv such that fv = 1Ov almost everywhere.

For such a function we may define the global zeta integral

Z(s, f, η) =

∫
A×

|x|sη(x)f(x) d×x

in nearly the same way as before. In fact,

Z(s, f, η) =
∏
v

Z(s, fv, ηv).

Theorem 4.4.1
This integral converges when σ > 1 and satisfies

Z(s, f, η) = Z(1− s, f̂ , η).

Proof. Poisson summation.

Finally, we may define

L(s, η) =
∏
v

L(s, ηv)
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ε(s, η) =
∏
v

ε(s, ηv)

and multiply everything together to get that

L(s, η) = ε(s, η)L(1− s, η).
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5 Adelization
write

(how to make a modular form into an automorphic form)

§5.1 Derivation of modular forms via representation theory
TODO: I have no memory of writing this section or what it’s about

Let f be a classical cusp form of weight k. Then we can associate it to a function φ on
Γ\SL(2,R) by

φf (g) = f(g(i))(c · g(i) + d)−k.

This is a bijection between modular forms and functions satisfying certain conditions.
Similarly, given a Maass form φ we can define φf (i) = f(g(i)). Again so-and-so

bijection.
On the other hand the center of the universal enveloping algebra of sl(2,C) is given by

Z = C[id,∆]

where ∆ is the Laplacian (Casimir element) mentioned earlier. Since ∆ is in the center,
it acts as a scalar in every irreducible representation.
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III
Automorphic forms and

representations
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6 Automorphic representations

Towards the start of the text, we saw how the classical modular forms and their
counterpart Maass forms naturally arose from representations of L2(Γ\GL2(R)).

§6.1 Automorphic forms
The definition of an adelic automorphic form was stated earlier, except for the technical
niceness condition.

• Smooth

• K-finite

• Z-finite, where Z is the center of the universal enveloping algebra of U(gl(n,Kv)),

• moderate growth.

The cusp forms are those which obey the additional hypothesis∫
φ

([
Ir X

Is

])
dX = 0.

§6.2 Automorphic representations, and admissible
representations

Definition 6.2.1. An admissible representation (π, V ) of GL2(A) is a representation of
GL2(Afin) with a commuting (g∞,K∞)-module structure with the additional constraint
that every vector of V is K-finite and every isotypic part is finite dimensional.

Definition 6.2.2. An automorphic representation is a irreducible representation of
GL2(Afin) with a commuting (g∞,K∞)-module structure which can be realized as the
quotient of a submodule of the space of automorphic forms of some central quasicharacter.

Proposition 6.2.3
Automorphic representations are admissible.

Definition 6.2.4. If F is a non-Archimedean local field, an admissible representation of
GL2(F ) is an actual representation such that every vector has open stabilizer and every
K = GL2(OF )-isotypic part is finite dimensional. We say a spherical representation is
one with a nonzero K-fixed vector, which we also say is spherical.

If F is an Archimedean local field, we instead want a (g∞,Kv)-module with finite-
dimensional isotypic parts.
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Theorem 6.2.5 (Tensor product theorem)
Let (V, π) be an irreducible admissible representation. Then we can choose (Vv, πv)
for every place v such that there exists a nonzero spherical vector ξ0v ∈ Vv for almost
all v, such that

V =
⊗̂

(Vv, πv)

where the restricted tensor product uses ξv0 .

The space of cusp forms contains each representation at most once; actually following
stronger result holds.

Theorem 6.2.6 (Strong multiplicity one theorem)
Let (π, V ) and (π, V ′) be irreducible admissible subrepresentations of the space
CuspForms(GL(n,K)\GL(n,Ak), ω). If πv = π′v for almost all v then V = V ′.
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7 Whittaker models

§7.1 Local uniqueness

Let F be a non-Archimedean local field, G = GL2(F ), N =

{[
1 x
0 1

]}
, and ψF a fixed

additive character. Since N ∼= F , we can think of ψF as a one-dimensional representation
of N .

Recall that we have the induced representation

IndG
N ψF =

{
W : G→ C |W

([
1 x
0 1

]
· g
)

= ψF (x)W (g) ∀x ∈ F, g ∈ GL2(F )

}
.

Definition 7.1.1. A Whittaker model W of (V, π) is a subrepresentation of IndG
N ψF

isomorphic to W.

Theorem 7.1.2 (Local uniqueness)
An irreducible admissible representation of GL2(F ) has at most one Whittaker
model.

Proof. By Frobenius reciprocity reduce to fact about functional.

§7.2 Global uniqueness
If K is a global field, a Whittaker model is a subspace of{

W : G→ C |W
([

1 x
0 1

]
· g
)

= ψA/K(x)W (g) ∀x ∈ K, g ∈ GL2(K)

}
closed under translation by G. We also assume the functions in W are smooth, K-finite,
and of moderate growth.

Theorem 7.2.1 (Global uniqueness)
An irreducible admissible representation π of G = GL2(A) has a Whittaker model if
and only if each πv has a Whittaker model. If so it is unique and equals the sums
of g 7→

∏
vWv(gv), where Wv ∈ Wv and for almost all v we have Wv equal to the

spherical element of Wv, normalized to equal 1 on Kv = GL2(Ov).

§7.3 Automorphic cuspidal representations have Whittaker
models
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Theorem 7.3.1 (Whittaker model for an automorphic cuspidal representation)
Let V be an automorphic cuspidal representation. For each φ ∈ V define

Wφ(g) =

∫
A/K

φ

([
1 x

1

]
g

)
ψK(−x) dx.

The space W = {Wφ | φ ∈ V } is a Whittaker model. It satisfies Fourier expansion

φ(g) =
∑

α∈K×

Wφ

([
α

1

]
g

)
.

The multiplicity one theorem follows from this.

§7.4 The zeta integral
Given an automorphic cuspidal φ and a central quasicharacter ξ we define

Z(s, φ, ξ)
def
=

∫
A×/K×

φ

([
y

1

])
|y|s−

1
2 ξ(y) d×y

=
∑

α∈K×

∫
A×/K×

Wφ

([
y

1

])
|y|s−

1
2 ξ(y) d×y

=

∫
A×

Wφ

([
y

1

])
|y|s−

1
2 ξ(y) d×y.

If φ =
⊗

v φv and Wφ =
⊗

vWv then Z(s, φ, ξ) =
∏

v Zv(s,Wv, ξv).
In general, if F is a non-Archimedean local field then most irreps of F are isomorphic

to π(χ1, χ2), the so-called principle series. Then α1 = χ1($) and α2 = χ2($) are called
the Satake parameters.

Theorem 7.4.1
If v is unramified then

Wv

([
y

1

])
=

{
q−m/2 · αm+1

1 −αm+1
2

α1−α2
m ≥ 0

0 m < 0

where m = ordv(y). Consequently, a direct calculation shows

Zv(s,Wv, ξv) = Lv(s, πv, ξv) =
(
1− α1ξ($)q−s

)−1 (
1− α2ξ($)q−s

)−1
.

Since the Satake parameters of the contragredient π̂v are exactly α−1
1 , α−1

2 , it follows
that

Lv(s, π̂v, ξ
−1
v ) = Lv(s, πv, ω

−1
v ξ−1

v )

Using this, we get a functional equation

L(s, π, ξ) = L(1− s, π̂, ξ−1) · gamma crap.

Dubious: discuss
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