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Chapter 1. Preface
At MIT, the course 18.02 (multivariable calculus) is a general institute requirement (GIR); every student
must pass this class in order to graduate. These are lecture notes based upon the fall 2024 instance of
the course, taught by Davesh Maulik.

§1.1 [TEXT] Goals of this book
These notes have the following lofty goal:

Goal

In theory, an incoming MIT student with a single-variable calculus background should be able
to pass the 18.02 final exam by only reading these notes and problems, working through several
practice final exams, and going to a weekly office-hours¹ to ask questions to a real human.

This is ambitious, and your mileage may vary. Just to be clear, this text is unofficial material and there
is no warranty or promise. (Also, if you are actually an MIT student, bear in mind the content of the
course will vary by instructor.) But with this goal in mind, here are some parts of the design philosophy
of this book.

• It’s practical. It sticks to the basics and emphasizes giving straight cookbook-like answers to
common exam questions.

‣ I better say something about memorizing recipes. In principle, if you have perfect memory,
you could potentially get a passing score (but not a perfect score) on the final exam by only
memorizing the recipes.

I don’t recommend this approach; even a vague conceptual understanding of a recipe is at
minimum quite helpful for remembering said recipe. But it may be useful to know in principle
that the recipe is all you need, and conversely, that you should have the recipes down by heart.

• It’s concrete. We only work in ℝ𝑛, and not a generic vector space. We don’t use anywhere near
the level of abstraction as, say, the Napkin². We don’t assume proof experience.

• It writes things out and has diagrams. Many lecture notes were meant to go with a in-person
lecture rather than replace it. These notes should stand alone.

‣ Any sentence that would normally be said out loud is written as text.
‣ Any figure that would normally be drawn on the blackboard is actually typeset into the book.

• It has full solutions to most of its exercises. I really believe in writing things out. I’d rather
have a small number of exercises with properly documented solutions than an enormous pile of
mass-produced questions with no corresponding solutions.

• It tries to explain where formulas come from. For example, these notes spell out how matrix
multiplication corresponds to function composition (in Section 7.3), something that isn’t clearly
stated in many places. I believe that seeing this context makes it easier to internalize the material.

• It marks more complicated explanations as “not for exam”. I hope the digressions are inter-
esting to you (or I wouldn’t have written them). But I want to draw a clear boundary between “this
explanation is meant for your curiosity or to show where this formula comes from” compared to
“this is something you should know by heart to answer exam questions”.

¹You can substitute the office hours for a knowledgeable friend, or similar. The point is that you should have at least
some access to live Q/A.

²That’s the one at https://web.evanchen.cc/napkin.html, which does assume a proof-based background.
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There are two kinds of ways we mark things as not for exam:

‣ Anything in a gray digression box is not for exam.

Digression

Here’s an example of a digression box.

‣ Anything in an entire section marked [SIDENOTE] is not for exam.

• It’s written by Evan Chen. That’s either really good or really bad, depending on your tastes. If
you’ve ever seen me teach a class in person, you know what I mean.

§1.2 [TEXT] Prerequisites
As far as prerequisites go, this text assumes a working knowledge of pre-calculus and calculus as
taught in United States high schools.

• Algebra: You should be able to work with elementary algebra, so that the following statements
make sense

𝑥2 − 7𝑥 + 12 = (𝑥 − 3)(𝑥 − 4) = 0 ⟹ 𝑥 = 3  or 𝑥 = 4.

You should also be able to solve two-variable systems of equations, such as

{5𝑥 − 2𝑦 = 8
3𝑥 + 10𝑦 = 16 ⟹ (𝑥, 𝑦) = (2, 1).

• Trigonometry: You should be know how sin and cos work, in both degrees and radians. So you
should know sin(30°) = 1

2 , and cos(7𝜋
6 ) = −

√
3

2 .

You should know a few trig identities; the most important is the double angle formula

sin(2𝜃) = 2 sin 𝜃 cos 𝜃

cos(2𝜃) = cos2 𝜃 − sin2 𝜃 = 2 cos2 𝜃 − 1 = 1 − 2 sin2 𝜃.

• Precalculus: You should know some common formulas covered in precalculus for vectors and
matrices:

‣ You should be able to add and scale vectors, like

(1
7) + 10(3

5) = (1
7) + (30

50) = (31
57).

(It’s really as easy as the equation above makes it look: do everything componentwise.)

‣ You should know the rule for matrix multiplication, so that for example you could carry out
the calculation

(1
4

2
5

3
6)

(
((
(7

8
9)
))
) = (1 ⋅ 7 + 2 ⋅ 8 + 3 ⋅ 9

4 ⋅ 7 + 5 ⋅ 8 + 6 ⋅ 9) = ( 50
122).

If you haven’t seen this before, there are plenty of tutorials online; find any of them. Poonen’s
notes (mentioned later) do cover this for example; see section 1-2 of https://math.mit.
edu/~poonen/notes02.pdf.
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You are not expected to have any idea why the heck the rule is defined this way; an expla-
nation for where this rule comes from is in Section 7.3. So we’ll assume you have seen this
strange rule before, but don’t know what it means.

‣ We’ll assume you know the formula for the determinant of a 2 × 2 and 3 × 3 matrix; that is

|𝑎𝑐
𝑏
𝑑| = det(𝑎

𝑐
𝑏
𝑑) = 𝑎𝑑 − 𝑏𝑐

and

|
|
|
|𝑎1
𝑏1
𝑐1

𝑎2
𝑏2
𝑐2

𝑎3
𝑏3
𝑐3 |

|
|
|
= det

(
((
(𝑎1

𝑏1
𝑐1

𝑎2
𝑏2
𝑐2

𝑎3
𝑏3
𝑐3)

))
) = 𝑎1 |𝑏2

𝑐2

𝑏3
𝑐3

| − 𝑎2 |𝑏1
𝑐1

𝑏3
𝑐3

| + 𝑎3 |𝑏1
𝑐1

𝑏2
𝑐2

|.

(The bars are a shorthand for the det symbol; they’re not absolute value bars.)

For example, you should be able to verify the correctness of the following equation:

|
||
|0
2
1

1
0
4

5
13
1 |

||
|
= 51.

We won’t assume you know where this formula comes from, and in fact we won’t be able
to explain that within these notes. But if you’re curious, you should read Chapter 12 of the
Napkin.

• Calculus: You should know single variable derivatives and integrals, for example:
‣ You should be able to differentiate 𝑥7 + sin(𝑥) to get 7𝑥6 + cos(𝑥).
‣ You should be able to integrate ∫1

0
𝑥2 d𝑥 to get 13 .

This is covered in the course 18.01 at MIT, and also in the AP calculus courses in the United States.

One note: by log(𝑥) we mean the natural log with base 𝑒.³ We will never use a base-2 or base-10
logarithm in these notes.

Tip

If you’re not at MIT, you should replace the words “18.01” and “18.02” with the course names cor-
responding to “single-variable calculus” and “multi-variable calculus” at your home institution.

This book assumes no proof-based background.

§1.3 [TEXT] Topics covered
Here is a brief overview of what happens in these parts.

Alfa and Bravo This part covers linear algebra (vectors and matrices). This is intentional, because
some working knowledge of linear algebra is important. In fact, if I was designing a serious course
in multivariable calculus for math majors, it would come after an entire semester of properly-
done linear algebra first.

³I considered using the notation ln(𝑥) to avoid confusion. However, ln(𝑥) is never used by mathematicians past
introductory calculus; see https://math.stackexchange.com/q/293783/229197. I figured I should just get you used
to log(𝑥) being base 𝑒 now. There’s a real chance that if you take an 18.02 exam at MIT, the professor straight-up forgets
to remind the students that log(𝑥) is base 𝑒, because they haven’t used ln(𝑥) in a quarter century.
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Charlie This short part is review of the complex numbers ℂ. I actually don’t know why this is part
of 18.02, to be honest, but since it happened I included a short chapter on it.

Delta Covers the calculus of functions 𝐫 : ℝ → ℝ𝑛, which is usually thought of as a parametric
function 𝐫(𝑡) (a time-indexed trajectory through the vector space ℝ𝑛). This part turns out to be
easy because it’s pretty much all 18.01 material. This part is therefore also only a few pages long.

Echo and Foxtrot Cover the differentiation of multivariable functions 𝑓 : ℝ𝑛 → ℝ, and the
optimization such functions. The star of these two parts in the gradient ∇𝑓 , which gets airtime in
virtually every kind of question you’ll see. This is the first serious multivariable calculus usage.

Golf This part covers double integrals of functions 𝑓 : ℝ2 → ℝ, the first of the parts on integration.
We define the double integral and cover techniques for computing them.

Hotel This part covers integrals of scalar functions in space 𝑓 : ℝ3 → ℝ. It introduces the triple
integral (which isn’t any different from double integral) as well as a side detour on arc length and
surface area.

India This part covers line integrals of vector fields 𝐅 : ℝ𝑛 → ℝ𝑛 over a curve; that is, work and
2D flux. The famous grad, div, and curl are first mentioned here, together with the generalized
Stokes’ theorem that ties them all together. This is the iconic part of multivariable calculus (kind
of like how France is associated with the Eiffel tower, say).

Juliett This part covers surface integrals of vector fields 𝐅 : ℝ3 → ℝ3 over a surface; that is, the
flux integral. More versions of Stokes’ theorem are given.

Kilo Exercises covering all the earlier parts.

Lima Solutions to exercises from the text.

Mike Appendix of odds and ends such as excessively long digressions.

(The words Alfa, Bravo, Charlie, etc. are from the NATO phonetic alphabet which the author of this
book has memorized from overexposure to puzzle hunts.)

§1.4 [TEXT] The structure of this book
You will quickly notice that all the sections are labeled with different headings. Here’s an explanation
of what they mean.

TEXT Good old prose. An explanation like you might hear in a lecture.
RECIPE Has only the final recipe, as you need it on the exam. As I mentioned before, I don’t like the

idea of just memorizing recipes, but in theory you might still be able to pass the exams by doing
only this.

SIDENOTE An optional extended discussion. You can skip these unless you’re interested in them.
RECAP A summary of what happened in the chapter.
EXER Problems to work on. Starred exercises are harder than questions that will appear in the actual

MIT course.

You’ll also see some colored boxes that mark where certain chunks begin and end. These should be
self-explanatory.

§1.5 [TEXT] Other references
The best resource I have for 18.02 in text is definitely Bjorn Poonen’s fall 2021 notes, available at

https://math.mit.edu/~poonen/notes02.pdf.
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Poonen is a really great writer of mathematical exposition in general, and I highly recommend these
notes as a result. In fact, I will even tell you, for each part, what the corresponding sections of Poonen
are if you decide something I write doesn’t make sense and you want to reference the corresponding
text. (That said, this text should stand alone.)

There are many other resources on multivariable calculus out there too. For example, MIT Open-
CourseWare has some supplementary notes and problems still used by the math department. And so
on. You can also find countless final exams from previous years of 18.02 on OCW.

I think the term “treatment” for the way a course is taught is apt, because it reflects a reality about
education: like medicine, there is no one treatment that works for everyone. In theory, there might be
some people who only read this book and that’s all they need. In practice, many of you would benefit
from asking friends to explain things differently for the sections of the book that don’t work from you,
or consulting another text when things here don’t suit you. You should not feel under any obligation
to treat this book as the one true bible of 18.02. This book is meant to be an aid, not a cage.

§1.6 [SIDENOTE] If you’re thinking of becoming a math major
If you’re thinking of becoming a math major, there’s some advice in Chapter 53.

§1.7 [SIDENOTE] My exercises are harder, so take your time
When setting exercises, I tried to come up with questions that require a bit of thought and under-
standing, for learning purposes. I’m intentionally trying to stretch you slightly with my exercises while
the timer is off — I want to give you a little bit of an opportunity to take your time and think. I think
you’ll internalize the material better this way and it’ll pay off.

But when you actually take an 18.02 midterm in real life, you have no time to think⁴— you have to
answer each question in 5-10 minutes. So on the flip side, you will probably be pleasantly surprised
when you find that 50%-80% of real midterm questions can be solved by turning off your brain and
following recipes to the letter. It has to be this way because of the short time limit and the amount of
material.

All this is to say to not be discouraged if you find the exercises in this book harder. It’s by design.
The real exam will have many cookie-cutter no-thought questions in return for the short time limit.

(Like most textbooks, the starred exercises are more challenging.)

§1.8 [SIDENOTE] Acknowledgments
• Thank you to the staff and other recitation leaders who made this course possible; particularly

Davesh Maulik for leading the instance of the course this year full-heartedly and Karol Bacik
for making so much happen behind the scenes. Thanks also to Sefanya Hope for coordinating
many other logistics, and particularly for helping me book classrooms on short notice on many
occasions.

I also thank Ting-Wei Chao for his permission to use Exercise 19.3, Exercise 33.1, Exercise 34.3,
Exercise 35.1 from his recitation section.

• Thank you to all the students in my recitation session (and those officially enrolled in other
sessions, but who came to my session anyway!) who regularly attended my class every Monday
and Wednesday at 9am. That’s some real early-morning dedication. There’s a saying that the
enthusiasm of an instructor can be contagious, but I definitely think the enthusiasm of students
can be as well.

⁴If you’re in India, the JEE exam is even more about speed and tricks than having any real understanding, and I
apologize that you have to suffer through it.
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‣ In particular, I got many words of thanks and encouragements from my students this year,
which I am grateful for. I certainly wouldn’t have had the motivation to type these notes
without these kind words.

• I thank Aaryan Vaishya, Alan Cheng, Alexander Wang, Calvin Wang, Emma Jakubicka, John Zhou,
Nick Zhang, Rémi Geron, Ritwin Narra, Rohan Garg, and Royce Yao for many corrections. (Your
name could be here too — find me some typos! If you know how to open a GitHub pull request,
the relevant repository is https://github.com/vEnhance/1802.)

• Thank you to Catherine Xu for the cover art. You can download a full-resolution copy at https://
web.evanchen.cc/textbooks/lamv-cover-art.png or find it in the GitHub repository.

• Thanks to OpenAI for gifting me a Plus subscription to ChatGPT. Writing this text gave me an
excuse to get a chance to use ChatGPT 4o and ChatGPT o1-preview, to see what kind of things it
did well (and what I could still do faster by hand).

‣ ChatGPT was helpful at writing full step-by-step solutions to the routine exercises. All the
solutions went through much editing from me (in part to make the notation consistent
throughout the whole text), to the point where maybe only a third of the output from each
solution actually survives editing. Even then, because it’s faster to edit or rewrite text⁵ than
write from scratch, it still saved time.

I think when humans write solutions they err on the size of laziness in skipping steps that
are really routine or obvious to them, because typing is slow. ChatGPT doesn’t; in fact, it’s
actually too verbose, and I almost always had to trim down the solution. But it much easier
to trim down an overly verbose solution than to flesh out one that’s too terse.

It’s also nice to not have to worry much about arithmetic errors anymore. If I had written the
solutions by hand, I would certainly drop plenty of factors of 2 or flip signs. ChatGPT actually
made fewer errors than me, and when it did it was usually easy for me to spot because it wrote
everything out. It turns out that proofreading someone else’s work is much, much easier than
proofreading your own.

‣ It was also fairly good at generating new routine exercises that are solved by just applying the
formula. It wasn’t perfect; some of the exercises it would generate were obviously broken.
But again, with some editing, it was still faster than trying to make up uninspired exercises
one after another en masse.⁶

‣ It’s pretty good at “explain things in many words” in a conversational way. For example,
the aquatic descriptions of what curl or divergence or work mean were largely generated by
ChatGPT.

• This book was not written in LaTeX! It’s written in the recently released version of Typst 0.12,
which is open source at https://github.com/typst/typst. I used NeoVim as an editor, doing
everything locally rather than by web app.

It was really nice being able to write math without having to constantly use the backslash key or
the curly brace, and the compiler was much faster, so I was overall quite impressed with my Typst
experience. Typst is quite new and you should check them out if you’d like to give them a try!

‣ ChatGPT is not good at producing Typst output yet, so I had ChatGPT output everything
in LaTeX and would then convert using pandoc. This conversion had some undesirable

⁵Vim on top. Fight me.
⁶Which I admit I have too much pride to do either, as a math olympiad kid whose success story was built on solving

many non-routine problems growing up, rather than mass-generated ones.
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irregularities, so I ended up writing a few Python scripts to handle those irregularities and
just fixed the remaining issues by hand.

‣ You can see the source code for this textbook at https://github.com/vEnhance/1802. Note
that it relies on an external file called evan.typ which you can find in my dotfiles repository.
Thanks to the couple packages that were already used in evan.typ:

– The v2 version of https://github.com/sahasatvik/typst-theorems.
– The v1 version of https://github.com/jomaway/typst-gentle-clues.
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Chapter 2. Type safety
Before we get started with the linear algebra and calculus, I want to talk quickly about types of objects.
This is an important safeguard for the future in checking your work and auditing your understanding
of a topic; a good instructor will point out, in your work, any time you make a type-error.

§2.1 [TEXT] Type errors
In mathematics, statements are usually either true or false. Examples of false statements⁷ include

𝜋 = 16
5

or 2 + 2 = 5.

However, it’s possible to write statements that are not merely false, but not even “grammatically
correct”, such as the nonsense equations

𝜋 = (1
0

0
1), (0

3
1
4

2
5) = cos(6

7), det( 5
11) ≠

√
2.

To call these equations false is misleading. If your friend asked you whether 2 + 2 = 5, you would say
“no”. But if your friend asked whether 𝜋 equals the 2 × 2 identity matrix, the answer is a different kind
of “no”; really, it’s “your question makes no sense”.

These three examples are type errors. This term comes from programming: most programming
languages have different data types like integer, boolean, string, array, etc., and will usually⁸ prevent
you from doing anything idiotic like adding a string to an array.

Objects in mathematics work in a really similar way. In the first weeks of 18.02, you will meet real
numbers, vectors, and matrices; these are all different types of objects, and certain operations are
defined (aka “allowed”) or undefined (aka “not allowed”) depending on the underlying types. Table
Table 1 lists some common examples with vectors you’ve seen from precalculus.

Operation Notation Input 1 Input 2 Output
Add/subtract 𝑎 ± 𝑏 Scalar Scalar Scalar
Add/subtract 𝐯 ± 𝐰 𝑑-dim vector 𝑑-dim vector 𝑑-dim vector
Add/subtract 𝑀 ± 𝑁 𝑚 × 𝑛 matrix 𝑚 × 𝑛 matrix 𝑚 × 𝑛 matrix
Multiply 𝑐𝐯 or 𝑐 ⋅ 𝐯 Scalar 𝑑-dim vector 𝑑-dim vector
Multiply 𝑎𝑏 or 𝑎 ⋅ 𝑏 Scalar Scalar Scalar
Multiply 𝑀𝑁  or 𝑀 ⋅ 𝑁 𝑚 × 𝑛 matrix 𝑛 × 𝑝 matrix 𝑚 × 𝑝 matrix
Dot product 𝐯 ⋅ 𝐰 𝑑-dim vector 𝑑-dim vector Scalar
Cross product 𝐯 × 𝐰 3-dim vector 3-dim vector 3-dim vector
Length/mag. |𝐯| Any vector n/a Scalar
Determinant det 𝐴 Any square matrix n/a Scalar

Table 1: Common linear algebra operations. For 18.02, “scalar” and “real number”
are synonyms.

⁷Indiana Pi bill and 1984, respectively.
⁸JavaScript is a notable exception. In JavaScript, you may know that [] and {} are an empty array and an empty object,

respectively. Then []+[] is the empty string, []+{} is the string ‘[object Object]’, {}+[] is 0, and {}+{} is NaN (not
a number).
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Digression

A common question at this point is how you are supposed to figure out whether a certain
operation is allowed or not. For example, many students want to try and multiply two vectors
together component-wise; why is

(2
3)(4

5) =? ( 8
15)

not a legal sentence? It seems like it would make sense.

The answer is that you don’t have to figure out — you are told; Table 1 isn’t something that you
derive. That is, Table 1 consists of the definitions which you have been given.

(Or more sarcastically, it’s all just a social construct. Well, it’s bit more nuanced than that.
Definitions aren’t judged by “correctness”; that doesn’t make sense; you are allowed to make up
whatever definitions you want. Instead, definitions are judged by whether they are useful. Which
is obviously subjective, but it’s less subjective than you might guess.)

§2.2 [TEXT] Why you should care
There are two action items to take away from this chapter.

§2.2.1 When learning a new object, examine its types first

What this means is that, every time you encounter a new kind of mathematical object or operation
(e.g. partial derivative), the first thing you should do is ask what types are at play. This helps give
you a sanity check on your understanding of the new concept.

We’ll use boxes like this throughout the textbook to do this:

Type signature

This is an example of a type signature box. When we want to make comments about the types of
new objects, we’ll put them in boxes like this.

§2.2.2 Whenever writing an equation, make sure the types check out

Practically, what’s really useful is that if you have a good handle on types, then it gives you a way
to type-check your work. This is the analog of dimensional analysis from physics, where you know
you messed up if some equation has kg ⋅ meters ⋅ seconds−2 on the left but kg ⋅ meters ⋅ seconds−1

on the right.

For example, if you are reading your work and you see something like

|𝐯 × 𝐩| = 9𝐩 (1)

then you can immediately tell that there’s a mistake, because the two sides are incompatible — the left-
hand side is a real number (scalar), but the right-hand side is a vector.

§2.3 [RECAP] Takeaways from type safety
• Throughout this book, every time you meet a new operation, make sure you know what types of

objects it takes as input and which it takes as output.
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• Whenever you write an equation, make sure it passes a type-check. You can catch a lot of errors
like Equation 1 using type safety alone.

§2.4 [EXER] Exercises

Exercise 2.1.  Let 𝐮, 𝐯, 𝐰 be vectors in ℝ3. By using Table 1 (or skimming Section 4.1 briefly),
determine whether each of the following expressions is a real number, a vector, or nonsense (type-
error); there should be one of each.

• (𝐮 ⋅ 𝐯) ⋅ 𝐰
• 𝐮 ⋅ 𝐯 + 𝐰 (here order of operations is ⋅ before +)
• 𝐮 ⋅ (𝐯 + 𝐰)

(The symbol ⋅ confusingly can refer to three different things: grade-school multiplication, scalar
multiplication, or the dot product.)

(The answer to this exercise is written in Chapter 42, and in general Part Lima contains solutions to
all the exercises.)
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Part Alfa: Linear Algebra of Vectors
For comparison, Part Alfa corresponds roughly to §1, §2, §3.9 of Poonen’s notes.

Chapter 3. Review of vectors

§3.1 [TEXT] Notation for scalars, vectors, points
If you haven’t seen the symbol ℝ before, let’s introduce it now:

Definition

We denote by ℝ the real numbers, so 3,
√

2, −𝜋 are elements of ℝ. Sometimes we’ll also refer to
a real number as a scalar.

The symbol “∈”, if you haven’t seen it before, means “is a member of”. So 3 ∈ ℝ is the statement “3 is
a real number”. Or 𝑥 ∈ ℝ means that 𝑥 is a real number.

Unfortunately, right off the bat I have to mention that the notation ℝ𝑛 could mean two things:

Definition

By ℝ𝑛 we could mean one of two things, depending on context:

• The vectors of length 𝑛, e.g. the vector (𝜋
5) is a vector in ℝ2.

• The points in 𝑛-dimensional space, e.g. (
√

2, 7) is a point in ℝ2.

To work around the awkwardness of ℝ𝑛 meaning two possible things, this book will adopt the
following conventions for variable names:

Type signature

• Bold lowercase letters like 𝐮 and 𝐯 will be used for vectors. When we draw pictures of vectors,
we always draw them as arrows.

• Capital letters like 𝑃  and 𝑄 are used for points. When we draw pictures of points, we always
draw them as dots.

• Sometimes, if we need to refer to the vector drawn as an arrow which starts at point 𝑃  and
ends at 𝑄, we write ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑃𝑄 for it.

We’ll also use different notation for actual elements:

Type signature

• A vector will either be written in column format like (
1
2
3
), or with angle brackets as ⟨1, 2, 3⟩

if the column format is too tall to fit.
• But a point will always be written with parentheses like (1, 2, 3).

Some vectors in ℝ3 are special enough to get their own shorthand. (The notation “≔” means “is
defined as”.)
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Definition

When working in ℝ2, we define

𝐞1 ≔ (1
0), 𝐞2 ≔ (0

1)

and

𝟎 ≔ (0
0).

Definition

When working in ℝ3, we define

𝐞1 ≔
(
((
(1

0
0)
))
), 𝐞2 ≔

(
((
(0

1
0)
))
), 𝐞3 ≔

(
((
(0

0
1)
))
).

We also let

𝟎 ≔
(
((
(0

0
0)
))
).

In other places, you’ll sometimes see 𝐢, 𝐣, 𝐤 instead, but this book will always use 𝐞𝑖.

§3.2 [TEXT] Length

Definition

The length of a vector is denoted by |𝐯| and corresponds to the length of the arrow drawn. It is
given by the Pythagorean theorem.

• In two dimensions:

𝐯 = (𝑥
𝑦) ⟹ |𝐯| ≔ √𝑥2 + 𝑦2.

• If three dimensions:

𝐯 =
(
((
(𝑥

𝑦
𝑧)
))
) ⟹ |𝐯| ≔ √𝑥2 + 𝑦2 + 𝑧2.

In 𝑛 dimensions, if 𝐯 = ⟨𝑎1, …, 𝑎𝑛⟩, the length is |𝐯| ≔ √𝑎2
1 + … + 𝑎2

𝑛.

Type signature

The length |𝐯| has type scalar. It is always positive unless 𝐯 = 𝟎, in which case the length is 0.
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§3.3 [TEXT] Directions and unit vectors
Remember that a vector always has

• both a magnitude, which is how long the arrow is in the picture, and
• a direction, which refers to which way the arrow points.

In other words, the geometric picture of a vector always carries two pieces of information. (Here, I’m
imagining we’ve drawn the vector as an arrow with one endpoint at the origin and pointing some way.)

In a lot of geometry situations we only care about the direction, and we want to ignore the magnitude.
When that happens, one convention is to just set the magnitude equal to 1:

Definition

A unit vector will be a vector that has magnitude 1.

Thus we use the concept of unit vector to capture direction. So in ℝ2, (1
0) is thought of as “due east”

and (−1
0 ) is “due west”, while (0

1) is “due north” and (
1√
2

1√
2
) is “northeast”.

Definition

Given any vector 𝐯 in ℝ𝑛 besides the zero vector, the direction along 𝐯 is the unit vector
𝐯
|𝐯|

which is the unit vector that points the same way that 𝐯 does.

(Depending on what book you’re following, more pedantic authors might write “the unit vector in the
direction of 𝐯” or even “the unit vector in the same direction as 𝐯” rather than “direction along 𝐯”. This
is too long to type, so I adopted the shorter phrasing. I think everyone will know what you mean.)

We will avoid referring to the direction of the zero-vector 𝟎, which doesn’t make sense. (If you try to
apply the formula here, you get division by 0, since 𝟎 is the only vector with length 0.) If you need it,
the convention is that it has every direction.

Type signature

If 𝐯 is a nonzero vector in ℝ𝑛, then the direction along 𝐯 is a (unit) vector in ℝ𝑛.

Example

Let’s first do examples in ℝ2 so we can drawn some pictures.

• The direction along the vectors (1
0), (5

0) or (1337
0 ) are all (1

0), thought of as due east.

• But the direction along the vectors (−1
0 ) or (−9

0 ) are both (−1
0 ), thought of as due west.

• The direction along the vectors ( 0
−2), ( 0

−17) are all ( 0
−1), thought of as due south.
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Example

How about the direction along ( 3
−4)? We need to first find the length of the vector so we can

scale it down. That’s given by the Pythagorean theorem, of course:

|( 3
−4)| = √32 + 42 = 5.

So the direction along ( 3
−4) would be

1
5
( 3

−4) = ( 3/5
−4/5).

See Figure 1. The direction is somewhere between south and southeast.

Figure 1: The direction along ( 3
−4) (blue) is ( 3/5

−4/5) (red). Unit vectors always lie
on the grey circle (unit circle) by definition.

When drawn like Figure 1 in the two-dimensional picture ℝ2, the notion of direction along (𝑥
𝑦) is

almost like the notion of slope 𝑦
𝑥  in high school algebra (so the slope of the blue ray in Figure 1). But

there are a few reasons our notion of direction is more versatile than just using the slope of the blue ray.

• The notion of direction can tell the difference between ( 3
−4), which goes southeast, and (−3

4 ),
which goes northwest. Slope cannot; it would assign both of these “slope −4

3”.
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• The due-north and due-south directions (0
1) and ( 0

−1) would have undefined slope due to
division-by-zero, so you always have to worry about this extra edge case. With unit vectors, due-
north and due-south don’t cause extra headache.

• Our definition of direction works in higher dimension ℝ3. There isn’t a good analog of slope there;
a single number cannot usefully capture a notion of direction in ℝ𝑛 for 𝑛 ≥ 3.

Example

The direction along the three-dimensional vector (
12

−16
21

) is

(
((
( 12/29

−16/29
21/29 )

))
).

See if you can figure out where the 29 came from.

§3.4 [RECIPE] Areas and volumes
If 𝐯1 = (𝑥1

𝑦1
) and 𝐯2 = (𝑥2

𝑦2
) are vectors, drawn as arrows with a common starting point, then their

sum 𝐯1 + 𝐯2 makes a parallelogram in the plane with 𝟎 as shown in Figure 2.

Figure 2: Vector addition in ℝ2.

The following theorem is true, but we won’t be able to prove it in 18.02.

Recipe for area of a parallelogram

The signed area of the parallelogram formed by 𝐯1 = (𝑥1
𝑦1

) and 𝐯2 = (𝑥2
𝑦2

) is equal to

|𝑥1
𝑦1

𝑥2
𝑦2

| = 𝑥1𝑦2 − 𝑥2𝑦1.

A similar theorem is true for the parallelepiped⁹ with three vectors in ℝ3; see Figure 3.

⁹I hate trying to spell this word.
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Recipe for volume of a parallelepiped

The signed volume of the parallelepiped formed by 𝐯1 = (
𝑥1
𝑦1
𝑧1

), 𝐯2 = (
𝑥2
𝑦2
𝑧2

), 𝐯3 = (
𝑥3
𝑦3
𝑧3

) is

equal to

|
|
|
|𝑥1
𝑦1
𝑧1

𝑥2
𝑦2
𝑧2

𝑥3
𝑦3
𝑧3 |

|
|
|
.

Figure 3: Three vectors in ℝ3 making a parallelepiped.

You might noticed that the word “signed” has slipped in before “area” and “volume”. What does that
mean? Well, if you only care about the area of the volume itself, it doesn’t matter for you; you should
just take the absolute value of the determinant. But the sign carries a bit more information.

• In 2D, consider the angle between 𝐯1 and 𝐯2, between 0° and 180°. Then we consider the sign to
be + if the angle goes counterclockwise from 𝐯1 to 𝐯2, (like the example in Figure 2), and negative
otherwise. So in Figure 2, we would have

|𝑥1
𝑦1

𝑥2
𝑦2

| = +area, |𝑥2
𝑦2

𝑥1
𝑦1

| = −area.

• In 3D, the convention follows the right-hand rule: suppose vectors 𝐯1, 𝐯2, 𝐯3 are given it that
order. Curl the fingers of your right hand from 𝐯1 to 𝐯2; then the signed volume is positive if your
thumb points in the direction of 𝐯3 (as in Figure 3, for example) and negative otherwise.
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Digression

If you’re interested in the proof of these results and their 𝑛-dimensional generalizations, the tool
needed is the wedge product, which is denoted

⋀
𝑘

(ℝ𝑛).

This is well beyond the scope of 18.02, but it’s documented in Chapter 12 of my Napkin for those
of you that want to read about it.

Alternatively, I think Wikipedia and Axler¹⁰, among others, use a definition of the determinant
as the unique multilinear alternating map on 𝑛-tuples of column vectors in ℝ𝑛 that equals 1 for
the identity. This definition will work, and will let you derive the formula for determinant, and
gives you a reason to believe it should match your concept of area and volume. It’s probably also
easier to understand than wedge products. However, in the long term I think wedge products are
more versatile, even though they take much longer to setup.

§3.5 [EXER] Exercises

Exercise 3.1.  Compute the unit vector along the direction of the vector

(
((
(−0.0008𝜋

−0.0009𝜋
−0.0012𝜋)

))
).

Exercise 3.2.  If 𝐴 is a 3 × 3 matrix with determinant 2, what values could det(10𝐴) take?

Exercise 3.3.  Compute the real number 𝑎 for which the points (0, 0, 0), (1, 0, 1), (0, 1, 2) and
(1, 2, 𝑎) all lie on one plane.

¹⁰Who has a paper called Down with Determinants!, which I approve of.
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Chapter 4. The dot product
The dot product is the first surprising result you’ll see in this class, because it has two definitions that
look nothing alike, one algebraic and one geometric. Because of that, we’ll be able to get a ton of
mileage out of it.

This will be a general theme across the course: almost every new concept we define will have some sort
“algebraic” side (like the coordinates for vector addition) and some “geometric” side (the parallelogram
in Figure 2). This is the bar a concept has to pass for us to study it in this class: in order for us to deem
a concept worthy of our attention in 18.02, it must have both an interpretation with algebra and an
interpretation in geometry.

§4.1 [TEXT] Two different definitions of the dot product
I promised you two definitions right? So here they are.

Definition

Suppose 𝐯 = (
𝑎1
⋮

𝑎𝑛

) and 𝐰 = (
𝑏1
⋮

𝑏𝑛

) are two vectors in ℝ𝑛.

The algebraic definition is to take the sum of the component-wise products:

(
((
(𝑎1

⋮
𝑎𝑛)

))
) ⋅

(
((
(𝑏1

⋮
𝑏𝑛)

))
) ≔ 𝑎1𝑏1 + … + 𝑎𝑛𝑏𝑛.

The geometric definition is that if 𝜃 is the angle between the two vectors when we draw them as
arrows with a common starting point, then

𝐯 ⋅ 𝐰 ≔ |𝐯| |𝐰| cos 𝜃.

That is, the dot product equals the product of the lengths times the cosine of the included angle.

It’s totally not obvious that these two definitions are the same! I know two reasonable proofs, both of
which I’ve typed in the appendix:

• The standard proof uses the law of cosines; it’s documented in Section 54.1. It’s short but seems
somewhat magical.

• I came up with a geometric proof without trigonometry; it’s documented in Section 54.2. It’s
longer but easier to come up with.

I won’t dwell on this proof too much in the interest of moving these notes forward.

Type signature

Remember, the dot product takes two vectors of equal dimensions as inputs and outputs a scalar
(i.e. a real number). It does not output a vector! This is the mistake every calculus or linear
algebra instructor dreads for the first few weeks of class.

Repeat: dot product output type is number! Not a vector!
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Warning: There are a lot of dots, aren’t there?

Confusingly, the multiplication ⋅ is also used for normal multiplication (as we saw in Exercise 2.1).
This is why you need to always look at the types of objects so you know which ⋅ is happening.
To spell this out:

• If 𝑎 and 𝑏 are two numbers, 𝑎 ⋅ 𝑏 = 𝑎𝑏 is grade-school multiplication, e.g. 3 ⋅ 5 = 15.
• If 𝑎 is a number and 𝐯 is a vector, 𝑎 ⋅ 𝐯 is scalar multiplication, e.g. 3 ⋅ (5

7) = (15
21).

• If 𝐯 and 𝐰 are vectors, then 𝐯 ⋅ 𝐰 is dot product, e.g. (5
7) ⋅ ( 9

11) = 5(9) + 7(11) = 122.

Example

Let’s compute the dot product of 𝐯 = ( −5
5
√

3) and 𝐰 = (7
√

3
−7 ), both ways.

• The algebraic definition is easy:

𝐯 ⋅ 𝐰 = −5 ⋅ 7
√

3 + 5
√

3 ⋅ (−7) = −70
√

3.

• The geometric definition is a bit more work, see Figure 4. In this picture, you can see there
are two 30° angles between the axes, and the lengths of the vectors are 10 and 14. Hence, the
angle 𝜃 between them is 𝜃 = 90° + (30° + 30°) = 150°. So the geometric definition gives
that

𝐯 ⋅ 𝐰 = |𝐯| |𝐰| cos 𝜃 = 10 ⋅ 14 ⋅ cos(150°) = 140 ⋅ −
√

3
2

= −70
√

3.

Figure 4: The dot product of 𝐯 = ( −5
5
√

3) and 𝐰 = (7
√

3
−7 ) is −70

√
3.

30



Linear Algebra and Multivariable Calculus — Evan Chen

Tip

You can see from this example that computing the dot product of two given vectors with coordi-
nates is way easier to do with the algebraic definition. This will be true in general throughout
this class:

• Use the algebraic definition when you need to do practical calculation.
• Use the geometric definition to interpret the result in some way.

Example

Let’s compute the dot product of 𝐯 = (1
2) and 𝐰 = (−6

3 ) both ways. See Figure 5.

• The algebraic definition is easy:

𝐯 ⋅ 𝐰 = 1 ⋅ (−6) + 2 ⋅ (3) = 0.

• In this case the two vectors 𝐯 and 𝐰 form a 90° angle between them. You should know this
from high school, since the two blue rays in Figure 5 have slopes 2 and −1

2  respectively. So
the cosine of the angle is 0, and the whole dot product is 0. (The lengths are |𝐯| =

√
5 and

|𝐰| = 3
√

5, but there’s no need to actually calculate these.)

Figure 5: Two perpendicular dot products

This example shows something new:

Memorize

Two nonzero vectors have perpendicular directions if and only if their dot product is 0.
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This might seem stupid in two dimensions, because it’s doing something you already knew how to
do with slope. But in ℝ3 there isn’t a concept of slope, so if you want to see whether two vectors are
perpendicular in ℝ3, you’ll want to use the dot product.

Sample Question

Compute the real number 𝑡 such that (
1
2
3
) and (

4
5
𝑡
) are perpendicular.

Solution.  We need 1 ⋅ 4 + 2 ⋅ 5 + 3 ⋅ 𝑡 = 0, so 𝑡 = −14
3

. □

Example: 𝐯 ⋅ 𝐯 = |𝐯|2

If one takes the dot product of a vector 𝐯 = (
𝑥1
⋮

𝑥𝑛

) with itself, one gets the squared length.

• To see this from the algebraic definition, note that 𝐯 ⋅ 𝐯 = 𝑥2
1 + … + 𝑥2

𝑛 = |𝐯|2.
• To see this from the geometric definition, note that 𝐯 ⋅ 𝐯 = |𝐯| |𝐯| cos(0) = |𝐯|2.

§4.2 [TEXT] Properties of the dot product
If you look at the algebraic definition, you should be able to see easily that:

• 𝐯 ⋅ 𝐰 = 𝐰 ⋅ 𝐯, i.e., dot product is commutative.
• 𝐯 ⋅ (𝐰1 + 𝐰2) = 𝐯 ⋅ 𝐰1 + 𝐯 ⋅ 𝐰2, i.e., the dot product is distributive.

I point this out briefly so it’s on the record, but you’ll probably also internalize it automatically as you
get more practice with actually computing the dot product.

§4.3 [TEXT] Projection
Suppose 𝐯 and 𝐰 are two nonzero vectors in ℝ𝑛. Let 𝜃 denote the angle between them. Imagine
projecting the vector 𝐯 onto the line through 𝐰, to get the purple vector shown in Figure 6. This purple
vector is typically written proj𝐰(𝐯).

Type signature

The vector projection proj𝐰(𝐯) is a vector that points in either the same or opposite direction as
𝐰.

Let’s do an example to see how the dot product lets us compute this.

Example

Suppose 𝐯 = (2
3) and 𝐰 = (4

1), as in Figure 6. How can we find the purple vector proj𝐰(𝐯)?
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Figure 6: The projection of 𝐯 = (2
3) along 𝐰 = (4

1).

Solution.  First, let’s figure out the length of the purple vector. For trigonometry reasons, we know the
length of the purple vector is

length of purple vector = |𝐯| cos 𝜃.

However, we don’t really want to go to the work of figuring out what 𝜃 is.

This is where the dot product comes in. It’s easy to compute the dot product:

11 = 2 ⋅ 4 + 3 ⋅ 1 = 𝐯 ⋅ 𝐰 = |𝐯| |𝐰| cos 𝜃.

This is almost what we want, except there’s an unneeded |𝐰| we want to strip out. We know |𝐰| =√
42 + 12 =

√
17, and hence we get

length of purple vector = 𝐯 ⋅ 𝐰
|𝐰|

= 11√
17

.

Now how do we get the purple vector itself? Well, the direction along 𝐰 is the unit vector

𝐰
|𝐰|

=
(
((

4√
17
1√
17)

))

and so multiplying by the length gives the desired result:

proj𝐰(𝐯) = (length of purple vector) 𝐰
|𝐰|

= 11√
17(

((
4√
17
1√
17)

)) = (
44
17
11
17

). □
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Remark

The projection only depends on the direction of 𝐰. So if one had re-done the problem above with
𝐰 = (200

300) instead of (2
3), the answer would be the same.

§4.4 [RECIPE] Projection
This procedure last section works in general for any vectors, in any number of dimensions. The only
catch is that we have to pay a bit of attention to 𝜃 < 90° and 𝜃 > 90° behaving slightly differently. An
example of a situation of that shape is shown in Figure 7.

Figure 7: The projection of 𝐯 = (−3
3 ) along 𝐰 = (4

1).

Here, the purple vector points away opposite 𝐰.

In the previous example, we used the word “length” and it was fine. In the new figure Figure 7, we
would end up taking negative length instead. That works fine, but it’s annoying; and so we introduce
a new word that works in both cases 𝜃 < 90° and 𝜃 > 90°:

Definition of scalar component

The scalar component of 𝐯 in the direction of 𝐰 is the number defined by

comp𝐰(𝐯) ≔ |𝐯| cos 𝜃 = 𝐯 ⋅ 𝐰
|𝐰|

.

This is the analog of purple length from before, but now we allow it to be positive, negative, or zero
according to 𝜃 < 90°, 𝜃 > 90°, and 𝜃 = 90°, respectively. But the point is that the cosine can take care
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of this automatically, and because the cosine is baked into the dot product, life is great: we just don’t
have to think about the sign issue at all. That is, the formula with the new notation

proj𝐰(𝐯) = comp𝐰(𝐯) 𝐰
|𝐰|

is just always true.

Type signature

The scalar component is a number, and can be either positive, negative, or zero.

Recipe for projecting one vector along another

Suppose 𝐯 and 𝐰 are given vectors in ℝ𝑛.

1. To compute the scalar component, use the formula

comp𝐰(𝐯) = 𝐯 ⋅ 𝐰
|𝐰|

.

2. To compute the vector projection, use the formula

proj𝐰(𝐯) = comp𝐰(𝐯) 𝐰
|𝐰|

.

Type signature

Pay attention to type safety when carrying out the recipe to avoid shooting yourself in the foot:
• In the formula 𝐯⋅𝐰

|𝐰| , the numerator is a number (it’s a dot product), the denominator is a
number (it’s a length), and we’re dividing two numbers.

• The formula 𝐯⋅𝐰
|𝐰|2 𝐰 is more complicated. Focus on just the fraction in front first: the numer-

ator is a number (it’s a dot product), and the denominator is a number (it’s a squared length),
so the entire fraction is a number. This fraction then gets multiplied onto a vector 𝐰, so the
output type is a vector (actually a multiple of 𝐰).

Warning

It’s possible to write the projection formula written in other equivalent ways, e.g.

proj𝐰(𝐯) = comp𝐰(𝐯) 𝐰
|𝐰|

= (𝐯 ⋅ 𝐰
|𝐰|

) 𝐰
|𝐰|

= 𝐯 ⋅ 𝐰
|𝐰|2

𝐰 = 𝐯 ⋅ 𝐰
𝐰 ⋅ 𝐰

𝐰.

I don’t like the last few as much because I think they make it harder to see where the formula
comes from, but if you know what you’re doing, feel free to use them.

To show you the recipe isn’t doing anything you haven’t seen before, we redo the earlier example
using the new notation. You should notice we get the same numbers as before.
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Sample Question

Suppose 𝐯 = (2
3) and 𝐰 = (4

1), as in Figure 6. Calculate proj𝐰(𝐯).

Solution.  First, compute

comp𝐰(𝐯) = 𝐯 ⋅ 𝐰
|𝐰|

= 2 ⋅ 4 + 3 ⋅ 1√
42 + 12

= 11√
17

.

Then,

proj𝐰(𝐯) = comp𝐰(𝐯) 𝐰
|𝐰|

= 11√
17(

((
4√
17
1√
17)

)) = (
44
17
11
17

). □

Let’s also do the example in Figure 7.

Sample Question

Suppose 𝐯 = (−3
3 ) and 𝐰 = (4

1), as in Figure 6. Calculate proj𝐰(𝐯).

Solution.  First, compute

comp𝐰(𝐯) = 𝐯 ⋅ 𝐰
|𝐰|

= −3 ⋅ 4 + 3 ⋅ 1√
42 + 12

= −9√
17

.

Then,

proj𝐰(𝐯) = comp𝐰(𝐯) 𝐰
|𝐰|

= −9√
17(

((
4√
17
1√
17)

)) = (
−36

17
− 9

17
). □

§4.5 [EXER] Exercises

Exercise 4.1.  In four-dimensional space ℝ4, the vectors ⟨1, 2, 3, 4⟩ and ⟨5, 6, 7, 𝑡⟩ are perpendicular.
Compute 𝑡.

Exercise 4.2.
• Compute the vector projection of ⟨123, 456, 789⟩ in the direction of 𝐞1.
• Compute the scalar component and vector projection of 𝐯 = ⟨1, 2, 3⟩ along the direction of

𝐰 = ⟨−3000, −4000, 0⟩.

Exercise 4.3.  Let 𝐰 = ⟨3, 4⟩. Compute all unit vectors 𝐯 in ℝ2 for which 𝐯 ⋅ 𝐰 = 3.

Exercise 4.4 (*).  Determine all possible values of 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 over real numbers 𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧
satisfying 𝑎2 + 𝑏2 + 𝑐2 = 2 and 𝑥2 + 𝑦2 + 𝑧2 = 5.
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Chapter 5. Planes and their normal vectors
In general, the equation of a plane in ℝ3 takes the shape

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

where 𝑎, 𝑏, 𝑐, 𝑑 are real numbers (and 𝑎, 𝑏, 𝑐 are not all zero).

§5.1 [TEXT] Normal vectors to planes in ℝ3

In 18.01, we had lines in ℝ2, and we used the notion of slope of the line often. For 18.02, planes don’t
have a “slope”; not a single number, anyway. So the thing I want to communicate is:

Idea

Everything we used slope for in 18.01, we should rephrase in terms of normal vectors for 18.02.

So what’s that? A normal vector 𝐯 to a plane is a vector such that, if you pick any point 𝑃  on the
plane, then the arrow joining 𝑃  to 𝑃 + 𝐯 — that is, the arrow 𝐯 when you draw the starting point as
𝑃  — is perpendicular to that plane.

Figure 8: Normal vector to a plane.

(Note that it doesn’t matter which point 𝑃  you pick. You could equally well even ignore 𝑃  together,
imagine drawing 𝐯 as an arrow starting from some random point not necessarily on the plane — like
the origin — and requiring that 𝐯 punctures the plane at a right angle.)

The main goal of this chapter is to prove the following result:

Memorize: Normal vectors of plane

Given a plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑, the normal vectors to it are the multiples of (
𝑎
𝑏
𝑐
).

Keep in mind that normal vectors only matter up to scaling: if (
1
2
3
) is a normal vector, then so are

(
10
20
30

), (
−100
−200
−300

), etc.
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§5.2 [TEXT] Normal vectors to lines in ℝ2

Before explaining why this is true in ℝ3, I want to do everything in ℝ2 first for comparison, where
pictures are easier to draw and you have intuition from eighth or ninth grade algebra.

Here’s a question: which vectors in ℝ2 are perpendicular to (1
2)? They’re the vectors lying on a line

of slope −1
2  through the origin, namely

0 = (𝑥
𝑦) ⋅ (1

2) ⟺ 0 = 𝑥 + 2𝑦.

See Figure 9.

Figure 9: Plots of 𝑥 + 2𝑦 = 0 and 𝑥 + 2𝑦 = 𝜋.

Okay, in that case what does the line

𝑥 + 2𝑦 = 𝜋

look like? Well, it’s a parallel line, the slope is still the same.

Equivalently, you could also imagine it as the vectors (𝑥
𝑦) such that

(𝑥
𝑦) − (𝜋

0)  is perpendicular to (1
2)

or do the same thing for any point on the line, like

(𝑥
𝑦) − ( 0

𝜋/2)  is perpendicular to (1
2)

or even

(𝑥
𝑦) − (0.218𝜋

0.564𝜋)  is perpendicular to (1
2)

But that’s silly. Most of the time you don’t care about base points. All you care is the line has slope
−1

2 , and for that the LHS just needs to be 𝑥 + 2𝑦 (or even 100𝑥 + 200𝑦). The RHS can be whatever
you want.
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§5.3 [TEXT] Normal vectors to a plane
In ℝ3, the exact same thing is true for the expression 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑. The only difference is that the
word “slope” is banned. Nevertheless, even if we can’t talk about slope, we can still talk about parallel
planes, and now the whole discussion carries over wholesale.

For example, what’s the set of vectors perpendicular to (
1
2
3
)? That’s the same as requiring

0 =
(
((
(𝑥

𝑦
𝑧)
))
) ⋅

(
((
(1

2
3)
))
) = 𝑥 + 2𝑦 + 3𝑧.

So the plane 𝑥 + 2𝑦 + 3𝑧 = 0 passes through the origin and has normal vector (
1
2
3
).

What about something like 𝑥 + 2𝑦 + 3𝑧 = 6? Analogous to last section different ways to write it are:

• Rewriting the equation as 1(𝑥 − 6) + 2(𝑦 − 0) + 3(𝑧 − 0) = 0, the plane can be thought of as the
points (𝑥, 𝑦, 𝑧) such that

(
((
(𝑥

𝑦
𝑧)
))
) −

(
((
(6

0
0)
))
)  is perpendicular to 

(
((
(1

2
3)
))
).

• Rewriting the equation as 1(𝑥 − 0) + 2(𝑦 − 3) + 3(𝑧 − 0) = 0, the plane can be thought of as the
points (𝑥, 𝑦, 𝑧) such that

(
((
(𝑥

𝑦
𝑧)
))
) −

(
((
(0

3
0)
))
)  is perpendicular to 

(
((
(1

2
3)
))
).

• Rewriting the equation as 1(𝑥 − 0) + 2(𝑦 − 0) + 3(𝑧 − 2) = 0, the plane can be thought of as the
points (𝑥, 𝑦, 𝑧) such that

(
((
(𝑥

𝑦
𝑧)
))
) −

(
((
(0

0
2)
))
)  is perpendicular to 

(
((
(1

2
3)
))
).

• Rewriting the equation as 1(𝑥 − 0.753) + 2(𝑦 − 0.618) + 3(𝑧 − 1.337) = 0, the plane can be
thought of as the points (𝑥, 𝑦, 𝑧) such that

(
((
(𝑥

𝑦
𝑧)
))
) −

(
((
(0.753

0.618
1.337)

))
)  is perpendicular to 

(
((
(1

2
3)
))
).

But again, like last time, the base point doesn’t really matter. The end story is the same: the coefficients
control the direction of the plane via the normal vector (see Figure 10).
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Figure 10: Normal vectors to the plane 𝑥 + 2𝑦 + 3𝑧 = 6.

§5.4 [RECIPE] Finding a plane through a point with a direction
Sometimes you know the direction the plane goes, and you need to get one point to lie on it. This just
means you have to pick the number 𝑑 to match:

Recipe for finding a plane given a normal vector and a point on it

Suppose the given normal vector is (
𝑎
𝑏
𝑐
), and 𝑃 ∈ ℝ3 is a given point.

1. Write 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 for the left-hand side.
2. Evaluate the left-hand side at 𝑃  to get a number 𝑑.
3. Output 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑.

Sample Question

Compute the equation of the plane parallel to 𝑥 + 2𝑦 + 3𝑧 = 100 which passes through the point
(1, 4, 9).

Solution

Planes are parallel when they have normal vectors in the same direction, so we use the normal

vector (
1
2
3
) for both. Hence the answer should take the form

𝑥 + 2𝑦 + 3𝑧 = 𝑑

for some 𝑑. In order to pass through (1, 4, 9) we should choose 𝑑 = 1 + 2 ⋅ 4 + 3 ⋅ 9 = 36. So
output 𝑥 + 2𝑦 + 3𝑧 = 36.
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§5.5 [TEXT] Calculating the distance from a point to a plane
There’s a classical exercise that’s used to test understanding of normal vectors to plane and projections,
which is to find the distance from a point to a plane.

Sample Question

Compute the distance from the point (7, 8, 5) to the plane 𝑥 + 2𝑦 + 3𝑧 = 0.

Solution.  The plane 𝑥 + 2𝑦 + 3𝑧 = 0 has a normal vector 𝐧 given by the coefficients of 𝑥, 𝑦, and 𝑧:

𝐧 =
(
((
(1

2
3)
))
).

Now consider the vector 𝐯 = (
7
8
5
) pointing from the origin (which lies on the plane) to the given

point (7, 8, 5). The main insight is that the scalar component of 𝐯 to the vector 𝐧 coincides with the
distance we’re trying to compute; look at the figure Figure 11 to see why this is true. The point is that
there’s a rectangle formed by the origin, the endpoint of 𝐯, and the projections of 𝐯 onto 𝐧 and the
plane, respectively.

Figure 11: The two projections from 𝐯 onto 𝐧 and the plane (in purple) form a
rectangle, so that the distance from 𝐯 to the plane is given exactly by comp𝐧(𝐯).

Calculate the dot product:

𝐯 ⋅ 𝐧 = (7)(1) + (8)(2) + (5)(3) = 7 + 16 + 15 = 38.
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Calculate the magnitude:

|𝐧| = √(1)2 + (2)2 + (3)2 =
√

1 + 4 + 9 =
√

14.

Hence, the scalar component is:

comp𝐧 𝐯 = 𝐯 ⋅ 𝐧
|𝐧|

= 38√
14

.

This is the answer. □

Here’s the same exercise with one change: we change to 𝑥 + 2𝑦 + 3𝑧 = 60. This means we’ll have to
pick a point on the plane besides the origin.

Sample Question

Compute the distance from the point (7, 8, 5) to the plane 𝑥 + 2𝑦 + 3𝑧 = 60.

Solution.  As before, the plane 𝑥 + 2𝑦 + 3𝑧 = 60 has a normal vector 𝐧 given by the coefficients of 𝑥,
𝑦, and 𝑧:

𝐧 = ⟨1, 2, 3⟩.

Now we can’t use the origin (0, 0, 0) this time, but we can pick any other point on the plane; we’ll
chose (0, 0, 20). (You could do the problem with (60, 0, 0) or (0, 30, 0) or even (−77, 13, 37) if you
prefer; they all give the same answer.)

The vector 𝐯 from (0, 0, 20) to (7, 8, 5) is:

𝐯 = ⟨7 − 0, 8 − 0, 5 − 20⟩ = ⟨7, 8, −15⟩.

Now we can just repeat the steps from before, where

𝐯 ⋅ 𝐧 = (7)(1) + (8)(2) + (−15)(3) = −22

|𝐧| = √(1)2 + (2)2 + (3)2 =
√

1 + 4 + 9 =
√

14.

Hence

comp𝐧 𝐯 = 𝐯 ⋅ 𝐧
|𝐧|

= −22√
14

.

The distance is the absolute value 22√
14 . □

Remark

It’s fine that you get a negative number for the scalar component. This corresponds to the fact
that the point (7, 8, 5) is sandwiched between the two planes 𝑥 + 2𝑦 + 3𝑧 = 0 and 𝑥 + 2𝑦 +
3𝑧 = 60. Depending on which way you choose to point 𝐧, one of the components will be positive
and the other negative. See Figure 12.

42



Linear Algebra and Multivariable Calculus — Evan Chen

Figure 12: A 2D cartoon of the point (7, 8, 5) sandwiched between the planes 𝑥 +
2𝑦 + 3𝑧 = 0 and 𝑥 + 2𝑦 + 3𝑧 = 60. If we choose 𝐧 = ⟨1, 2, 3⟩ then we get + 38√

14
and − 22√

14  for the scalar components as shown in purple.

The thing about this exercise is that you can just do it with symbols instead of numbers and get a
general formula, which means that doing it with specific numbers over and over is sort of a fool’s
errand. Let’s just do them all at once.

Sample Question

Compute the distance from a point (𝑥0, 𝑦0, 𝑧0) to the plane defined by the equation

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑.

Give the answer in terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑥0, 𝑦0, 𝑧0.

Solution.  The normal vector 𝐧 to the plane is given by the coefficients of 𝑥, 𝑦, and 𝑧 in the plane
equation:

𝐧 = ⟨𝑎, 𝑏, 𝑐⟩.

Now we select any base point (𝑥1, 𝑦1, 𝑧1) that lies on the plane 𝒫. We’ll do the case 𝑐 ≠ 0 and use

(𝑥1, 𝑦1, 𝑧1) = (0, 0, 𝑑
𝑐
)

but the other cases 𝑎 ≠ 0 and 𝑏 ≠ 0 are done in the same way. (In fact, you don’t really need to pick
the base point either, it just makes the calculation a bit easier to think about in what follows.)

The vector 𝐯 from (𝑥1, 𝑦1, 𝑧1) to (𝑥0, 𝑦0, 𝑧0) is:

𝐯 = ⟨𝑥0 − 𝑥1, 𝑦0 − 𝑦1, 𝑧0 − 𝑧1⟩ = ⟨𝑥0, 𝑦0, 𝑧0 − 𝑑
𝑐
⟩.

Now, the scalar component of 𝐯 along 𝐧 is given by

comp𝐧 𝐯 = 𝐯 ⋅ 𝐧
|𝐧|

.
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We compute it. Compute the dot product 𝐯 ⋅ 𝐧:

𝐯 ⋅ 𝐧 = 𝑎𝑥0 + 𝑏𝑦0 + 𝑐(𝑧0 − 𝑑
𝑐
) = 𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 − 𝑑.

Compute the magnitude of 𝐧:

|𝐧| = √𝑎2 + 𝑏2 + 𝑐2.

Therefore, the scalar component is:

comp𝐧 𝐯 = 𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 − 𝑑√
𝑎2 + 𝑏2 + 𝑐2

.

Finally, the distance from the point to the plane is the absolute value of the scalar component:

|comp𝐧 𝐯| = |𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 − 𝑑√
𝑎2 + 𝑏2 + 𝑐2

|. □

§5.6 [RECIPE] Distance to a plane
If you just want to memorize the final result, here it is:

Recipe for distance from point to plane

If asked to find the distance from a point (𝑥0, 𝑦0, 𝑧0) to the plane defined by the equation 𝑎𝑥 +
𝑏𝑦 + 𝑐𝑧 = 𝑑, output the answer

|𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 − 𝑑|√
𝑎2 + 𝑏2 + 𝑐2

.

(We’ve moved the absolute value to the numerator, since the square root is always positive.)

§5.7 [EXER] Exercises

Exercise 5.1.  A cube is drawn somewhere in ℝ3 (its faces are not parallel to the coordinate axes).
Two of the faces of the cube are contained in the planes 𝑥 + 2𝑦 + 3𝑧 = 4 and 5𝑥 + 6𝑦 + 𝑘𝑧 = 7,
respectively, for some real number 𝑘. Given this information, compute 𝑘.

Exercise 5.2.  The distance from a certain point 𝑃  to the plane 3𝑥 + 4𝑦 + 12𝑧 = −1 is 42. What
are the possible distances from 𝑃  to the plane 3𝑥 + 4𝑦 + 12𝑧 = 1000?
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Chapter 6. The cross product
The cross product is the last major linear algebra tool we’ll need to introduce (together with deter-
minants and the dot product). Like the dot product, the cross product also has two definitions, one
algebraic and one geometric.

However, unlike the dot product, the cross product is more stilted and unnatural, and not used as much
— in fact it won’t show up again until Chapter 29. (More on that in Section 6.4.) I’ll try to keep this
chapter brief.

§6.1 [TEXT] The two definitions of the cross product
This definition is terrible, so bear with me.

Definition

Suppose 𝐯 = (
𝑎1
𝑎2
𝑎3

) and 𝐰 = (
𝑏1
𝑏2
𝑏3

) are two vectors in ℝ3.

The algebraic definition of the cross product is:

𝐯 × 𝐰 ≔ |𝑎2
𝑏2

𝑎3
𝑏3

| 𝐞1 − |𝑎1
𝑏1

𝑎3
𝑏3

| 𝐞2 + |𝑎1
𝑏1

𝑎2
𝑏2

| 𝐞3 =
(
((
(𝑎2𝑏3 − 𝑎3𝑏2

𝑎3𝑏1 − 𝑎1𝑏3
𝑎1𝑏2 − 𝑎2𝑏1)

))
). (2)

(See the tip below for a way to remember this formula more easily.)

The geometric definition of the cross product is based on specifying both the direction and
magnitude.

• The magnitude of 𝐯 × 𝐰 is equal to the area of the parallelogram formed by 𝐯 and 𝐰. In
trigonometry terms, if 𝜃 is the included angle, this equals |𝐯| |𝐰| sin 𝜃.

• The direction is given by requiring 𝐯 × 𝐰 to be perpendicular to both 𝐯 and 𝐰, and also
satisfying the right-hand rule (we’ll say more about it in a moment).

The geometric definition is illustrated in Figure 13 below.

Figure 13: Illustration of the geometric definition of the cross product.

Like with the dot product, it’s not obvious at all why these definitions are compatible! Equation 2 is
probably also really mysterious and seems to come from nowhere. In this case, I think the idea is that
you should start with the geometric definition, then grind through some calculation to get a system
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of equations. If you solve the system of equations, you wind up with Equation 2 as the result. We do
this in the next section as an optional sidenote.

Type signature

The cross product only accepts two vectors both in ℝ3. And it outputs a single vector in ℝ3.

Remark: The right-hand rule

The hack with the right-hand rule is necessary because if I tell you only the length of a vector
in ℝ3 and that it is normal to two other vectors in ℝ3, there are actually two vectors that work.
(For example, there are two vectors of length 5 perpendicular to 𝐞1 and 𝐞2: namely ±5𝐞3.)

So we need to pick one, and the right-hand rule says that if you point your right index finger
along 𝐯 and right middle finger along 𝐰 closer to your palm, and stick out your right thumb, then
𝐯 × 𝐰 points along your thumb.

Another way to describe the right-hand rule is to require the following table to be true:

𝐞1 × 𝐞2 = 𝐞3 = −𝐞2 × 𝐞1
𝐞2 × 𝐞3 = 𝐞1 = −𝐞3 × 𝐞2
𝐞3 × 𝐞1 = 𝐞2 = −𝐞1 × 𝐞3.

It may not be that easy to remember Equation 2. In practice, I think almost everyone uses the following
mnemonic for it.

Tip: How to remember the algebraic cross product definition

The algebraic definition is usually remembered using the following mnemonic:

𝐯 × 𝐰 =
|
|
|
|𝐞1
𝑎1
𝑏1

𝐞2
𝑎2
𝑏2

𝐞3
𝑎3
𝑏3 |

|
|
|
. (3)

Mathematically speaking, the right-hand side doesn’t make sense and is a type-error, because
one can’t have a matrix where some things in it are numbers and other things in it are vectors.
However, if you ignore that and multiply anyway, you’ll get the algebraic definition above.

In these notes I will always use Equation 3 rather than Equation 2 because that’s what people
actually do in practice. (I do so quite grudgingly, because Equation 3 is officially a type-error, and
in theory it is nonsense. But in the words of Linus Torvalds: “Theory and practice sometimes
clash. And when that happens, theory loses. Every single time.”)
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Warning: Cross product is anti-commutative

From either definition, you should be able to see that

𝐯 × 𝐰 = −𝐰 × 𝐯

in contrast to the dot product. Note the minus sign. (The right hand rule means that you can’t
swap your index and middle finger.)

Also, note that 𝐯 × 𝐯 = 𝟎 (or indeed 𝐯 × 𝐰 = 𝟎 whenever 𝐯 and 𝐰 are parallel).

I really want to get this section over with so I’ll just give you one example with numbers and not even
talk about the corresponding geometry.

Sample Question

Compute the cross product of 𝐯 = (
1
2
3
) and 𝐰 = (

4
5
6
).

Solution.  Write

𝐯 × 𝐰 ≔
|
||
|𝐞1
1
4

𝐞2
2
5

𝐞3
3
6 |

||
|

= |25
3
6| 𝐞1 − |14

3
6| 𝐞2 + |14

2
5| 𝐞3

= −3𝐞1 + 6𝐞2 − 3𝐞3 =
(
((
(−3

6
−3)

))
). □

As a sanity check for the geometry definition, you can verify that indeed this vector is perpendicular
to both 𝐯 and 𝐰 using the dot product:

(
((
(−3

6
−3)

))
) ⋅

(
((
(1

2
3)
))
) = (−3)(1) + (6)(2) + (−3)(3) = 0

(
((
(−3

6
−3)

))
) ⋅

(
((
(4

5
6)
))
) = (−3)(4) + (6)(5) + (−3)(6) = 0.

§6.2 [SIDENOTE] Outline of derivation of the cross product formula
In this sidenote, we outline how the algebraic definition of the cross product can be derived from the
geometric one. This proof is too hard to be on an 18.02 exam, but I decided to include it here instead
of the appendix because it is actually good practice with using dot products and determinants. For
simplicity, I won’t worry at all about division-by-zero issues.

So let’s say we have two given vectors

𝐯 = 𝑎1𝐞1 + 𝑎2𝐞2 + 𝑎3𝐞3

𝐰 = 𝑏1𝐞1 + 𝑏2𝐞2 + 𝑏3𝐞3.
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Let’s denote the cross product by

𝐯 × 𝐰 = 𝑥𝐞1 + 𝑦𝐞2 + 𝑧𝐞3.

We need to solve for 𝑥, 𝑦, 𝑧 in terms of 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3.

So what are the givens? Well, first we have the requirement that 𝐯 × 𝐰 should be perpendicular to 𝐯
and 𝐰. So we get two equations from the dot product:

0 = 𝐯 ⋅ (𝐯 × 𝐰) = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧
0 = 𝐰 ⋅ (𝐯 × 𝐰) = 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧.

This is a system of two equations in three variables, but it’s good enough to get the ratio 𝑥 : 𝑦 : 𝑧. For
example, if you multiply the first equation by 𝑏3 and the second by 𝑎3, then subtract, you will get that

0 = 𝑏3(𝑎1𝑥 + 𝑎2𝑦) − 𝑎3(𝑏1𝑥 + 𝑏2𝑦) ⟹ 𝑥
𝑦

= 𝑎2𝑏3 − 𝑎3𝑏2
𝑎3𝑏1 − 𝑎1𝑏3

.

In a similar way, you can get the ratio 𝑦𝑧  as

𝑦
𝑧

= 𝑎3𝑏1 − 𝑎1𝑏3
𝑎1𝑏2 − 𝑎2𝑏1

.

Geometrically, this means we’ve already recovered the direction of 𝐯 × 𝐰. Algebraically, it means we
know the ratio 𝑥 : 𝑦 : 𝑧; there should be some scalar constant 𝑘 such that

𝑥 = 𝑘(𝑎2𝑏3 − 𝑎3𝑏2)
𝑦 = 𝑘(𝑎3𝑏1 − 𝑎1𝑏3)
𝑧 = 𝑘(𝑎1𝑏2 − 𝑎2𝑏1).

So all we need to do now is find 𝑘. For brevity, we’ll let

𝑥0 ≔ 𝑎2𝑏3 − 𝑎3𝑏2

𝑦0 ≔ 𝑎3𝑏1 − 𝑎1𝑏3

𝑧0 ≔ 𝑎1𝑏2 − 𝑎2𝑏1

so 𝑥 = 𝑘𝑥0, 𝑦 = 𝑘𝑦0, 𝑧 = 𝑘𝑧0, and we need to solve for 𝑘.

We have one more condition to use, which is that we want the magnitude √𝑥2 + 𝑦2 + 𝑧2 to be equal
to to the area 𝐴 of the parallelogram spanned by 𝐯 and 𝐰, and also point in the way specified by the
right-hand rule. How can we encode that in an equation? At face value, none of the weapons in our
toolkit so far let you access the area of a parallelogram in 3D space. We only have a determinant for
parallelograms in 2D space.

But here’s a clever trick to get around it. The trick to get the area is to consider the parallelepiped
formed by three vectors: the two given vectors 𝐯 and 𝐰 and the unit vector in the direction of 𝐯 × 𝐰.
That is, consider the vector

𝐧 = ⟨𝑥0, 𝑦0, 𝑧0⟩
√𝑥2

0 + 𝑦2
0 + 𝑧2

0

.

We’ve just seen 𝐧 is perpendicular to both 𝐯 and 𝐰, and we’ve scaled 𝐧 so that |𝐧| = 1. See Figure 14.
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Figure 14: The additional vector 𝐧 introduced. It’s a unit vector in the direction
we want, and it doesn’t depend on 𝑘.

For simplicity let’s assume that 𝐧 points the correct way for the right-hand rule. (If 𝐧 points the other
way, the calculation below will need a bunch of extra minus signs; we won’t dwell on it here, again
to keep things simple.) So if we consider the parallelepiped formed by 𝐧, 𝐯, 𝐰, its volume will just
be the height times the base parallelogram, i.e. it is 1 ⋅ 𝐴 = 𝐴. And the volume of a parallelepiped is
something we can access: it’s a 3 × 3 determinant. So our trick has managed to let us get our hands
on 𝐴:

𝐴 =

|
|
|
|

𝑥0
√𝑥2

0+𝑦2
0+𝑧2

0

𝑎1
𝑏1

𝑦0
√𝑥2

0+𝑦2
0+𝑧2

0

𝑎2
𝑏2

𝑧0
√𝑥2

0+𝑦2
0+𝑧2

0

𝑎3
𝑏3 |

|
|
|
.

Here, the determinant is indeed +𝐴 (rather than −𝐴) because 𝐧 was assumed to be pointing the
correct direction, so the determinant yields a plus sign. This trick of introducing 𝐧 is what lets us get
a formula for 𝐴 which would otherwise be inaccessible with only the determinant at face value.

Now we solve for 𝑘. Because we’re in the case that 𝐧 is pointing the right way, we know we should
have 𝑘 > 0. Now we have to set the magnitude of

|𝐯 × 𝐰| = 𝑘√𝑥2
0 + 𝑦2

0 + 𝑧2
0

equal to 𝐴 above; that is, we get the equation

𝑘√𝑥2
0 + 𝑦2

0 + 𝑧2
0 = 𝐴 =

|
|
|
|

𝑥0
√𝑥2

0+𝑦2
0+𝑧2

0

𝑎1
𝑏1

𝑦0
√𝑥2

0+𝑦2
0+𝑧2

0

𝑎2
𝑏2

𝑧0
√𝑥2

0+𝑦2
0+𝑧2

0

𝑎3
𝑏3 |

|
|
|
.

Multiplying both sides by √𝑥2
0 + 𝑦2

0 + 𝑧2
0  and expanding the determinant gives

𝑘(𝑥2
0 + 𝑦2

0 + 𝑧2
0) = 𝑥0 |𝑎2

𝑏2

𝑎3
𝑏3

| − 𝑦0 |𝑎1
𝑏1

𝑎3
𝑏3

| + 𝑧0 |𝑎1
𝑏1

𝑎2
𝑏2

|.

If you now look at the definition of 𝑥0, 𝑦0, 𝑧0, you will see that the determinants on the right-hand
side are conveniently equal to 𝑥0, −𝑦0, and 𝑧0, respectively. So suddenly the whole thing cancels and
we just get 𝑘 = 1. So 𝑥 = 𝑥0, 𝑦 = 𝑦0, 𝑧 = 𝑧0 and this gives the algebraic formula we wanted.
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§6.3 [RECIPE] What to use the cross product for
Unlike the dot product, which is just a number, the cross product is a vector. So it has more information
in it — both a direction and a magnitude.

• The direction of 𝐯 × 𝐰 is perpendicular to both 𝐯 and 𝐰.
• The magnitude is the area of the parallelogram.

However in practice, when we use the cross product, we’ll often only use one piece of information. (It’s
not until Chapter 38 that we really start using both parts at once.)

Hence the following two recipes below.

Recipe for normal vectors

To find a vector perpendicular to both 𝐯 and 𝐰 at once:

1. Output any nonzero multiple of 𝐯 × 𝐰.

Recipe for area

To find the area of the parallelogram formed by 𝐯 and 𝐰 in ℝ3:

1. Output the magnitude of 𝐯 × 𝐰.

Notice in the first recipe, we ignore the magnitude; in the second recipe, we ignore the direction.

Sample Question

Consider the three points 𝐴 = (1, 0, 0), 𝐵 = (0, 2, 0), 𝐶 = (0, 0, 3).

• Find a normal vector to the plane through 𝐴, 𝐵, 𝐶 .
• Compute the equation of the plane.
• Compute the area of triangle 𝐴𝐵𝐶 .

Solution.  First, let’s find a normal vector to the plane through 𝐴, 𝐵, and 𝐶 . The idea is to compute two
vectors ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶 :

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 =
(
((
(0 − 1

2 − 0
0 − 0)

))
) =

(
((
(−1

2
0 )

))
)

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶 =
(
((
(0 − 1

0 − 0
3 − 0)

))
) =

(
((
(−1

0
3 )

))
).

These two vectors can be drawn as arrows contained in the plane through them. So if we compute the
cross product, we’ll get a normal vector we wanted! That is,

50



Linear Algebra and Multivariable Calculus — Evan Chen

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 × ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶 =
|
||
| 𝐞1
−1
−1

𝐞2
2
0

𝐞3
0
3 |

||
|

= (2 ⋅ 3 − 0 ⋅ 0)𝐞1 − (−1 ⋅ 3 − 0 ⋅ −1)𝐞2 + (−1 ⋅ 0 − 2 ⋅ −1)𝐞3

= (6 − 0)𝐞1 − (−3 − 0)𝐞2 + (0 − (−2))𝐞3 =
(
((
(6

3
2)
))
).

That’s the normal vector. To find the equation of the plane, we know that we should have

6𝑥 + 3𝑦 + 2𝑧 = 𝑑

for some constant 𝑑. Plugging in any of the three points 𝐴, 𝐵, 𝐶 gives 𝑑 = 6 (the redundancy here
gives us a way to check our arithmetic, too). So the plane is

6𝑥 + 3𝑦 + 2𝑧 = 6.

Finally, the area of △ 𝐴𝐵𝐶 is half the area of the parallelogram formed by ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶 , so that

Area(△ 𝐴𝐵𝐶) = 1
2
| ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐵 × ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶| = 1

2
√62 + 32 + 22 = 7

2
. □

Remark

This shape of question is worth remembering: the cross product often gives you a way to find a
normal vector to some plane, because it’s so good at making right angles. Then once you have
the normal vector, you can find the equation of the plane using the recipe from Section 5.4.

§6.4 [SIDENOTE] The cross product sucks
Compared to dot products and determinants, the cross product might feel the most unnatural, for good
reason — it’s used much less frequently by serious mathematicians than the other tools you see. See
Figure 15.

The reason that the cross product isn’t popular with mathematicians is the definition of the cross
product is really quite brittle. For example, the cross product can’t be defined for any number of
dimensions,¹¹ and you have to remember this weird right-hand rule that adds one more arbitrary
convention. So the definition is pretty unsatisfying.

To replace the cross product, mathematicians use a different kind of object called a bivector, an element
of a space called ⋀2(ℝ𝑛). (They might even claim that bivectors do everything cross products can do,
but better.) Again, this new kind of object is well beyond the scope of 18.02 but it’s documented in
Chapter 12 of my Napkin if you do want to see it.

I’ll give you a bit of a teaser though. In general, for any 𝑛, bivectors in ℝ𝑛 are specified by 𝑛(𝑛−1)
2

coordinates. So for 𝑛 = 3 you could translate every bivector in ℝ3 into a vector in ℝ3 by just reading
the coordinates (although you end up with the right-hand rule as an artifact of the translation), and
the cross product is exactly what you get. But for 𝑛 = 4, a bivector in ℝ4 has six numbers, which is
too much information to store in a vector in ℝ4. Similarly, for 𝑛 > 4, this translation can’t be done.
That’s why the cross product is so brittle and can’t work past ℝ3.

¹¹Just kidding, apparently there’s a seven dimensional cross product? Today I learned. Except that there are apparently
480 different ways to define it in seven dimensions, so, like, probably not a great thing.
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Figure 15: How to think of cross products.

§6.5 [RECAP] Recap of vector stuff up to here
A brief summary of the last few chapters.

• The dot and cross products have algebraic formulas and geometric properties that make them
useful in a lot of 3D geometry applications.

• The dot product lets you detect perpendicularity and projections.
‣ Two vectors are perpendicular if and only if their dot product is zero.

• The cross products generates perpendicularities and lets you compute area.

• Both are used in the theory of planes:
‣ We use the dot product to show that the normal vector to the plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑 was

the vector (
𝑎
𝑏
𝑐
).

‣ We use the projection from the dot product to find the distance from a point to a plane.
‣ Given three points on a plane, the cross product let us find the normal vector.

See also Table 2, which summarizes some of the vectors we’ve seen in applications.

Vector Direction Magnitude
Normal vector 𝐧 to plane Perpendicular to plane Irrelevant!

proj𝐰(𝐯) Same as 𝐰 Scalar component
Cross product 𝐯 × 𝐰 Perpendicular to both 𝐚 and 𝐛 Area of parallelogram

Table 2: Some commonly used kinds of vectors we’ve met so far.

§6.6 [EXER] Exercises
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Exercise 6.1.  Suppose real numbers 𝑎 and 𝑏 satisfy

(
((
(1

2
3)
))
) ×

(
((
(100

𝑎
𝑏 )

))
) = 𝟎.

Compute 𝑎 and 𝑏.

Exercise 6.2.  Let 𝐯 and 𝐰 be vectors in ℝ3 for which 𝐯 × 𝐰 = (
1
2
3
). Compute 5𝐰 × 4𝐯.

Exercise 6.3.  Let 𝐯 and 𝐰 be unit vectors in ℝ3. Compute all possible values of

|𝐯 × 𝐰|2 + (𝐯 ⋅ 𝐰)2.

Exercise 6.4.  Suppose 𝐯 is a vector in ℝ3 and 𝑘 is a real number such that

(
((
(1

2
3)
))
) × 𝐯 =

(
((
(4

5
𝑘)
))
).

Compute 𝑘.
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Part Bravo: Linear Algebra of Matrices
For comparison, Part Bravo corresponds roughly to §3, §4, §6 of Poonen’s notes.

Chapter 7. Linear transformations and matrices
The goal of this chapter is to tell you how to take a linear transformation and encode it as a matrix.
In other words, there is only one recipe covered. However, one upshot of this presentation is that I’ll
finally be able to explain why matrix multiplication is defined in this way you learned.

This chapter will be presented a bit differently than you’ll see in many other places; I talk about linear
transformations first, and then talk about matrices as an encoding of linear transformations. I feel quite
strongly that this way is better, but if you are in an actual course, their presentation is likely to be
different (and worse).

§7.1 [TEXT] Linear transformation
The definition I’m about to give is the 18.700/18.701 definition of linear transform, but the hill I will
die on is that this definition is better than the one in 18.02.

Definition of linear transformation

A linear transform 𝑇 : ℝ𝑛 → ℝ𝑚 is any map obeying the two axioms 𝑇 (𝑐𝐯) = 𝑐𝑇 (𝐯) and 𝑇 (𝐯 +
𝐰) = 𝑇(𝐯) + 𝑇(𝐰).

So it’s a chonky boy: for every 𝐯 ∈ ℝ𝑛, there’s an output value 𝑇 (𝐯) ∈ ℝ𝑚. I wouldn’t worry too
much about the axioms until later; for now, read the examples.

Examples of linear transformations

The following are all linear transformations from ℝ2 to ℝ2:

• The constant function where 𝑇 (𝐯) = 𝟎 for every vector 𝑣
• Projection onto the 𝑥-axis: 𝑇((𝑥

𝑦)) = (𝑥
0).

• Rotation by an angle
• Reflection across a line
• Projection onto the line 𝑦 = 𝑥.
• Multiplication by any 2 × 2 matrix, e.g. the formula

𝑇((𝑥
𝑦)) = ( 𝑥 + 2𝑦

3𝑥 + 4𝑦)

is a linear transformation too.

Tip

Note that 𝑇 (𝟎) = 𝟎 in any linear transformation.

The important principle to understand is that if you know the values of a transformation 𝑇  at enough
points, you can recover the rest.

Here’s an easy example to start:
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Sample Question

If 𝑇 : ℝ2 → ℝ2 is a linear transform and it’s given that

𝑇((3
4)) = (𝜋

9)  and 𝑇((100
100)) = ( 0

12)

what are the vectors for 𝑇((103
104)) and 𝑇((203

204))?

Solution.

𝑇((103
104)) = (𝜋

9) + ( 0
12) = ( 𝜋

21)

𝑇((203
204)) = (𝜋

9) + 2( 0
12) = ( 𝜋

33). □

Here’s another example.

Sample Question

If 𝑇 : ℝ2 → ℝ2 is a linear transform and it’s given that

𝑇((1
0)) = (1

3)  and 𝑇((0
1)) = (2

4)

what is 𝑇((50
70))?

Solution.

𝑇((50
70)) = 50(1

3) + 70(2
4) = (190

430). □

More generally, the second question shows that if you know 𝑇((1
0)) and 𝑇((0

1)) you ought to be
able to calculate the output of 𝑇  at any other vector like (50

70). To expand on this:

𝑇((𝑎
𝑏)) = 𝑎𝑇((1

0)) + 𝑏𝑇((0
1)). (4)

More generally, from understanding the solution to the above two questions, you should understand
the following important statement that we’ll use over and over.

Memorize

Let 𝑇 : ℝ𝑛 → ℝ𝑚 be a linear transformation. If you know the outputs 𝑇  on a basis, then you can
deduce the value of 𝑇  at any other input.

For now “basis” refers to just the 𝑛 vectors 𝐞1, …, 𝐞𝑛. But later on we will generalize this notion to
some other settings too.

§7.2 [RECIPE] Matrix encoding
A matrix is a way of encoding the outputs of 𝑇  using as few numbers as possible. That is:
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Definition

A matrix encodes all outputs of a linear transformation 𝑇  by writing the outputs of 𝑇 (𝐞1),
…, 𝑇 (𝐞𝑛) as a list of column vectors.

For example, if you had 𝑇 : ℝ2 → ℝ2 with

𝑇((1
0)) = (1

3)  and 𝑇((0
1)) = (2

4) ⟺ 𝑇  encoded as (1
3

2
4).

To put this into recipe form:

Recipe for encoding a transformation

Given a transformation 𝑇 : ℝ𝑛 → ℝ𝑚, to encode it as a matrix:

1. Compute 𝑇 (𝐞1) through 𝑇 (𝐞𝑛) and write them as column vectors..
2. Glue them together to get an 𝑚 × 𝑛 array of numbers.

Here’s more examples.

Sample Question

Let 𝑇 : ℝ2 → ℝ2 be projection onto the 𝑥-axis. Write 𝑇  as a 2 × 2 matrix.

Solution.  Note that

𝑇((1
0)) = (1

0) 𝑇((0
1)) = (0

0).

Glue these together and output 𝑇  as the matrix

𝑇 = (1
0

0
0). □

Remark

You might note that indeed multiplication by the encoded matrix

(1
0

0
0)(𝑥

𝑦) = (𝑥
0).

matches what you expect: (𝑥
0) is indeed the projection of (𝑥

𝑦) onto the 𝑥-axis! And this works
for every linear transformation. This is so important I’ll say it again next section, just mentioning
it here first.

Sample Question

Let 𝑇 : ℝ2 → ℝ2 be reflection around the line 𝑦 = 𝑥. Write 𝑇  as a 2 × 2 matrix.

Solution.  Note that
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𝑇((1
0)) = (0

1) 𝑇((0
1)) = (1

0).

Glue these together and output 𝑇  as the matrix

𝑇 = (0
1

1
0). □

Sample Question

Let 𝑇 : ℝ2 → ℝ2 be counterclockwise rotation around the origin by 30°. Write 𝑇  as a 2 × 2
matrix.

Solution.  See Figure 16. By looking at the unit circle, we see that

𝑇 (𝐞𝟏) = (cos 30°
sin 30°) = (

√
3

2
, 1
2
).

The vector 𝐞2 is 90° further along

𝑇 (𝐞𝟐) = (cos 120°
sin 120°) = (−1

2
,
√

3
2

).

Glue these together and output 𝑇  as the matrix

𝑇 =
(
((

√
3

2
1
2

−1
2√
3

2 )
)). □

Figure 16: Rotation by 30 degrees.
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Remark: This is where the rotation matrix comes from

If you redo this question with 30° replaced by any angle 𝜃, you get the answer

𝑇 = (cos 𝜃
sin 𝜃

cos(𝜃 + 90°)
sin(𝜃 + 90°)).

So this is the matrix that corresponds to rotation. However, in the literature you will often see
this rewritten as

𝑇 = (cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃 )

to get rid of the +90° offsets. That’s fine, but I think it kind of hides where the formula for rotation
matrix comes from, personally.

Another example is the identity function:

Example: The identity matrix deserves its name

Let 𝐼 : ℝ3 → ℝ3 denote the 3D identity function, meaning 𝐼(𝐯) = 𝐯. To encode it, we look at its
values at 𝐞1, 𝐞2, 𝐞3:

𝐼(𝐞1) = 𝐞1 =
(
((
(1

0
0)
))
), 𝐼(𝐞2) = 𝐞2 =

(
((
(0

1
0)
))
), 𝐼(𝐞3) = 𝐞3 =

(
((
(0

0
1)
))
).

We encode it as a matrix by writing the columns side by side, getting what you expect:

𝐼  encoded as 
(
((
(1

0
0

0
1
0

0
0
1)
))
).

This gives a more natural reason why the identity matrix is the one with 1’s on the diagonal and
0’s elsewhere (compared to the “well try multiplying by it” you learned in high school).

§7.3 [SIDENOTE] Matrix multiplication
In the prerequisites, I said that you were supposed to know the rule for multiplying matrices, so you
should already know for example that

(5
7

6
8)(1

3
2
4) = (23

31
34
46).

The goal of this side note is to now explain why matrix multiplication is defined in this funny way.
We will see two results:

• Multiplication of the matrix for 𝑇  by a column vector 𝐯 corresponds to evaluation 𝑇 (𝐯).
• Multiplication of the matrices for 𝑆 and 𝑇  gives the matrix for the composed function 𝑆 ∘ 𝑇 .¹²

¹²The ∘ symbol means the function where you apply 𝑇  first then 𝑆 first. So for example, if 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) = 𝑥 +
5, then (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = (𝑥 + 5)2. We mostly use that circle symbol if we want to refer to 𝑓 ∘ 𝑔 itself without the
𝑥, since it would look really bad if you wrote “𝑓(𝑔” or something.
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§7.3.1 One matrix

Recall from the example in Section 7.1 that if 𝑇  was the linear transformation for which

𝑇 (𝐞1) = (1
3)  and 𝑇 (𝐞2) = (2

4)

then

𝑇((50
70)) = (190

430).

We just now also saw that to encode 𝑇  as a matrix, we have

𝑇 = (1
3

2
4).

Now, what do you think happens if you compute

(1
3

2
4)(50

70)

as you were taught in high school? Surprise: you get (1
3

2
4)(50

70) = (1⋅50+2⋅70
3⋅50+4⋅70) = (190

340) which is not
just the same answer, but also the same intermediate calculations. In other words,

Idea

If one multiplies a matrix 𝑀  by a column vector 𝐯, this corresponds to applying the linear
transformation 𝑇  encoded by 𝑀  to 𝐯.

§7.3.2 Two matrices

Now, any time we have functions in math, we can compose them. So let’s play the same game with a
pair of functions 𝑆 and 𝑇 , and think about their composition 𝑆 ∘ 𝑇 . Imagine we got asked the following
question:

Question 7.1.  Let 𝑇 : ℝ2 → ℝ2 be a linear transform such that

𝑇((1
0)) = (1

3)  and 𝑇((0
1)) = (2

4).

Then let 𝑆 : ℝ2 → ℝ2 be the linear transform such that

𝑆((1
0)) = (5

7)  and 𝑆((0
1)) = (6

8).

Evaluate 𝑆(𝑇((1
0))) and 𝑆(𝑇((0

1))).

Solution.

𝑆(𝑇((1
0))) = 𝑆((1

3)) = 1(5
7) + 3(6

8) = (23
31)

𝑆(𝑇((0
1))) = 𝑆((2

4)) = 2(5
7) + 4(6

8) = (34
46). □

59



Linear Algebra and Multivariable Calculus — Evan Chen

Now, 𝑆 ∘ 𝑇  is itself a function, so it makes sense to encode 𝑆 ∘ 𝑇  as a matrix too, using the answer to
Question 7.1:

𝑆(𝑇((1
0))) = (23

31)  and 𝑆(𝑇((0
1))) = (34

46) ⟺ 𝑆 ∘ 𝑇  encoded as (23
31

34
46).

The matrix multiplication rule is then rigged to give the same answer through the same calculation
again:

(5
7

6
8)(1

3
2
4) = (23

31
34
46).

In other words:

Idea

If one multiplies two matrices 𝑀  and 𝑁 , this corresponds to composing the linear transforma-
tions that 𝑀  and 𝑁  encode.

This shows why the 18.700/18.701 definitions are better than the 18.02 ones. In 18.02, the recipe for
matrix multiplication is a definition: “here is this contrived rule about taking products of columns
and rows, trust me bro”. But in 18.700/18.701, the matrix multiplication recipe is a theorem; it’s what
happens if you generalize Question  7.1 to eight variables (or 𝑛2 + 𝑛2 = 2𝑛2 variables for 𝑛 × 𝑛
matrices).

Digression

As an aside, this should explain why matrix multiplication is associative but not commutative:

• Because function composition is associative, so is matrix multiplication.
• Because function composition is not commutative in general, matrix multiplication isn’t

either.

§7.4 [EXER] Exercises

Exercise 7.2.  Let 𝑇 : ℝ2 → ℝ2 be the linear map that rotates each vector in ℝ2 by 30° counter-
clockwise about the origin, then reflects around the line 𝑦 = 𝑥. Write 𝑇  as a 2 × 2 matrix.
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Chapter 8. Linear combinations of vectors

§8.1 [TEXT] Definition of a basis
Recall in Section 7.1 the following two questions I posed:

Q1. If 𝑇 : ℝ2 → ℝ2 is a linear transform and it’s given that

𝑇((3
4)) = (𝜋

9)  and 𝑇((100
100)) = ( 0

12)

what are the vectors for 𝑇((103
104)) and 𝑇((203

204))?

Q2. If 𝑇 : ℝ2 → ℝ2 is a linear transform and it’s given that

𝑇((1
0)) = (1

3)  and 𝑇((0
1)) = (2

4)

what is 𝑇((50
70))?

Now if I wanted to make life harder for you, I could have asked:

Q3. Given 𝑇((3
4)) = (𝜋

9) and 𝑇((100
100)) = ( 0

12), what is 𝑇((13
37))?

This is a lot harder than Q1; however, the question is still solvable. If I locked you in a room for an
hour and told you to work on it, I think many of you would eventually get the answer:

(13
37) = 24(3

4) − 0.59(100
100) ⟹ 𝑇((13

37)) = 24(𝜋
9) − 0.59( 0

12) = ( 24𝜋
208.92).

So this shows you something interesting: actually, (1
0) and (0

1) is only special insomuch as it makes
arithmetic easy. But if you know the outputs of 𝑇((3

4)) and 𝑇((100
100)), you can still find all the outputs

of 𝑇  you want. So really (1
0) and (0

1) aren’t that special.

Hence we say (3
4) and (100

100) are a basis of ℝ2 (we’ll give the definition in just a moment). Every 𝐯 like
(13

37) can be written as 𝑐1(
3
4) + 𝑐2(

100
100) for some 𝑐1 and 𝑐2, and hence you can solve Q3.

However, let’s consider more variations of the question Q3.

Q4. Given 𝑇((3
4)) = (𝜋

9), what is 𝑇((13
37))?

Q5. Given 𝑇((3
4)) = (𝜋

9), 𝑇((100
100)) = ( 0

12), and 𝑇((103
104)) = (𝜋

21) what is 𝑇((13
37))?

Q6. Given 𝑇((3
4)) = (𝜋

9) and 𝑇((300
400)) = (100𝜋

900 ), what is 𝑇((13
37))?

The variants Q4, Q5, Q6 are all strange in some way and should make you squint.

• Q4 is obviously impossible; not enough information to find an answer.
• Q5 is solvable, but has redundant information. You can delete any one hypothesis.
• Q6 suffers from both defects. Even though there are two givens, they are redundant.

With the examples illustrated here, let me give the relevant terms:
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Definition of a basis

A linear combination of a set of vectors 𝐯1, …, 𝐯𝑘 in ℝ𝑛 is a sum of the form 𝑐1𝐯1 + … + 𝑐𝑘𝐯𝑘.

Then a set of vectors 𝐯1, …, 𝐯𝑘 in ℝ𝑛 is:
• linearly independent if every linear combination gives a different vector; equivalently,

there’s no nontrivial linear combination giving 𝟎 other than 𝑐1 = … = 𝑐𝑘 = 0;
• spanning in ℝ𝑛 if every other vector 𝐰 in ℝ𝑛 can be written as some linear combination;
• a basis of ℝ𝑛 if both of the above are true; in other words, every vector in ℝ𝑛 can be made

in exactly one way.

The punch line is that these concepts correspond to the behaviors in the questions above; Q3 has all
the “good” properties above, and each of Q4, Q5, Q6 are missing something.

Example

• In Q3, (3
4) and (100

100) are a basis of ℝ2. Hence, the question Q3 makes a well-formed question.

• In Q4, the vector (3
4) by itself is not spanning (though it is linearly independent). That’s

what makes Q4 impossible to answer: you can’t make (13
37) out of just (3

4).

• In Q5, (3
4), (100

100), (103
104) are not linearly independent (though they are spanning), because

there’s a dependence

(3
4) + (100

100) = (103
104)

between them.

• In Q6, the two vectors (3
4) and (300

400) is missing both good properties. The two vectors give
redundant information; because (300

400) = 100(3
4), there is a dependence between the vectors.

And the two vectors are not spanning: you can’t make (13
37) out of (3

4) and (300
400).

So that’s what the example showing what the definition is trying to communicate.

You might have a sense already that there’s no way to write a “good” question like Q3 for ℝ2 that
uses any number of vectors other than two, and you’d be right. It turns out a basis for ℝ𝑛 always has
exactly 𝑛 vectors; that’s what it means that “ℝ𝑛 is 𝑛-dimensional”. More examples of correct hunches
that we’ll explain momentarily:

• In ℝ𝑛, at least 𝑛 + 1 vectors are never linearly independent.
• In ℝ𝑛, at most 𝑛 − 1 vectors are never spanning. (So a basis is always 𝑛 vectors exactly.)
• Also, if you have exactly 𝑛 vectors in ℝ𝑛, and they’re linearly independent, then they’re a basis.
• Also, if you have exactly 𝑛 vectors in ℝ𝑛, and they’re spanning, then they’re a basis.

§8.2 [RECIPE] How to detect a basis
This begs the question: does there exist a way to easily tell whether some vectors are a basis? For ℝ2,
you can probably tell by looking. But for ℝ𝑛 for 𝑛 ≥ 3, it might be trickier.

In fact, the following theorem is true, though we won’t prove it.
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Memorize: Basis for ℝ𝑛, “buy two get one free”

Suppose you have a bunch of vectors in ℝ𝑛. Any two of the following imply the third:

1. There are exactly 𝑛 vectors.
2. The vectors are linearly independent.
3. The vectors span all of ℝ𝑛.

Moreover, if item 1 is true, the following fourth item works too:

4. The determinant of the 𝑛 × 𝑛 matrix with the vectors as column vectors is nonzero.

We can’t prove this result in this class, but you might have the instinct that 1-3 should all be true for
a basis. The determinant might be more surprising, so here’s an explanation why.

Digression on why determinant does the right thing

Let 𝑛 = 3 and consider three vectors 𝐮, 𝐯, 𝐰 in ℝ3. We give an informal explanation for why the
determinant lets you tell whether these three vectors are a basis or not.

The matrix in question is formed by taking 𝐮, 𝐯, 𝐰 as the columns of the matrix:

𝐴 = (𝐮 𝐯 𝐰)

Recall the determinant det(𝐴) geometrically represents the signed volume of the parallelepiped
spanned by these vectors.

Suppose 𝐮, 𝐯, 𝐰 are not spanning (i.e. not a basis), meaning they fail to occupy the full three-
dimensional space. Then these vectors are coplanar: you can only get “some” vectors out of them.
So geometrically, the parallelepiped they form lacks height in the direction perpendicular to the
plane; resulting in zero volume, that is, det(𝐴) = 0.

Conversely, if 𝐮, 𝐯, 𝐰 were a basis, then pictorially this means they span the entire space,
so the parallelepiped had better be nondegenerate. The nondegeneracy corresponds to having
nonzero volume, that is, det(𝐴) ≠ 0. (The sign of the determinant tells you something about the
orientation, but we don’t care about this sign, just the nonzero-ness.)

Anyway, in practice, if you have an explicit set of vectors, the recipe is simple now:

Recipe for checking if vectors form a basis

Suppose you’re given a list of vectors in ℝ𝑛 and want to know if they’re a basis.

1. If the number of vectors is not 𝑛, output “no” and stop.
2. Otherwise, form the matrix with the 𝑛 vectors as columns, and compute its determinant.

Output “yes” if and only if the determinant is nonzero.

The determinant thing matters: the determinant is doing a lot of work for you. When 𝑛 = 2 the
determinant is unnecessary, because you can just use “slope”: it’s obvious that (1

2) and (100
200) have a

dependence. But for 𝑛 ≥ 3 you can’t eyeball it¹³. For example, the three vectors

¹³Though if you have a set of exactly two vectors, they’re dependent if and only if they’re multiples, even in ℝ𝑛. Which
you can eyeball; so if you’re trying to tell whether a span of two vectors in ℝ3 is a line or plane, that’s easy. (Even more
stupidly, a single vector is linearly dependent only when it’s the zero vector.)
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𝐯1 =
(
((
(1

3
4)
))
), 𝐯2 =

(
((
(10

1
11)

))
), 𝐯3 =

(
((
(−9

10
1 )

))
)

might look like unrelated small numbers, but surprisingly it turns out that

109
(
((
(1

3
4)
))
) − 37

(
((
(10

1
11)

))
) − 29

(
((
(−9

10
1 )

))
) = 𝟎. (5)

Without “slope”, you cannot notice these dependences by sight for 𝑛 ≥ 3, so use the determinant.

Sample Question

Is (1
2), (100

200) a basis for ℝ2?

Solution.  No because | 1
100

2
200| = 0. In this case you can also see directly that 100(1

2) = (100
200), so the

vectors are not linearly independent. □

Sample Question

Is (13
37), (42

88) a basis for ℝ2?

Solution.  Yes, because |13
42

37
88| = 13 ⋅ 88 − 37 ⋅ 42 ≠ 0. □

Sample Question

Is 𝐯1 = (
1
3
4
), 𝐯2 = (

10
1
11

), 𝐯3 = (
−9
10
1

) a basis for ℝ3?

Solution.  No, because

|
||
| 1
10
−9

3
1
10

4
11
1 |

||
|
= 1 | 1

10
11
1 | − 3 |10

−9
11
1 | + 4 |10

−9
1
10|

= 1(10 − 11) − 3(10 + 99) + 4(100 + 9) = 0. □

Sample Question

Is (
3
42
18

), (
1
53
17

), (
71
91
13

) a basis for ℝ3?

Solution.  Yes, because

|
||
| 3
42
18

1
53
17

71
91
13|

||
|
= ugly arithmetic = −18522 ≠ 0. □
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Remark: If you randomly generate numbers, you’ll get a basis

The above sample was generated randomly when I gave this lecture at MIT. The way I presented
this was I went up to the board and wrote:

“Is (
?
?
?
), (

?
?
?
), (

?
?
?
) a basis for ℝ3? Answer: yes.”

Then I asked my students to make up nine numbers to fill in the question marks. Of course, they
picked big numbers, and I got to show off my amazing five-digit multiplication skills.

I did this stunt of writing the answer before I even knew the question to make a point: if you pick
large truly random numbers, the determinant will be some large random number too, so there’s
no chance you’ll just get 0. So you should always expect 𝑛 “random” vectors in ℝ𝑛 to be a basis,
and it’s only if you cherry-pick them you’ll get a non-basis.

Sample Question

Is 
(
((
(

1
4
5
8)
))
), 

(
((
(

3
8
11
6 )
))
), 

(
((
(

6
19
10
2 )
))
) a basis for ℝ4?

Solution.  No, there are three vectors, and ℝ4 needs to have exactly four vectors in every basis. □

§8.3 [TEXT] Spans
The basis is the “best-case scenario”, because if you have a basis 𝐯1, …, 𝐯𝑛 of ℝ𝑛 then it means every
vector of ℝ𝑛 can be made out of 𝐯𝑖 in exactly one way. We won’t always be so lucky, so we have a
word that means “what you can make out of 𝐯𝑖”.

Definition of span

The span of a set of vectors 𝐯1, …, 𝐯𝑘 in ℝ𝑛 refers to the vectors that you can make out of 𝐯𝑖
(i.e. can be written as a linear combination of 𝐯𝑖).

Example of spans in ℝ2

Consider vectors in ℝ2.

• The span of any basis, like (3
5) and ( 7

11), is all of ℝ2, by definition.
• Moreover, the span of any set containing a basis is also all of ℝ2. For example, the span of

(3
5), ( 8

10), ( 7
11), ( 700

1100) is still all of ℝ2. (Sure, it’s not a basis as there are lots of dependencies,
but that doesn’t change that you can make any vector in ℝ2 out of them; you just have some
extra vectors you don’t have to use.)

• The span of the vectors (1
2), (10

20), (100
200) is the line 𝑦 = 2𝑥. These are the only vectors you

can make out of combinations of these three vectors.
• The span of the single vector (1

2) is also the line 𝑦 = 2𝑥. That is, in the previous example,
(10

20) and (100
200) were totally useless

• The span of the single vector (0
0) is only one point: (0

0) itself.
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Examples of spans in ℝ3

Consider vectors in ℝ3.

• The span of any basis, like (
3

421
8

), (
1
53
17

), (
71
91
13

) is all of ℝ3, by definition.

• The span of the vectors (
1
2
3
), (

10
20
30

), (
100
200
300

) is the line consisting of multiples of 𝑦 = 2𝑥 and

𝑧 = 3𝑥, though I think it’s easier to express this as “multiples of (
1
2
3
)”. These are the only

vectors you can make out of combinations of these three vectors.

• The span of the single vector (
1
2
3
) is the same line. That is, in the previous example, (

10
20
30

)

and (
100
200
300

) were totally useless.

• The span of (
1
3
4
), (

10
1
11

), (
−9
10
1

) is more interesting. We saw before that these three vectors

actually have a dependence, so they are not a basis and the span is not all of ℝ3.

But the span is not just a line either: it’s a two-dimensional plane! In fact, all three vectors
are contained inside the plane

𝑥 + 𝑦 = 𝑧.

And the span is actually that entire plane; any point in the plane turns out to be formed as
a combination, in fact just using the first two vectors is enough. For example, if I picked a

random point on the plane like (
1337
2025
3362

) then it turns out the relevant combination is

(
((
(1337

2025
3362)

))
) = 19113

29
(
((
(1

3
4)
))
) + 1386

29
(
((
(10

1
11)

))
)

(I won’t explain how I got these coefficients, but you could probably figure out yourself if
you wanted to).

• The span of the single vector (
0
0
0
) is only one point: (

0
0
0
) itself.

What you are probably gathering from all these examples is that the span also has a concept of
dimension: for example in ℝ3, we saw an example of

• a 0-dimensional span, just the single point ⟨0, 0, 0⟩.
• a 1-dimensional span, the line consisting of multiples of (

1
2
3
)

• a 2-dimensional span, the plane 𝑥 + 𝑦 = 𝑧.
• a 3-dimensional span if you have a full basis.

This is worth knowing:
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Tip

Remember, in ℝ𝑛, the span of a bunch of vectors is

• always 𝑑-dimensional for some 𝑑 = 0, …, 𝑛 (so there are 𝑛 + 1 kinds of answers);
• always contains the origin 𝟎.

§8.4 [RECIPE] Describing the span of several vectors
In 18.02 you might be asked to describe the span of some vectors in ℝ2 and ℝ3. From the examples
above, you should be able to extrapolate the recipe.

Recipe for describing the span of vectors in ℝ2

• 0D case: Are all the vectors the zero vector (0
0)? If so the span is just a single point.

• 1D case: Are all the vectors pointing the same direction (i.e. multiples of each other)? If so,
and there is at least one nonzero vector, the span is a line through the origin in the common
direction of the vectors.

• 2D case: Are there two (nonzero) vectors not pointing in the same direction (equivalently,
are linearly independent)? If so, the span is all of ℝ2.

Sample Question

What is the span of the vectors (3
6), (10

20), (100
200), ( 5000

10000) in ℝ2?

Solution.  All the vectors are multiples of (1
2), so the answer is a line: the multiples of (1

2). □

Sample Question

What is the span of (420
321) and (666

5 ) in ℝ2?

Solution.  Because the two vectors are not multiples of each other, they are linearly independent. (The
determinant lets you see this too: |420

321
666
5 | = 420 ⋅ 5 − 321 ⋅ 666 = −211686 ≠ 0.) Hence they are a

basis of ℝ2 and the span is all of ℝ2. □

Recipe for describing the span of vectors in ℝ3

• 0D case: Are all the vectors the zero vector (
0
0
0
)? If so the span is just a single point.

• 1D case: Are all the vectors pointing the same direction (i.e. multiples of each other)? If so,
and there is at least one nonzero vector, the span is a line through the origin in the common
direction of the vectors.

• 2D case: Is there more than one direction present, but you can’t find three vectors which are
linearly independent? If so, the span is a plane through the origin.

‣ If you want the equation of the plane, use the cross product.
• 3D case: Are there three vectors among them which are linearly independent from each

other? If so, the span is all of ℝ3.
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(In 18.02 the reason for the 2D case is really by process of elimination: you can think of the 2D bullet
as what’s left over if you rule out 0D, 1D, 3D.)

Sample Question

What is the span of the vectors (
3
6
9
), (

10
20
30

) and (
100
200
300

) in ℝ3?

Solution.  All the vectors are multiples of (
1
2
3
), so it’s a line: the multiples of (

1
2
3
). □

Sample Question

What is the span of (
1
3
4
), (

10
1
11

) and (
−9
10
1

) in ℝ3?

Solution.  It should be a two-dimensional plane. This follows by process of elimination: we know 𝑑 =
0 and 𝑑 = 1 don’t apply here (none of these vectors are zero or are multiples of each other) and we
can rule out 𝑑 = 3 because we can calculate the determinant

|
||
|1
3
4

10
1
11

−9
10
1 |

||
|
= 0

to see that our three vectors are not linearly independent.

How do we actually find the equation of the plane? Well, really what we’re asking is to find a plane
through the origin passing through all of (1, 3, 4), (10, 1, 11), (−9, 10, 1) (we’re promised it exists from
the determinant being zero: again, that’s what it means to not be spanning). We just want a normal
vector to the plane, which we can get by taking the cross product of any two of the vectors. Arbitrarily,
we use the first two:

(
((
(1

3
4)
))
) ×

(
((
(10

1
11)

))
) =

|
||
|𝐞1
1
10

𝐞2
3
1

𝐞3
4
11|

||
|
= 29𝐞1 + 29𝐞2 − 29𝐞3.

That’s the normal vector we wanted, so we now know 29𝑥 + 29𝑦 − 29𝑧 = 0 is the plane needed. This
simplifies to just 𝑥 + 𝑦 − 𝑧 = 0 . □

68



Linear Algebra and Multivariable Calculus — Evan Chen

Digression

Just for comparison, if you had used the second and third vector instead, you’d get

(
((
(1

3
4)
))
) ×

(
((
(−9

10
1 )

))
) =

|
||
| 𝐞1

1
−9

𝐞2
3
10

𝐞3
4
1 |

||
|
= 37𝐞1 + 37𝐞2 − 37𝐞3

while the second and third vectors would give

(
((
(10

1
11)

))
) ×

(
((
(−9

10
1 )

))
) =

|
||
| 𝐞1
10
−9

𝐞2
1
10

𝐞3
11
1 |

||
|
= −109𝐞1 − 109𝐞2 + 109𝐞3

which are all still multiples of 𝐞1 + 𝐞2 − 𝐞3, so the plane is still 𝑥 + 𝑦 − 𝑧 = 0.

It’s not a coincidence that the magic numbers 29, 37, 109 from Equation 5 are reappearing in the
normal vectors, but this time I won’t explain why this is happening, and let you ruminate on it
yourself if you want to figure out.

Sample Question

What is the span of (
3
42
18

), (
1
53
17

), (
71
91
13

) in ℝ3?

Solution.  As we mentioned above (Equation 5), you shouldn’t eyeball three or more dimensions; if you
get three vectors in ℝ3 and want to know if they are linearly independent or not, you should always
take the determinant:

|
||
| 3
42
18

1
53
17

71
91
13|

||
|
= ugly arithmetic = −18522 ≠ 0.

So the three vectors are a basis and the span is all of ℝ3. □

§8.5 [TEXT] Systems of equations
As we commented earlier, a randomly chosen set of 𝑛 vectors is “usually” a basis for ℝ𝑛. I want to now
connect this to something else you’ve seen in high school: a “random” linear system of 𝑛 equations
and 𝑛 variables “usually” has only one solution.

For example, in high school algebra, you probably were asked to solve systems of equations like

𝑥1 + 2𝑥2 = 14
3𝑥1 + 4𝑥2 = 38.

You can do this using whatever method you’re used to; you should find (𝑥1, 𝑥2) = (10, 2) as the only
solution. And you can probably already tell that 14 and 38 could have been any numbers, and you’d
still always get exactly one solution.

Why is this relevant to the stuff about basis? Well, the point is you can view the variables above as
coefficients in a linear combination and consider the previous system of equations as saying
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𝑥1(
1
3) + 𝑥2(

2
4) = (14

38).

That means our observations can be rephrased in terms of our linear algebra language:

Idea

(1
3) and (2

4) are a basis of ℝ2, so any vector like (14
38) can be made in exactly one way.

In other words, as long as the column vectors made from the coefficients on the left-hand side of the
system of equations form a basis, there’s always in fact one solution.

So what goes wrong when it’s not a basis? Let’s bring back the example we had in Equation 5.

• Consider a system like

𝑥1 + 10𝑥2 − 9𝑥3 = 0
3𝑥1 + 𝑥2 + 10𝑥3 = 0
4𝑥1 + 11𝑥2 + 𝑥3 = 0.

This equation obviously has at least one solution: 𝑥1 = 𝑥2 = 𝑥3 = 0. We saw that (
1
3
4
), (

10
1
11

),

(
−9
10
1

) is not a basis of ℝ3, and what that translates to is saying there are other solutions too:

reading off Equation 5, note that 𝑥1 = 109𝑘, 𝑥2 = −37𝑘, 𝑥3 = −29𝑘 is a solution for any 𝑘.

• What if we consider something like

𝑥1 + 10𝑥2 − 9𝑥3 = 17
3𝑥1 + 𝑥2 + 10𝑥3 = 42
4𝑥1 + 11𝑥2 + 𝑥3 = 1337

instead? We still know the coefficients on the left-hand side have a dependency, so we expect
something to “go wrong”.

In this case, the kind of failure is different: (
17
42

1337
) turns out to not be in the span of our three

vectors. In fact, we earlier saw that the span of the vectors was the plane 𝑥 + 𝑦 = 𝑧, which doesn’t

contain (
17
42

1337
).

So for this system, satisfying these three equations simultaneously should be impossible (that is,
there are no solutions rather than too many solutions). And in fact you might be able to see this
directly: if you add the first two equations and subtract the last one you can see the contradiction:

+[𝑥1 + 10𝑥2 − 9𝑥3] = +17
+[3𝑥1 + 𝑥2 + 10𝑥3] = +42
−[4𝑥1 + 11𝑥2 + 𝑥3] = −1337

⟹ 0 = 17 + 42 − 1337  which is absurd.

• On the other hand, if we have
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𝑥1 + 10𝑥2 − 9𝑥3 = 100
3𝑥1 + 𝑥2 + 10𝑥3 = 200
4𝑥1 + 11𝑥2 + 𝑥3 = 300

then the span does contain (
100
200
300

), so we expect to be back in the “too many solutions” case. I

won’t show you how to come up with these numbers (though it’s actually not that hard), but
you can find one example of a solution is (𝑥1, 𝑥2, 𝑥3) = (58, 6, 2). If you put that together with
Equation 5 you can come up with a lot of solutions now:

𝑥1 = 58 + 109𝑘
𝑥2 = 6 − 37𝑘
𝑥3 = 2 − 29𝑘.

In summary, what we’ve seen in this section is that for a system of 𝑛 equations in 𝑛 variables, we
should look at the 𝑛 column vectors made by the coefficients. Then

• If those vectors form a basis of ℝ𝑛 (usual case), the system of equations always has one solution.
• Otherwise, the system of equations is defective: either it has no solutions at all (is self-contradic-

tory), or there are actually infinitely many solutions.

§8.6 [RECIPE] Number of solutions to a square system of linear equations
Now, remember that in practice the way we see whether or not 𝑛 vectors form a basis is by considering
a determinant. So we can rephrase our findings from the previous section into the following recipe
using the word “determinant” in place of “basis”.

Recipe for computing the number of solutions to a system of equations

Suppose you are asked to find the number of solutions to a square system

𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + … + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛.

Let 𝐴 be the 𝑛 × 𝑛 matrix formed by the 𝑎𝑖𝑗.

1. If det 𝐴 ≠ 0, you don’t even have to look at 𝑏𝑖; just output “exactly 1 solution”.
2. If det 𝐴 = 0, you should output either “zero solutions” or “infinitely many solutions”,

depending on whether there is at least one solution. To see which case you’re in:

• There’s a common case 𝑏1 = 𝑏2 = … = 𝑏𝑛 = 0, where the system has an obvious
solution 𝑥1 = … = 𝑥𝑛 = 0. Thus output “infinitely many solutions”.

• When 𝑛 = 2, you can usually tell by looking whether the two equations are redundant
or not. Output “infinitely many solutions” if the two equations are multiples of each
other; output “zero solutions” if the two equations contradict each other.

• Otherwise, for 𝑛 ≥ 3, if you can’t guess a solution, you should eliminate variables one
by one. However, this case doesn’t occur in 18.02.

Examples of what I mean when I say “tell by looking” for 𝑛 = 2:
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• The system 𝑥 + 3𝑦 = 8 and 10𝑥 + 30𝑦 = 80 is obviously “infinitely many”, because the two
equations are the same. In a case like this, output “infinitely many”.

• The system 𝑥 + 3𝑦 = 8 and 10𝑥 + 30𝑦 = 42 is obviously “no solutions”, because it would imply
80 = 10 ⋅ 8 = 10 ⋅ (𝑥 + 3𝑦) = 10𝑥 + 30𝑦 = 42, which is self-contradictory. In a case like this,
output 0.

§8.7 [EXER] Exercises

Exercise 8.1.  Take your birthday and write it in eight-digit 𝑌1𝑌2𝑌3𝑌4-𝑀1𝑀2-𝐷1𝐷2 format. Con-
sider the two vectors

𝐯1 = (𝑀1𝑀2
𝐷1𝐷2

)  and 𝐯2 = (𝑌1𝑌2
𝑌3𝑌4

).

For example, if your birthday was May 17, 1994 you would take 𝐯1 = ( 5
17) and 𝐯2 = (19

94).

• Compute the span of those two vectors in ℝ2.
• Find a current or former K-pop idol who gets a different answer from you when they use their

birthday.

Exercise 8.2.  In ℝ5, consider the vector 𝐯 = ⟨1, 2, 3, 4, 5⟩. Compute the maximum possible number
of linearly independent vectors one can find which are all perpendicular to 𝐯.
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Chapter 9. Eigenvalues and eigenvectors
In this chapter, we’ll define an eigenvalue and eigenvector. The main goal of this chapter is that:

Goal

Given a 2 × 2 or 3 × 3 matrix, by the end of this chapter, you should be able to find all the
eigenvalues and eigenvectors by hand.

§9.1 [TEXT] The problem of finding eigenvectors
Let’s define the relevant term first:

Definition

Suppose 𝑇  is a matrix or linear transformation, 𝜆 a scalar, and 𝐯 is a vector such that

𝑇 (𝐯) = 𝜆𝐯;

that is, 𝑇  sends 𝐯 to a multiple of itself. Then we call 𝜆 an eigenvalue and 𝐯 an eigenvector.

Type signature

Eigenvalues 𝜆 are always scalars.

Example

Let 𝑇 = (74
32

52
36) and consider the vector 𝐯 = (2

1). Then

𝑇 (𝐯) = (74
32

52
36)(2

1) = (200
100) = 100(2

1) = 100𝐯.

So we would say 𝐯 is an eigenvector with eigenvalue 100.

Of course, if 𝐯 is an eigenvector, so are all its multiples, e.g.

(74
32

52
36)(20

10) = (2000
1000) = 100(20

10)

so (20
10) is an eigenvector with the same eigenvalue 100, etc.

Remark

The stupid solution 𝐯 = 𝟎 always satisfies the eigenvector equation for any 𝜆, so we will pretty
much ignore it and focus only on finding nonzero eigenvectors.

The goal of this chapter is to show, given a matrix 𝑇 , how we can find its eigenvectors (besides 𝟎).

§9.2 [TEXT] How to come up with the recipe for eigenvalues
For this story, our protagonist will be the matrix
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𝐴 = (5
3

−2
10).

Phrased another way, the problem of finding eigenvectors is, by definition, looking for 𝜆, 𝑥, 𝑦 such that

𝐴(𝑥
𝑦) = 𝜆(𝑥

𝑦) ⟺ {5𝑥 − 2𝑦 = 𝜆𝑥
3𝑥 + 10𝑦 = 𝜆𝑦.

Smart-alecks will say 𝑥 = 𝑦 = 0 always works for every 𝜆. Are there other solutions?

§9.2.1 Why guessing the eigenvalues is ill-fated

As an example, let’s see if there are any eigenvectors (𝑥
𝑦) with eigenvalue 100. In other words, let’s

solve

(5
3

−2
10)(𝑥

𝑦) = 100(𝑥
𝑦).

If we solve the system of equations, we get

{5𝑥 − 2𝑦 = 100𝑥
3𝑥 + 10𝑦 = 100𝑦 ⟹ {−95𝑥 − 2𝑦 = 0

3𝑥 − 90𝑦 = 0 ⟹ 𝑥 = 𝑦 = 0.

Well, that’s boring. In this system of equations, the only solution is 𝑥 = 𝑦 = 0.

We can try a different guess: maybe we use 1000 instead of 100. An eigenvector with eigenvalue 1000
ought to correspond to

(5
3

−2
10)(𝑥

𝑦) = 1000(𝑥
𝑦).

If we solve the system of equations, we get

{5𝑥 − 2𝑦 = 1000𝑥
3𝑥 + 10𝑦 = 1000𝑦 ⟹ {−995𝑥 − 2𝑦 = 0

3𝑥 − 990𝑦 = 0 ⟹ 𝑥 = 𝑦 = 0

which… isn’t any better. We still don’t get any solutions besides 𝑥 = 𝑦 = 0.

At this point, you should be remembering something I told you last chapter: a “random” system of
equations and variables usually only has a unique solution. So if I keep picking numbers out of a hat
like 100, 1000, etc., then I’m unlikely to find anything interesting. In order to get a system that doesn’t
just solve to 𝑥 = 𝑦 = 0, I’m going to need to cherry-pick my number 𝜆.

§9.2.2 Cherry-picking 𝜆

Let’s try to figure out what value of 𝜆 would make the system more interesting. If we copy what we
did above, we see that the general process is:

{5𝑥 − 2𝑦 = 𝜆𝑥
3𝑥 + 10𝑦 = 𝜆𝑦 ⟹ {(5 − 𝜆)𝑥 − 2𝑦 = 0

3𝑥 + (10 − 𝜆)𝑦 = 0

We need to cherry-pick 𝜆 to make sure that the system doesn’t just solve to 𝑥 = 𝑦 = 0 like the
examples we tried with 100 and 1000. But we learned how to do this in the last chapter: in order to
get a degenerate system you need to make sure that

0 = |5 − 𝜆
3

−2
10 − 𝜆|.
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Remark

At this point, you might notice that this is secretly an explanation of why 𝐴 − 𝜆𝐼  keeps showing
up on your formula sheet. Writing 𝐴𝐯 = 𝜆𝐯 is the same as (𝐴 − 𝜆𝐼)𝐯 = 0, just more opaquely.

Expanding the determinant on the left-hand side gives

0 = |5 − 𝜆
3

−2
10 − 𝜆| = (5 − 𝜆)(10 − 𝜆) + 6 = 𝜆2 − 15𝜆 + 56 = (𝜆 − 7)(𝜆 − 8).

Great! So we expect that if we choose either 𝜆 = 7 and 𝜆 = 8, then we will get a degenerate system,
and we won’t just get 𝑥 = 𝑦 = 0. Indeed, let’s check this:

• When 𝜆 = 7, our system is

{5𝑥 − 2𝑦 = 7𝑥
3𝑥 + 10𝑦 = 7𝑦 ⟹ {−2𝑥 − 2𝑦 = 0

3𝑥 + 3𝑦 = 0 ⟹ 𝑥 = −𝑦.

So for example, (−13
13 ) and ( 37

−37) will be eigenvectors with eigenvalue 7:

𝐴(−13
13 ) = (5

3
−2
10)(−13

13 ) = (−91
91 ) = 7(−13

13 ).

On exam, you probably answer “the eigenvectors with eigenvalue 7 are the multiples of (−1
1 )”,

or “the eigenvectors with eigenvalue 7 are the multiples of ( 1
−1)” if you want; these are the same

thing. Or if you want to mess with the grader, “the eigenvectors with eigenvalue 7 are the multiples
of ( 100

−100)” is fine too.

• When 𝜆 = 8, our system is

{5𝑥 − 2𝑦 = 8𝑥
3𝑥 + 10𝑦 = 8𝑦 ⟹ {−3𝑥 − 2𝑦 = 0

3𝑥 + 2𝑦 = 0 ⟹ 𝑥 = −2
3
𝑦.

So for example, (−20
30 ) is an eigenvector with eigenvalue 8:

𝐴(−20
30 ) = (5

3
−2
10)(−20

30 ) = (−160
240 ) = 8(−20

30 ).

On exam, you should answer “the eigenvectors with eigenvalue 8 are the multiples of (−2
3 )”. Or

you can say “the eigenvectors with eigenvalue 8 are the multiples of ( 2
−3)” if you want; these

are the same thing. You could even say “the eigenvectors with eigenvalue 8 are the multiples of
( 200

−300)” and still get credit, but that’s silly.

§9.3 [RECAP] Summary
To summarize the story above:

• We had the matrix 𝐴 = (5
3

−2
10) and wanted to find 𝜆’s for which the equation

(5
3

−2
10)(𝑥

𝑦) = 𝜆(𝑥
𝑦)

had solutions other than 𝑥 = 𝑦 = 0.
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• We realized that guessing 𝜆 was never going to fly, so we went out of our way to cherry-pick
𝜆 to make sure the system was degenerate. The buzzwords for this are “find the roots of the
characteristic polynomial”, but I wanted to show that it flows naturally from the end goal.

• For the two values of 𝜆 we cherry-picked, we know the system of equations is degenerate. So we
solve the two degenerate systems and see what happens.

In lectures and notes, the last two bullets are separated as two different steps, to make it into a recipe.
But don’t lose sight of how they’re connected! I would rather call it the following interlocked thing:

• We cherry-pick 𝜆 to make sure the system doesn’t just solve to 𝑥 = 𝑦 = 0.
• To do the cherry-picking, ensure det(𝐴 − 𝜆𝐼) = 0 so that our system is degenerate.

§9.4 [RECIPE] Calculating all the eigenvalues
To repeat the story:

Recipe for finding the eigenvectors and eigenvalues

Given a matrix 𝐴, to find its eigenvectors and eigenvalues:

1. Find all the values of 𝜆 such that, if you subtract 𝜆 from every diagonal entry of 𝐴 (that is,
look at 𝐴 − 𝜆𝐼), the resulting square matrix of coefficients has determinant 0.

2. For each 𝜆, solve the degenerate system and output the solutions to it. (You should find there
is at least a one-dimensional space of solutions.)

Remark

Eigenvectors are sometimes grouped into so-called eigenlines because every multiple of an eigen-
vector is also an eigenvector. For example, if you get 2𝑥 + 𝑦 = 0 for 𝜆 = 2, any of the following
outputs is often acceptable:

• “Any multiple of ( 1
−2) is an eigenvector for 𝜆 = 2”

• “Any multiple of (−1
2 ) is an eigenvector for 𝜆 = 2”

• “Any multiple of ( 100
−200) is an eigenvector for 𝜆 = 2”

• …

And in practice people will just say “( 1
−2) is the eigenvector for 𝜆 = 2” and the “any multiple of”

is understood.

Sample Question

Compute all eigenvalues and eigenvectors of

𝐴 = (4
2

1
3).

Solution.  We follow the recipe:
1. We compute 𝐴 − 𝜆𝐼 , where 𝐼  is the identity matrix:

𝐴 − 𝜆𝐼 = (4
2

1
3) − 𝜆(1

0
0
1) = (4 − 𝜆

2
1

3 − 𝜆).
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Now, compute the determinant of 𝐴 − 𝜆𝐼  and set it equal to zero:

det(𝐴 − 𝜆𝐼) = (4 − 𝜆)(3 − 𝜆) − (2 ⋅ 1) = (4 − 𝜆)(3 − 𝜆) − 2.

Expanding this:

(4 − 𝜆)(3 − 𝜆) = 12 − 7𝜆 + 𝜆2,

so the equation becomes:

12 − 7𝜆 + 𝜆2 − 2 = 0 ⟹ 0 = 𝜆2 − 7𝜆 + 10 = (𝜆 − 2)(𝜆 − 5).

Solving for 𝜆 gives 𝜆 = 2 or 𝜆 = 5.
2. There are two cases:

• For 𝜆 = 5, solve (𝐴 − 5𝐼)𝐯 = 0:

𝐴 − 5𝐼 = (−1
2

1
−2) ⟹ (−1

2
1

−2)(𝑥
𝑦) = (0

0).

This gives the equation −𝑥 + 𝑦 = 0, so the eigenvector is 𝐯1 = (1
1) as well as any multiple

of it.

• For 𝜆 = 2, solve (𝐴 − 2𝐼)𝐯 = 0:

𝐴 − 2𝐼 = (2
2

1
1) ⟹ (2

2
1
1)(𝑥

𝑦) = (0
0).

This gives the equation 2𝑥 + 𝑦 = 0, so the eigenvector is 𝐯2 = ( 1
−2) or any multiple of it.

In conclusion, (1
1) and its multiples are the eigenvectors for 𝜆 = 5 and ( 1

−2) and its multiples are the
eigenvectors for 𝜆 = 2. □

Sample Question

Compute the eigenvalues and eigenvectors of the matrix

𝐴 = (3
4

3
−1).

Solution.  We follow the recipe:

1. First, we compute 𝐴 − 𝜆𝐼 :

𝐴 − 𝜆𝐼 = (3
4

3
−1) − 𝜆(1

0
0
1) = (3 − 𝜆

4
3

−1 − 𝜆).

To find the eigenvalues, we set the determinant of 𝐴 − 𝜆𝐼  equal to zero:

det(𝐴 − 𝜆𝐼) = det (3 − 𝜆
4

3
−1 − 𝜆) = (3 − 𝜆)(−1 − 𝜆) − (3 ⋅ 4) = (3 − 𝜆)(−1 − 𝜆) − 12.

Expanding this expression:

(3 − 𝜆)(−1 − 𝜆) = −3 − 3𝜆 + 𝜆 + 𝜆2 = 𝜆2 − 2𝜆 − 3.

Now, substitute this into the equation:
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𝜆2 − 2𝜆 − 3 − 12 = 0 ⟹ 0 = 𝜆2 − 2𝜆 − 15 = (𝜆 − 5)(𝜆 + 3).

Solving for 𝜆 gives 𝜆 = 5 or 𝜆 = −3.

2. Now, we find the eigenvectors corresponding to each eigenvalue.
• For 𝜆 = 5, we solve (𝐴 − 5𝐼)𝐯 = 0. First, compute 𝐴 − 5𝐼 :

𝐴 − 5𝐼 = (3 − 5
4

3
−1 − 5) = (−2

4
3

−6).

We now solve the system:

(−2
4

3
−6)(𝑥

𝑦) = (0
0).

This gives the equations:

−2𝑥 + 3𝑦 = 0, 4𝑥 − 6𝑦 = 0.

From the first equation, we get 𝑥 = 3
2𝑦. Therefore, the eigenvectors corresponding to 𝜆 = 5

are the multiples of (3
2).

• For 𝜆 = −3, we solve (𝐴 + 3𝐼)𝐯 = 0. First, compute 𝐴 + 3𝐼 :

𝐴 + 3𝐼 = (3 + 3
4

3
−1 + 3) = (6

4
3
2).

We now solve the system:

(6
4

3
2)(𝑥

𝑦) = (0
0).

This gives the equations:

6𝑥 + 3𝑦 = 0, 4𝑥 + 2𝑦 = 0.

From the first equation, we get 𝑥 = −1
2𝑦. Therefore, the eigenvector corresponding to 𝜆 =

−3 is (−1
2 ).

In conclusion, (3
2) and its multiples are the eigenvectors for 𝜆 = 5 and (−1

2 ) and its multiples are the
eigenvectors for 𝜆 = −3. □

Sample Question

Compute the eigenvalues and eigenvectors of the matrix

𝐴 = ( 2
−1

9
8).

Solution.  We follow the recipe, but this time we’ll find the quadratic polynomial in 𝜆 we get has a
repeated root, a new phenomenon. Nothing changes much though, recipe still works fine.

1. We need to find the matrix 𝐴 − 𝜆𝐼 , where 𝐼  is the identity matrix. First, we compute 𝐴 − 𝜆𝐼 :

𝐴 − 𝜆𝐼 = ( 2
−1

9
8) − 𝜆(1

0
0
1) = (2 − 𝜆

−1
9

8 − 𝜆).
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To find the eigenvalues, we set the determinant of 𝐴 − 𝜆𝐼  equal to zero:

det(𝐴 − 𝜆𝐼) = |2 − 𝜆
−1

9
8 − 𝜆|

= (2 − 𝜆)(8 − 𝜆) − 9 ⋅ (−1) = (2 − 𝜆)(8 − 𝜆) + 9

= 𝜆2 − 10𝜆 + 25 = (𝜆 − 5)2.

This gives 𝜆 = 5. So we only have one case!

2. First, compute 𝐴 − 5𝐼 :

𝐴 − 5𝐼 = (2 − 5
−1

9
8 − 5) = (−3

−1
9
3).

We now solve the system:

(−3
−1

9
3)(𝑥

𝑦) = (0
0).

This gives the equations:

−3𝑥 + 9𝑦 = 0, −𝑥 + 3𝑦 = 0.

From the first equation, we get 𝑥 = 3𝑦. Therefore, the eigenvector corresponding to 𝜆 = 5 is (3
1)

and its multiples.

The only eigenvalue of the matrix 𝐴 = ( 2
−1

9
8) is 𝜆 = 5 (with multiplicity 2). The corresponding

eigenvector is (3
1) and its multiples. □

Sample Question

Compute the eigenvalues and eigenvectors of the matrix 𝐴 = (
1
0
0

2
3
1

0
0
4
).

Solution.  The matrix is 3 × 3, but that’s no big deal.

1. We need to find the matrix 𝐴 − 𝜆𝐼 , where 𝐼  is the identity matrix. First, we compute 𝐴 − 𝜆𝐼 :

𝐴 − 𝜆𝐼 =
(
((
(1

0
0

2
3
1

0
0
4)
))
) − 𝜆

(
((
(1

0
0

0
1
0

0
0
1)
))
) =

(
((
(1 − 𝜆

0
0

2
3 − 𝜆

1

0
0

4 − 𝜆)
))
).

To find the eigenvalues, we set the determinant of 𝐴 − 𝜆𝐼  equal to zero:

det(𝐴 − 𝜆𝐼) =
|
||
|1 − 𝜆

0
0

2
3 − 𝜆

1

0
0

4 − 𝜆|
||
|

= (1 − 𝜆) det (3 − 𝜆
1

0
4 − 𝜆) = (1 − 𝜆)(3 − 𝜆)(4 − 𝜆).

Setting this equal to 0 and solving gives 𝜆 = 1, 𝜆 = 3, 𝜆 = 4.

2. Now, we find the eigenvectors corresponding to each eigenvalue.

• For 𝜆 = 1: We solve (𝐴 − 𝐼)𝐯 = 0. First, compute 𝐴 − 𝐼 :
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𝐴 − 𝐼 =
(
((
(0

0
0

2
2
1

0
0
3)
))
).

We now solve the system:

(
((
(0

0
0

2
2
1

0
0
3)
))
)

(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
(0

0
0)
))
).

In other words 2𝑦 = 0, 2𝑦 = 0 and 𝑦 + 3𝑧 = 0. From the first and second rows, we have
2𝑦 = 0, so 𝑦 = 0. From the third row, we have 𝑧 = 0. There are no constraints on 𝑥 at all.
Thus, the eigenvector corresponding to 𝜆 = 1 is

(
((
(1

0
0)
))
)

and all its multiples, i.e. those vectors for which the second and third component are zero.

• For 𝜆 = 3: We solve (𝐴 − 3𝐼)𝐯 = 0. First, compute 𝐴 − 3𝐼 :

𝐴 − 3𝐼 =
(
((
(−2

0
0

2
0
1

0
0
1)
))
).

We now solve the system:

(
((
(−2

0
0

2
0
1

0
0
1)
))
)

(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
(0

0
0)
))
).

In other words, −2𝑥 + 2𝑧 = 0, 0 = 0 and 𝑦 + 𝑧 = 0. From the third row, we have 𝑦 = −𝑧.
From the first row, we get −2𝑥 + 2𝑧 = 0, so 𝑥 = 𝑧. Thus, the eigenvector corresponding to
𝜆 = 3 is:

(
((
( 1

−1
1 )

))
)

and its multiples.

• For 𝜆 = 4: We solve (𝐴 − 4𝐼)𝐯 = 0. First, compute 𝐴 − 4𝐼 :

𝐴 − 4𝐼 =
(
((
(−3

0
0

2
−1
1

0
0
0)
))
).

We now solve the system:

(
((
(−3

0
0

2
−1
1

0
0
0)
))
)

(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
(0

0
0)
))
).

In other words, −3𝑥 + 2𝑦 = 0, −𝑦 = 0, 𝑦 = 0. Hence 𝑥 = 𝑦 = 0 and there are no constraints
on 𝑧. Therefore, the eigenvector corresponding to 𝜆 = 4 is:
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(
((
(0

0
1)
))
)

and its multiples, i.e. any vector for which the first two components are 0.

In conclusion, the eigenvalues of the matrix 𝐴 = (
1
0
0

2
3
1

0
0
4
) are 𝜆1 = 1, 𝜆2 = 3, and 𝜆3 = 4; the

corresponding eigenvectors are:

𝐯1 =
(
((
(1

0
0)
))
), 𝐯2 =

(
((
( 1

−1
1 )

))
), 𝐯3 =

(
((
(0

0
1)
))
)

and their multiples. □

Up until now I picked examples for which the solutions turn out nicely. Most of the time it’s not like
that though.

Sample Question

Compute the eigenvalues and eigenvectors of the matrix 𝐴 = (1
4

2
7).

Solution.  Keep going, even with terrible numbers.

1. We need to find the matrix 𝐴 − 𝜆𝐼 , where 𝐼  is the identity matrix. First, we compute 𝐴 − 𝜆𝐼 :

𝐴 − 𝜆𝐼 = (1
4

2
7) − 𝜆(1

0
0
1) = (1 − 𝜆

4
2

7 − 𝜆).

To find the eigenvalues, we set the determinant of 𝐴 − 𝜆𝐼  equal to zero:

det(𝐴 − 𝜆𝐼) = |1 − 𝜆
4

2
7 − 𝜆| = (1 − 𝜆)(7 − 𝜆) − (4 ⋅ 2) = (1 − 𝜆)(7 − 𝜆) − 8.

Expanding this expression:

(1 − 𝜆)(7 − 𝜆) = 7 − 8𝜆 + 𝜆2,

so the equation becomes:

7 − 8𝜆 + 𝜆2 − 8 = 0 ⟹ 𝜆2 − 8𝜆 − 1 = 0.

We now solve the quadratic equation 𝜆2 − 8𝜆 − 1 = 0 using the quadratic formula:

𝜆 =
−(−8) ± √(−8)2 − 4(1)(−1)

2(1)
= 8 ±

√
64 + 4
2

= 8 ±
√

68
2

= 8 ± 2
√

17
2

.

Thus, the eigenvalues are:

𝜆1 = 4 +
√

17, 𝜆2 = 4 −
√

17.

2. Now, we find the eigenvectors corresponding to each eigenvalue.

• For 𝜆1 = 4 +
√

17: We solve (𝐴 − 𝜆1𝐼)𝐯 = 0. First, compute 𝐴 − 𝜆1𝐼 :
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𝐴 − 𝜆1𝐼 =
(
((

1 − (4 +
√

17)
4

2
7 − (4 +

√
17))

)) = (−3 −
√

17
4

2
3 −

√
17

).

We now solve the system:

(−3 −
√

17
4

2
3 −

√
17

)(𝑥
𝑦) = (0

0).

This gives the equations:

(−3 −
√

17)𝑥 + 2𝑦 = 0, 4𝑥 + (3 −
√

17)𝑦 = 0.

From the first equation, we get 𝑦 = 3+
√

17
2 𝑥. Therefore, the eigenvector corresponding to

𝜆1 = 4 +
√

17 is:

𝐯1 = (
1

3+
√

17
2

).

• For 𝜆2 = 4 −
√

17, it’s actually exactly the same with 
√

17 replaced by −
√

17, so I won’t
repeat it. You get the eigenvector

𝐯2 = (
1

3−
√

17
2

).

In conclusion the eigenvalues of the matrix 𝐴 = (1
4

2
7) are:

𝜆1 = 4 +
√

17, 𝜆2 = 4 −
√

17.

The corresponding eigenvectors are:

𝐯1 = (
1

3+
√

17
2

), 𝐯2 = (
1

3−
√

17
2

). □

§9.5 [TEXT] What to expect when solving degenerate systems
When carrying out the recipe for finding eigenvectors and eigenvalues, after cherry-picking 𝜆, you
have to solve a degenerate system of equations. Since most of the systems of equations you encounter
in practice are nondegenerate, here’s a few words of advice on instincts for solving the degenerate ones.

§9.5.1 Degenerate systems of two equations all look stupid

This is worth repeating: degenerate systems of two equations all look stupid. Earlier on, we saw
the two systems

{−2𝑥 − 2𝑦 = 0
3𝑥 + 3𝑦 = 0  and {−3𝑥 − 2𝑦 = 0

3𝑥 + 2𝑦 = 0 .

Both look moronic to the eye, because in each equation, the two equations say the same thing. This is
by design: when you’re solving the eigenvector problem, you’re going out of your way to find degenerate
systems so that there will actually be solutions besides 𝑥 = 𝑦 = 0.

In particular: if you do all the steps right, you should never wind up with 𝑥 = 𝑦 = 0 as your only
solution. That means you either didn’t do the cherry-picking step correctly, or something went wrong
when you were solving the system. If that happens, check your work!
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§9.5.2 Degenerate systems of three equations may or may not look stupid

When you have three or more equations instead, they don’t necessarily look as stupid (although they
still can). To reuse the example I mentioned before, consider the system of equations

𝑥 + 10𝑦 − 9𝑧 = 0
3𝑥 + 𝑦 + 10𝑧 = 0
4𝑥 + 11𝑦 + 𝑧 = 0

which doesn’t look stupid. But again, if you check the determinant, you find out

|
||
|1
3
4

10
1
11

−9
10
1 |

||
|
= 0.

So you know a priori that there will be solutions besides 𝑥 = 𝑦 = 𝑧 = 0.

I think 18.02 won’t have too many situations where you need to solve a degenerate three-variable
system of equations, because it’s generally annoying to do by hand. But if it happens, you should fall
back on your high school algebra and solve the system however you learned it in 9th or 10th grade.
The good news is that at least one of the three equations is redundant, so you can just throw one away
and solve for the other two. For example, in this case we would solve

𝑥 + 10𝑦 = 9𝑧
3𝑥 + 𝑦 = −10𝑧

for 𝑥 and 𝑦, as a function of 𝑧. I think this particular example works out to 𝑥 = −109
29 𝑧, 𝑦 = 37

29𝑧. And
it indeed fits the third equation too.

§9.6 [SIDENOTE] Complex eigenvalues
Even in the 2 × 2 case, you’ll find a lot of matrices 𝑀  with real coefficients don’t have eigenvectors.
Here’s one example.

Let

𝑀 = (cos(60°)
sin(60°)

− sin(60°)
cos(60°) ) =

(
((

1
2√
3

2

−
√

3
2

1
2 )

)).

be the matrix corresponding to rotation by 60 degrees. (Feel free to replace 60 by a different number.)
I claim that 𝑀  has no real eigenvalues or eigenvectors.

Indeed, if 𝐯 ∈ ℝ2 was an eigenvector, then 𝑀𝐯 needs to point in the same direction as 𝐯, by definition.
But that can never happen: 𝑀  is rotation by 60°, so 𝑀𝐯 and 𝐯 necessarily point in different directions
— 60 degrees apart.

Nevertheless, let’s boldly try this and see what goes wrong in the recipe. The answer is that you just
get some complex numbers instead.
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Sample Question

Compute the eigenvalues and eigenvectors of the matrix

𝐴 =
(
((

1
2√
3

2

−
√

3
2

1
2 )

)).

Solution.  Follow the recipe, just don’t be scared of complex numbers:

1. We need to find the matrix 𝐴 − 𝜆𝐼 , where 𝐼  is the identity matrix. First, we compute 𝐴 − 𝜆𝐼 :

𝐴 − 𝜆𝐼 =
(
((

1
2√
3

2

−
√

3
2

1
2 )

)) − 𝜆(1
0

0
1) =

(
((

1
2 − 𝜆

√
3

2

−
√

3
2

1
2 − 𝜆)

)).

To find the eigenvalues, we set the determinant of 𝐴 − 𝜆𝐼  equal to zero:

det(𝐴 − 𝜆𝐼) = |
1
2 − 𝜆

√
3

2

−
√

3
2

1
2 − 𝜆

|

= (1
2

− 𝜆)(1
2

− 𝜆) − (−
√

3
2

⋅
√

3
2

)

= (1
2

− 𝜆)
2

+ 3
4
.

Setting this equal to zero and solving, we get

𝜆 = 1 ±
√

3𝑖
2

as the two eigenvalues.

2. Now, we find the eigenvectors corresponding to each eigenvalue.

• Choose 𝜆1 = 1+𝑖
√

3
2  first. We solve (𝐴 − 𝜆1𝐼)𝐯 = 0. First, compute 𝐴 − 𝜆1𝐼 :

𝐴 − 𝜆1𝐼 =
(
((

1
2 − 1+𝑖

√
3

2√
3

2

−
√

3
2

1
2 − 1+𝑖

√
3

2 )
)) =

(
((

− 𝑖
√

3
2√
3

2

−
√

3
2

− 𝑖
√

3
2 )

)).

We now solve the system:

(
((

− 𝑖
√

3
2√
3

2

−
√

3
2

− 𝑖
√

3
2 )

))(𝑣1
𝑣2

) = (0
0).

This gives the equations:

−𝑖
√

3
2

𝑣1 −
√

3
2

𝑣2 = 0,
√

3
2

𝑣1 − 𝑖
√

3
2

𝑣2 = 0.

From the first equation, we get 𝑣1 = 𝑖𝑣2. Therefore, the eigenvector corresponding to 𝜆1 =
1+𝑖

√
3

2  is:
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𝐯1 = (𝑖
1)

and its multiples.
• When 𝜆2 = 1−𝑖

√
3

2 , all the 𝑖’s flip to −𝑖’s and nothing else changes. The eigenvector corre-
sponding to 𝜆2 = 1−𝑖

√
3

2  is thus

𝐯2 = (−𝑖
1 )

and its multiples.

In conclusion, the two eigenvalues are

𝜆1 = 1 + 𝑖
√

3
2

, 𝜆2 = 1 − 𝑖
√

3
2

.

and the corresponding eigenvectors are:

𝐯1 = (𝑖
1), 𝐯2 = (−𝑖

1 ). □

§9.7 [TEXT] Trace and determinant
In 18.02 the following definition is briefly mentioned, but we won’t do much with it:

Definition of trace

The trace is the sum of the diagonal entries of the matrix.

Then the following two theorems are roughly true:

• The trace of a matrix equals the sum of the eigenvalues, either real or complex.
• The determinant of a matrix equals the product of the eigenvalues, either real or complex.

I say “roughly” because there is a caveat: most of the time, if you have an 𝑛 × 𝑛 matrix, then there
will be 𝑛 different eigenvalues (if you allow complex ones). You probably noticed this above. However,
sometimes you’ll run into a matrix for which there are fewer than 𝑛, and some of the eigenvalues are
“repeated”, like the example we got where (𝜆 − 5)2 = 0 ⟹ 𝜆 = 5. We won’t define what “repeated”
means here, but you need to define repetition correctly to handle these edge cases.

§9.8 [SIDENOTE] Application of eigenvectors: matrix powers
This is off-syllabus for 18.02, but I couldn’t resist including it because it shows you a good use of
eigenvalues in a seemingly unrelated problem, and also reinforces the idea that I keep axe-grinding:

Idea

If you have a linear operator 𝑇 , and you know the outputs of 𝑇  on any basis, that tells you all
the outputs of 𝑇 .

Okay, so here’s the application I promised you.
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Sample Question

Let 𝑀  be the matrix (2
0

1
3). Calculate 𝑀100.

At first glance, you might think this question is obviously impossible without a computer! Raising a
matrix to the 100th power seems like it would require 100 matrix multiplications. But I’ll show you
how to do it with eigenvectors.

Solution.  First, we compute the eigenvectors and eigenvalues of 𝑀 . If you follow the recipe, you’ll get
the following results:

• The vector (1
0) is an eigenvector with eigenvalue 2 (as is any multiple of (1

0)), because 𝑀(1
0) =

(2
0) = 2(1

0).
• The vector (1

1) is an eigenvector with eigenvalue 3 (as is any multiple of (1
1)), because 𝑀(1

1) =
(3

3) = 3(1
1).

Now the trick is the following: it’s really easy to apply 𝑀100 to the eigenvectors, because it’s just
multiplication by a constant. For example, the first few powers of 𝑀  on (1

0) each double the vector,
since they are all eigenvectors with eigenvalue 2; that is:

𝑀(1
0) = (2

0)

𝑀2(1
0) = 𝑀(2

0) = (4
0)

𝑀3(1
0) = 𝑀(4

0) = (8
0)

⋮

and so on, until

𝑀100(1
0) = 2100(1

0).

By the same token:

𝑀100(1
1) = 3100(1

1).

So now we know the outputs of 𝑀100 at two linearly independent vectors. It would be sufficient, then,
to use this information to extract 𝑀100(𝐞1) and 𝑀100(𝐞2). We can now rewrite this as

𝑀100(1
0) = (2100

0 ); 𝑀100(0
1) = 𝑀100(1

1) − 𝑀100(1
0) = (3100 − 2100

3100 ).

Thus encoding 𝑀  gives the answer:

𝑀100 = (2100

0
3100 − 2100

3100 ). □

§9.9 [EXER] Exercises

Exercise 9.1.  Compute the eigenvalues and eigenvectors for the following matrices:
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𝐴 = (1
1

1
1), 𝐵 = (5

2
1
4), 𝐶 = (9

0
0
9), 𝐷 = (6

0
1
6).

Exercise 9.2.  Give an example of a 2 × 2 matrix 𝑇  with four nonzero entries whose eigenvalues
are 5 and 7. Then compute the corresponding eigenvectors.

Exercise 9.3 (*).  Compute the eigenvectors and eigenvalues of the 6 × 6 matrix

(
((
((
((
((
((
(5

0
0
0
0
0

0
−9
0
0
0
0

0
0
5
0
0
0

0
0
0
0
0
0

0
0
0
0
8
1

0
0
0
0
0
8)
))
))
))
))
))
)

.

(You can do this question without using any determinants.)

Exercise 9.4 (*).  Using the procedure described in Section 9.8, show that

(4
6

3
7)

20

= (33333333333333333334
66666666666666666666

33333333333333333333
66666666666666666667).

(Each number on the right-hand side is 20 digits.)
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Part Charlie: Review of complex numbers
For comparison, Part Charlie corresponds roughly to §11 of Poonen’s notes.

Chapter 10. Complex numbers

§10.1 [TEXT] It’s a miracle that multiplication in ℂ has geometric meaning
Let ℂ denote the set of complex numbers (just as ℝ denotes the real numbers). It’s important that
realize that, until we add in complex multiplication, ℂ is just an elaborate ℝ2 cosplay.

Concept For ℝ2 For ℂ
Notation 𝐯 𝑧
Components (𝑥

𝑦) 𝑥 + 𝑦𝑖

Length Length |𝐯| Abs val |𝑧|
Direction (slope, maybe?) argument 𝜃
Length 1 unit vector 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃
Multiply NONE ✨ 𝑧1𝑧2 ✨

At the start of the course, I warned you about type safety, and I repeatedly stressed you that you
cannot multiply two vectors in ℝ𝑛 to get another vector. (You had a “dot product”, but it spits
out a number. Honestly, you shouldn’t think of dot product as a “product”; the name sucks.)

Of course, the classic newbie mistake (which you better not make on your midterm) is to define a

product on vectors component-wise: why can’t (
𝑎1
⋮

𝑎𝑛

) and (
𝑏1
⋮

𝑏𝑛

) have “product” (
𝑎1𝑏1

⋮
𝑎𝑛𝑏𝑛

)? Well, in

18.02, every vector definition needed a corresponding geometric picture for us to consider it worthy
of attention. This definition has no geometric meaning.

However, there is a big miracle for ℂ. For complex numbers, you can define multiplication by

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖

and there is an amazing geometric interpretation.

Unfortunately, AFAIK there is no English word for “complex number whose absolute value is one”, the
same way there is for “unit vector”. For 18.02, we instead use

𝑒𝑖𝜃 ≔ cos 𝜃 + 𝑖 sin 𝜃

as the “word”; whenever you see 𝑒𝑖𝜃, draw it as unit vector cos 𝜃 + 𝑖 sin 𝜃.

What does complex exponents mean anyway?

It’s worth pointing out the notation 𝑒𝑖𝜃 should strike you as a type-error based on what you’ve
learned in school. What meaning does it have to raise a number to an imaginary power? Does
𝑖𝑖 have a meaning? Does cos(𝑖) have a meaning? If you want to know, check Chapter 55 in the
Appendix.

But for 18.02, when starting out, I would actually think of the notation 𝑒𝑖𝜃 as a mnemonic, i.e. a way
to remember the following result:
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(cos 𝜃1 + 𝑖 sin 𝜃1)⏟⏟⏟⏟⏟⏟⏟
=𝑒𝑖𝜃1

⋅ (cos 𝜃2 + 𝑖 sin 𝜃2)⏟⏟⏟⏟⏟⏟⏟
=𝑒𝑖𝜃2

= cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑒𝑖(𝜃1+𝜃2)

. (6)

This is in my opinion the biggest miracle in all of precalculus. Really, I want to stress: Equation 6 is
supposed to be astonishing. My goal by the end of this chapter is to convince you that something really
powerful is happening in Equation 6 allowing you to do things that you absolutely should not expect
to be able to do.

More generally, the result you need to know is:

Memorize: Complex multiplication

Suppose 𝑧1 and 𝑧2 are complex numbers. To describe 𝑧1𝑧2:

• The magnitude of 𝑧1𝑧2 is the product of the magnitudes of 𝑧1 and 𝑧2. That is,

|𝑧1𝑧2| = |𝑧1| |𝑧2| (7)
• The argument of 𝑧1𝑧2 is the sum of the arguments of 𝑧1 and 𝑧2. This is Equation 6.

Here’s a simple example.

Example

Let’s consider the complex numbers:

𝑧1 = 20 + 21𝑖 and 𝑧2 = 5 + 12𝑖.

Following your high school, the product 𝑧1 ⋅ 𝑧2 is calculated as follows:

𝑧1 ⋅ 𝑧2 = (20 + 21𝑖)(5 + 12𝑖) = 20 ⋅ 5 + 20 ⋅ 12𝑖 + 21𝑖 ⋅ 5 + 21𝑖 ⋅ 12𝑖

= 100 + 240𝑖 + 105𝑖 + 252𝑖2

= 100 + 345𝑖 + 252(−1) (since 𝑖2 = −1)
= 100 + 345𝑖 − 252 = (100 − 252) + 345𝑖 = −152 + 345𝑖.

The above theorem is promising that if we had used polar form, the angles will add and the
magnitudes will multiply. Let’s verify this holds up.

For the magnitudes, you can do this by hand: we have |𝑧1| =
√

202 + 212 = 29 and |𝑧2| =√
52 + 122 = 13, and indeed we have the miraculous |𝑧1𝑧2| =

√
1522 + 3452 = 377.

The angles here probably need a calculator to verify. For the angles, from arctan(21
20) ≈ 46.04°

and arctan(12
5 ) ≈ 67.38°, we have

𝑧1 ≈ 29(cos 46.04° + 𝑖 sin 46.04°)
𝑧2 ≈ 13(cos 67.38° + 𝑖 sin 67.38°)

so we’re expecting that

𝑧1𝑧2 ≈ 377(cos 113° + 𝑖 sin 113°)

and indeed arctan(−345
152) ≈ 113°, as needed!

Here’s a more substantial example, which shows how Equation 6 can be used to compute things that
wouldn’t be feasible by hand with the rectangular form.
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Sample Question

Compute (1 + 𝑖)10.

Solution.  The idea is that we will write 1 + 𝑖 in polar form as:

1 + 𝑖 =
√

2(cos 𝜋
4

+ 𝑖 sin 𝜋
4
).

Then raising powers is easy, because of Equation 6. To spell it out:

(1 + 𝑖)2 = (
√

2)
2
(cos(2 ⋅ 𝜋

4
) + 𝑖 sin(2 ⋅ 𝜋

4
))

(1 + 𝑖)3 = (
√

2)
3
(cos(3 ⋅ 𝜋

4
) + 𝑖 sin(3 ⋅ 𝜋

4
))

(1 + 𝑖)4 = (
√

2)
4
(cos(4 ⋅ 𝜋

4
) + 𝑖 sin(4 ⋅ 𝜋

4
))

(1 + 𝑖)5 = (
√

2)
5
(cos(5 ⋅ 𝜋

4
) + 𝑖 sin(5 ⋅ 𝜋

4
))

⋮

(1 + 𝑖)10 = (
√

2)
10

(cos(10 ⋅ 𝜋
4
) + 𝑖 sin(10 ⋅ 𝜋

4
)).

We can simplify this now: we know

(1 + 𝑖)10 = 25(cos(5 ⋅ 𝜋
2
) + 𝑖 sin(5 ⋅ 𝜋

2
)) = 32(0 + 𝑖) = 32𝑖 . □

Compare to how annoying this would be if we tried to do it by multiplying 10 times: the fastest way
with repeated squaring would be something like

(1 + 𝑖)2 = (1)2 + 2 ⋅ 1 ⋅ 𝑖 + 𝑖2 = 1 + 2𝑖 + (−1) = 2𝑖

(1 + 𝑖)4 = ((1 + 𝑖)2)2 = (2𝑖)2 = 4𝑖2 = 4 ⋅ (−1) = −4

(1 + 𝑖)8 = ((1 + 𝑖)4)2 = (−4)2 = 16

(1 + 𝑖)10 = (1 + 𝑖)8 ⋅ (1 + 𝑖)2 = 16 ⋅ 2𝑖 = 32𝑖.

But you could easily imagine replacing 10 with 100 (which we’ll do shortly) or even 1000000. Such a
method would quickly become infeasible; whereas the polar coordinates let us avoid all this work.

§10.2 [SIDENOTE] Extracting trig identities and the Brahmagupta-Fibonacci
identity
In this optional section I want to convince you that Equation 7 and Equation 6 are doing a lot of magic.
To do so I’ll show you two consequences of these equations that you would not expect to be true.

§10.2.1 Application 1: Equation 7 gives the Brahmagupta-Fibonacci identity

Let’s start with magnitudes. If you don’t trust your teacher (a good instinct to have sometimes 😉) you
might not believe me the magnitudes multiply. Because let’s say 𝑧1 = 𝑎 + 𝑏𝑖 and 𝑧2 = 𝑐 + 𝑑𝑖. Then

𝑧1𝑧2 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖

doesn’t look anything right. If Equation 7 is really true, it’s promising that
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√𝑎2 + 𝑏2 ⋅ √𝑐2 + 𝑑2 = √(𝑎𝑐 − 𝑏𝑑)2 + (𝑎𝑑 + 𝑏𝑐)2.

In other words, the equation

(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = (𝑎𝑐 − 𝑏𝑑)2 + (𝑎𝑑 + 𝑏𝑐)2 (8)

is supposed to be true for all real numbers 𝑎, 𝑏, 𝑐, 𝑑.

But how could that be? Equation 8 doesn’t even look true, and if I told this to you with no context,
you wouldn’t believe it. It’s not until you multiply out Equation 8 with brute force that you might
believe me:

(𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = 𝑎2𝑐2 + 𝑏2𝑐2 + 𝑎2𝑑2 + 𝑏2𝑑2

(𝑎𝑐 − 𝑏𝑑)2 + (𝑎𝑑 + 𝑏𝑐)2 = (𝑎2𝑐2 − 2𝑎𝑏𝑐𝑑 + 𝑏2𝑑2) + (𝑎2𝑑2 + 2𝑎𝑏𝑐𝑑 + 𝑏2𝑐2)

= 𝑎2𝑐2 + 𝑏2𝑑2 + 𝑎2𝑑2 + 𝑏2𝑐2.

They really are equal! The 2𝑎𝑏𝑐𝑑 has apparently cancelled out magically. (This unexpected identity is
called the Brahmagupta-Fibonacci identity, if you want a name, but we won’t use this name again later.)

§10.2.2 Application 2: Equation 6 gives trig addition and double-angle formulas

Let’s say you still don’t trust your teacher (again, good!) and even though you have grudgingly
admitted Equation 7 is true, you don’t believe the other equation Equation 6. Because if Equation 6 is
true, then again brute-force expansion gives

cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2) = (cos 𝜃1 + 𝑖 sin 𝜃1)(cos 𝜃2 + 𝑖 sin 𝜃2)
= (cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2) + 𝑖(sin 𝜃1 cos 𝜃2 + sin 𝜃2 cos 𝜃1).

So for Equation 6 to be true, you would need for any angles 𝜃1 and 𝜃2 that

cos(𝜃1 + 𝜃2) = cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2

sin(𝜃1 + 𝜃2) = sin 𝜃1 cos 𝜃2 + cos 𝜃1 sin 𝜃2.

But this is true: it’s the trig addition formula!

Put another way: if you have trouble remembering the trig addition formulas (like me), then Equation 6
shows you how you can derive it. Equation 6 is easy to remember, and if you do the expansion, the
mysterious trig addition formula falls out.

The double angle formula is also a special case: from

cos(2𝜃) + 𝑖 sin(2𝜃) = (cos 𝜃 + 𝑖 sin 𝜃)2 = (cos2 𝜃 − sin2 𝜃) + 𝑖 ⋅ 2 sin 𝜃 cos 𝜃

we can read off cos(2𝜃) = cos2 𝜃 − sin2 𝜃 and sin(2𝜃) = 2 sin 𝜃 cos 𝜃.

§10.3 [RECIPE] 𝑛th powers of complex numbers
Earlier I showed you how to calculate (1 + 𝑖)10 rapidly using polar form. You can do this in general
too: the point is that

(𝑟(cos 𝜃 + 𝑖 sin 𝜃))𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃). (9)

Equation 9 is sometimes called De Moivre’s theorem, but it’s such an easy consequence of Equation 6
and Equation 7 that I don’t think it really needs its own name. Nonetheless, if you see the name in
other places, it’s referring to Equation 9.
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Recipe for raising a complex number to the 𝑛th power

Given a complex number 𝑧, to compute 𝑧𝑛:

1. Convert 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) in polar form if it isn’t already.
2. Use 𝑧𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃).
3. Simplify the cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃 and output the answer.

Here’s the example with (1 + 𝑖)10 again, but with 10 replaced by 100 for emphasis.

Sample Question

Compute (1 + 𝑖)100.

Solution.  The polar form of 1 + 𝑖 is:

1 + 𝑖 =
√

2(cos 𝜋
4

+ 𝑖 sin 𝜋
4
).

Raising to the 100th power gives

(1 + 𝑖)100 = (
√

2)
100

(cos(100 ⋅ 𝜋
4
) + 𝑖 sin(100 ⋅ 𝜋

4
))

= 250(cos(25𝜋) + 𝑖 sin(25𝜋))

= 250(cos(𝜋) + 𝑖 sin(𝜋)) = −250 . □

Sample Question

Compute (1 −
√

3𝑖)
20

.

Solution.  First convert 1 −
√

3𝑖 to polar form:

1 −
√

3𝑖 = 2(cos 5𝜋
3

+ 𝑖 sin 5𝜋
3

).

Then, when we raise to the 20th power, we get

(1 −
√

3𝑖)
20

= 220(cos(100𝜋
3

) + 𝑖 sin(100𝜋
3

)).

The cosine and sine cycle every 2𝜋, so we write

100𝜋
3

= 4𝜋
3

+ 2𝜋 ⋅ 16.

We only care about the “remainder” 4𝜋
3 ; we have

cos(100𝜋
3

) = cos(240°) = −1
2

sin(100𝜋
3

) = sin(240°) = −
√

3
2

.

Substituting back:
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(1 −
√

3𝑖)
20

= 220(−1
2

− 𝑖
√

3
2

)

= 220 × (−1 +
√

3𝑖
2

) = −219(1 +
√

3𝑖) .

(If you care, 219 = 524288, so one could also write −524288 − 524288
√

3𝑖.) □

§10.4 [TEXT] An example of 𝑛th roots of complex numbers: solving 𝑧5 = 243𝑖
This section is dedicated to 𝑧𝑛 and is on-syllabus for exam. Specifically, you ought to be able to solve
equations like 𝑧5 = 243𝑖. This section shows you how.

In this whole section, you always prefer to work in polar form. So if you get input in rectangular form,
you should first convert to rectangular form. Conversely, if the answer is asked for in rectangular form,
you should work with polar form anyway, and only convert to rectangular output at the end.

If you can raise to the 𝑛th power, you should be able to extract 𝑛th roots too, by running the recipe
“backwards”. First, I will tell you what the answer looks like:

Memorize: The shape of an 𝑛th root answer

Consider solving the equation 𝑧𝑛 = 𝑤, where 𝑤 is a given nonzero complex number, for 𝑧. Then
you should always output exactly 𝑛 answers. Those 𝑛 answers all have magnitude |𝑤| 1

𝑛  and
arguments spaced apart by 360°

𝑛 .

I think it’s most illustrative if I show you the five answers to

𝑧5 = 243𝑖

to start. Again, first we want to convert everything to polar coordinates:

𝑧5 = 243𝑖 = 243(cos 90° + 𝑖 sin 90°).

At this point, we know that if |𝑧5| = 243, then |𝑧| = 3; all the answers should have absolute 3. So the
idea is to find the angles. Here are the five answers:

𝑧1 = 3(cos 18° + 𝑖 sin 18°) ⟹ (𝑧1)
5 = 243(cos 90° + 𝑖 sin 90°)

𝑧2 = 3(cos 90° + 𝑖 sin 90°) ⟹ (𝑧2)
5 = 243(cos 450° + 𝑖 sin 450°)

𝑧3 = 3(cos 162° + 𝑖 sin 162°) ⟹ (𝑧3)
5 = 243(cos 810° + 𝑖 sin 810°)

𝑧4 = 3(cos 234° + 𝑖 sin 234°) ⟹ (𝑧4)
5 = 243(cos 1170° + 𝑖 sin 1170°)

𝑧5 = 3(cos 306° + 𝑖 sin 306°) ⟹ (𝑧5)
5 = 243(cos 1530° + 𝑖 sin 1530°).

Here’s a picture of the five numbers:
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Figure 17: The five answers to 𝑧5 = 243𝑖, each of length 3.

On the right column, all the numbers are equal. Notice something interesting happening on the right-
hand side. The numbers cos 90° + 𝑖 sin 90° and cos 450° + 𝑖 sin 450°, etc. are all the same number; if
you draw them in the plane, they’ll point to the same thing. However, they give five different answers
on the left. But if you continue the pattern one more, you start getting a cycle

𝑧6 = 3(cos 378° + 𝑖 sin 378°) ⟹ (𝑧6)
5 = 243(cos 1890° + 𝑖 sin 1890°).

This doesn’t give you a new answer, because 𝑧6 = 𝑧1.

§10.5 [RECIPE] Taking the 𝑛th root of a complex number
In general, if 𝑤 has argument 𝜃, then the arguments of 𝑧 satisfying 𝑧𝑛 = 𝑤 start at 𝜃

𝑛  and then go up
in increments of 360°

𝑛 . (For example, they started at 90°
5 = 18° for answers to 𝑧5 = 243𝑖.) So you can

describe the general recipe as:
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Recipe for 𝑛th roots of complex numbers

1. Convert 𝑤 to polar form; say it has angle 𝜃.
2. One of the 𝑛 answers will be |𝑤| 1

𝑛 (cos 𝜃
𝑛 + 𝑖 sin 𝜃

𝑛).
3. The other 𝑛 − 1 answers are obtained by increasing the angle in increments of 360°

𝑛 .

Sample Question

Solve 𝑧5 = 243𝑖 for 𝑧 ∈ ℂ.

Solution.  We first convert to polar form as

243𝑖 = 243(cos 90° + 𝑖 sin 90°)

and see that 2431
5 = 3, and 𝜃 = 90°. The first angle is 𝜃

5 = 18°. So the five answers are

𝑧1 = 3(cos 18° + 𝑖 sin 18°)
𝑧2 = 3(cos 90° + 𝑖 sin 90°)
𝑧3 = 3(cos 162° + 𝑖 sin 162°)
𝑧4 = 3(cos 234° + 𝑖 sin 234°)
𝑧5 = 3(cos 306° + 𝑖 sin 306°).

(As it happens, 𝑧2 = 3𝑖, which is easy to check by hand works.) □

Sample Question

Solve 𝑧4 = 8 + 8
√

3𝑖 for 𝑧 ∈ ℂ.

Solution.  We first convert to polar form as

8 + 8
√

3𝑖 = 16(cos 60° + 𝑖 sin 60°)

and see that 161
4 = 2, and 𝜃 = 60°. The first angle is 𝜃

4 = 15°. So the four answers are

𝑧1 = 2(cos 15° + 𝑖 sin 15°)
𝑧2 = 2(cos 105° + 𝑖 sin 105°)
𝑧3 = 2(cos 195° + 𝑖 sin 195°)
𝑧4 = 2(cos 285° + 𝑖 sin 285°). □

Sample Question

Solve 𝑧3 = −1000 for 𝑧 ∈ ℂ.

Solution.  We first convert to polar form as

−1000 = 1000(cos 180° + 𝑖 sin 180°)

and see that 10001
3 = 10, and 𝜃 = 180°. The first angle is 𝜃

3 = 60°. So the three answers are
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𝑧1 = 10(cos 60° + 𝑖 sin 60°)
𝑧2 = 10(cos 180° + 𝑖 sin 180°)
𝑧3 = 10(cos 300° + 𝑖 sin 300°).

(As it happens, 𝑧2 = −10, as expected, since (−10)3 = −1000.) □

§10.6 [RECAP] Rectangular vs polar
Every complex number can be written in either rectangular form (𝑎 + 𝑏𝑖 for 𝑎, 𝑏 ∈ ℝ) or polar form
(𝑟𝑒𝑖𝜃). We saw that polar form (because of Equation 6 and Equation 7) is really good if you’re doing
lots of multiplication. So to summarize, Table 4 tells you rules of thumb for complex numbers.

Operation In rectangular In polar
𝑧1 ± 𝑧2 ✅ Component-wise like in ℝ2

❌ Unless 𝑧1 is a real multiple of 𝑧2

𝑧1𝑧2 ✅ Expanding ✅ By Equation 6 + Equation 7
𝑧1/𝑧2 ✅ Write 1

𝑐+𝑑𝑖 = 𝑐−𝑑𝑖
𝑐2+𝑑2  then multiply ✅ By Equation 6 + Equation 7

𝑧𝑛
❌ Possible but takes forever ✅ Shown in Section 10.3

𝑛th root of 𝑧 ❌ Not recommended for 𝑛 > 1 ✅ Shown in Section 10.5

§10.7 [EXER] Exercises

Exercise 10.1 (*).  Without a calculator, give an example of an ordered pair (𝑎, 𝑏) of integers
satisfying

𝑎2 + 𝑏2 = 101 ⋅ 401 ⋅ 901.
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Chapter 11. Challenge review problems for Parts Alfa, Bravo, and
Charlie
This set of problems is intended to be more difficult. You can try them here if you want, but don’t be
discouraged if you find the problems tricky. All of these are much harder than anything that showed
up on the actual midterm. Solutions to these six exercises are in Chapter 44.

(Suggested usage: think about each for 20-30 minutes, then read the solution. I tried to craft problems
that teach deep understanding and piece together multiple ideas, rather than just using one or two
isolated recipes.)

Exercise 11.1.  In ℝ3, compute the projection of the vector (
4
5
6
) onto the plane 𝑥 + 𝑦 + 2𝑧 = 0.

Exercise 11.2 (*).  Suppose 𝐴, 𝐵, 𝐶 , 𝐷 are points in ℝ3. Give a geometric interpretation for this
expression:

1
6

| ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐴 ⋅ ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐵 × ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐶)|.

Exercise 11.3 (*).  Fix a plane 𝒫 in ℝ3 which passes through the origin. Consider the linear trans-
formation 𝑓 : ℝ3 → ℝ3 where 𝑓(𝐯) is the projection of 𝐯 onto 𝒫. Let 𝑀  denote the 3 × 3 matrix
associated to 𝑓 . Compute the determinant of 𝑀 .

Exercise 11.4 (*).  Let 𝐚 and 𝐛 be two perpendicular unit vectors in ℝ3. A third vector 𝐯 in ℝ3 lies
in the span of 𝐚 and 𝐛. Given that 𝐯 ⋅ 𝐚 = 2 and 𝐯 ⋅ 𝐛 = 3, compute the magnitudes of the cross
products 𝐯 × 𝐚 and 𝐯 × 𝐛.

Exercise 11.5.  Compute the trace of the 2 × 2 matrix 𝑀  given the two equations

𝑀(4
7) = (5

9)  and 𝑀(5
9) = (4

7).

Exercise 11.6.  There are three complex numbers 𝑧 satisfying 𝑧3 = 5 + 6𝑖. Suppose we plot these
three numbers in the complex plane. Compute the area of the triangle they enclose.
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Part Delta: Parametric side-quest
For comparison, Part Delta corresponds roughly to §5 and §7 of Poonen’s notes.

Chapter 12. Parametric equations

§12.1 [TEXT] Multivariate domains vs multivariate codomains
In 18.01, you did calculus on functions 𝐹 : ℝ → ℝ. So “multivariable calculus” could mean one of two
things to start:

• Work with 𝐹 : ℝ → ℝ𝑛 instead (i.e. make the codomain multivariate).
• Work with 𝐹 : ℝ𝑛 → ℝ instead (i.e. make the domain multivariate).

What you should know now is the first thing is WAY easier than the second. This Part Delta is
thus really short.

§12.2 [TEXT] Parametric pictures
From now on, we’re going to usually change notation

𝐫 : ℝ → ℝ𝑛

𝐫(𝑡) =
(
((
(function in 𝑡

⋮
function in 𝑡)

))
).

The choice of letter 𝑡 for the input variable usually means “time”; and we use 𝐫 for the function name
to remind that the output is a vector. A cartoon of this is shown in Figure 18.

Type signature

When you see 𝐫(𝑡) or similar notation, the time variable 𝑡 has type scalar. The output is in ℝ𝑛,
and depending on context, you can think of it as either a point or a vector.

Figure 18: We think of 𝐫(𝑡) as using a timeline in some variable 𝑡 to trace out a
path of some sort in ℝ𝑛.
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Warning: 𝐫(𝑡) can be drawn as either a dot or arrow, but we still use vector notation
anyway in Part Delta

Unfortunately, even in cases where we think of 𝐫(𝑡) as a point like (3, 5), we still use boldface
letter 𝐫 and write (3

5). Type enthusiasts may rightfully object to this, but this is so entrenched
that it will cause confusion with other sources if I’m too pedantic.

So, don’t worry too much about the difference between dot and arrow in this chapter. Throughout
all of Part Delta we will not treat (3, 5) and (3

5) as different.

If you’re drawing a picture of a parametric function, usually all the axes are components of 𝐫(𝑡) and the
time variable doesn’t have an axis. In other words, in the picture, all the axis variables are output
components, and we treat them all with equal respect. The input time variable doesn’t show up
at all. (This is in contrast to 18.01 𝑥𝑦-graphs, where one axis was input and one axis was output. In
the next section when we talk about level curves, it will be the other way around, where the output
variable is anonymous and every axis is an input variable we treat with equal respect.)

Example

The classic example

𝐫(𝑡) = (cos(𝑡)
sin(𝑡))

would be drawn as the unit circle. You can imagine a particle starting at 𝐫(0) = (1
0) and then

moving around the unit circle counterclockwise with constant speed. It completes a full revolu-
tion in 2𝜋 time: 𝐫(2𝜋) = (1

0).

§12.3 [TEXT] Just always use components
Why is 𝐫 : ℝ → ℝ𝑛 so easy that Part Delta is one chapter? Because there’s pretty much only one thing
you need to ever do:

Idea

TLDR Just always use components.

That is, if 𝐫 : ℝ → ℝ3 (say), basically 90%+ of the time what you do is write

𝐫(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)⟩ = 𝑥(𝑡)𝐞1 + 𝑦(𝑡)𝐞2 + 𝑧(𝑡)𝐞3

and then just do single-variable calculus or calculations on each 𝑓𝑖.

• Need to differentiate 𝐫? Differentiate each component.
• Need to integrate 𝐫? Integrate each component.
• Need the absolute value of 𝐫? Square root of sum of squares of components.

And so on. An example of Evan failing to do this is shown in Figure 19.
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Figure 19: Seriously, just do everything componentwise.

§12.4 [RECIPE] Parametric things
I’ll write this recipe with two variables, but it works equally well for three. Suppose you’re given an
equation 𝐫(𝑡) = (𝑥(𝑡)

𝑦(𝑡)). There are some things you could be asked:

Recipe/definitions for parametric stuff

• The velocity vector at a time 𝑡 is defined as the derivative

𝐫′(𝑡) = (𝑥′(𝑡)
𝑦′(𝑡)).

• The speed at a time 𝑡 is defined as the absolute value of the velocity:

|𝐫′(𝑡)| = √𝑥′(𝑡)2 + 𝑦′(𝑡)2.
• The acceleration vector at a time 𝑡 is defined as the second derivative of each component:

𝐫″(𝑡) = (𝑥″(𝑡)
𝑦″(𝑡)).

For three-variable 𝐫(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)⟩, do the same thing with three components.

I don’t know if there’s a word for the absolute value of the acceleration vector (the way speed is the
absolute value of the velocity vector).

One more thing to mention now:

Recipe/definition for arc length

The arc length from time 𝑡start to 𝑡stop is defined as the integral of the speed:

arc length = ∫
stop time

𝑡=start time
|𝐫′(𝑡)| d𝑡.

(Technically, I should use “definition” boxes rather than “recipe” boxes here, since these are really the
definition of the terms involved, and the recipes are “use the definition verbatim”.)
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Type signature

• Velocity 𝐫′(𝑡) and acceleration 𝐫″(𝑡), are vectors. In these cases, you should always draw
them as arrows (vectors) rather than dots. That is, you should never draw velocity or accel-
eration as a dot.

• However, speed |𝐫′(𝑡)| and arc length are scalars (numbers).

Sample Question

Let

𝐫(𝑡) = (cos(𝑡)
sin(𝑡)).

Calculate:

• The velocity vector at time 𝑡 = 𝜋
3 .

• The speed at time 𝑡 = 𝜋
3 .

• The acceleration vector at time 𝑡 = 𝜋
3 .

• The arc length from 𝑡 = 0 to 𝑡 = 𝜋
3 .

Solution.  Let 𝐫(𝑡) = (cos(𝑡)
sin(𝑡)). We will compute the following quantities.

Velocity vector at 𝑡 = 𝜋
3 The velocity vector is the derivative of the position vector 𝐫(𝑡) with respect

to 𝑡:

𝐯(𝑡) = 𝐫′(𝑡) = (− sin(𝑡)
cos(𝑡) ).

At 𝑡 = 𝜋
3 , we have:

𝐯(𝜋
3
) = (

− sin(𝜋
3)

cos(𝜋
3)

) = (−
√

3
2

1
2

).

Thus, the velocity vector at 𝑡 = 𝜋
3  is:

𝐯(𝜋
3
) = (−

√
3

2
1
2

).

Speed at 𝑡 = 𝜋
3 The speed is the magnitude of the velocity vector:

|𝐯(𝑡)| = √(− sin(𝑡))2 + (cos(𝑡))2 = √sin2(𝑡) + cos2(𝑡) = 1.

Thus, the speed at 𝑡 = 𝜋
3  (or in fact any time) is:

|𝐯(𝜋
3
)| = 1.

Acceleration vector at 𝑡 = 𝜋
3 Differentiate the velocity vector we got earlier:

𝐚(𝑡) = 𝐯′(𝑡) = (− cos(𝑡)
− sin(𝑡)).

At 𝑡 = 𝜋
3 , we have:
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𝐚(𝜋
3
) = (

− cos(𝜋
3)

− sin(𝜋
3)

) = (
−1

2

−
√

3
2

).

Thus, the acceleration vector at 𝑡 = 𝜋
3  is:

𝐚(𝜋
3
) = (

−1
2

−
√

3
2

).

Arc length The arc length of a parametric curve is given by:

𝐿 = ∫
𝜋
3

0
|𝐫′(𝑡)| d𝑡 = ∫

𝜋
3

0
1 d𝑡 = 𝜋

3
.

Thus, the arc length from 𝑡 = 0 to 𝑡 = 𝜋
3  is:

𝐿 = 𝜋
3
. □

§12.5 [TEXT] Constant velocity and angular velocity
In 18.02, we will see some complicated trajectories which are actually the sum of two simpler ones. So
we start by describing some examples of simple trajectories in this section; then in the next section
we start adding some of them together.

Constant velocity is easy: if you have a point that starts from a point 𝐴0 and moves in a straight line
with velocity 𝐯, then the parametrization is

𝐀(𝑡) = 𝐴0 + 𝑡𝐯.

Sample Question

A point 𝑃  starts at (1, 2, 3) and moves with constant velocity 5 in the +𝑥 direction. Parametrize
the position 𝐏(𝑡).

Solution.  Just write

𝐏(𝑡) =
(
((
(1

2
3)
))
) + 𝑡

(
((
(5

0
0)
))
) =

(
((
(5𝑡 + 1

2
3 )

))
). □

Rotation is actually also pretty simple, but it uses the term “angular velocity” instead. If you haven’t
seen the term angular velocity, we describe it now.

Definition

An object is said to have angular velocity 𝜔 if it rotates at a rate of 𝜔 radians per unit time. For
example, an angular velocity of “10𝜋 per second” means the object completes five rotations (of
2𝜋 radians each) every second.

Suppose a point 𝑃  moves in a circle of radius 𝑟 around (0, 0) with constant angular velocity 𝜔. Then
the point can always be written as

(𝑟 cos(𝜃), 𝑟 sin(𝜃))
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for some angle 𝜃 that varies with 𝑡. A counterclockwise angular velocity corresponds to 𝜃 increasing
by 𝜔 per unit time (hence the angle at time 𝑡 is 𝜃 + 𝑡𝜔); clockwise is decreasing by 𝜔 per unit time
instead (hence the angle at time 𝑡 is 𝜃 − 𝑡𝜔). See Figure 20.

Figure 20: Rotation of a point with constant angular velocity.

Recipe for motion with constant angular velocity

1. Find the initial angle 𝜃0 corresponding to the position at time 𝑡 = 0.
2. If the motion is counterclockwise, output

𝐏(𝑡) = (𝑟 cos(𝜃0 + 𝜔𝑡)
𝑟 sin(𝜃0 + 𝜔𝑡)).

If it’s clockwise instead output

𝐏(𝑡) = (𝑟 cos(𝜃0 − 𝜔𝑡)
𝑟 sin(𝜃0 − 𝜔𝑡)).

(Note the change from + to −.)

Sample Question

A point 𝑃  moves along a circle 𝑥2 + 𝑦2 = 4 of radius 2 centered at (0, 0). It starts at (
√

3, 1) and
moves clockwise with angular velocity 𝜔. Parametrize the position 𝐏(𝑡).

Solution.  The point starts at a 𝜋6 = 30° angle. So

𝐏(𝑡) = (
2 cos(𝜋

6 − 𝜔𝑡)
2 sin(𝜋

6 − 𝜔𝑡)
).
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Note that when 𝑡 = 0 this indeed gives the starting point we originally had. □

§12.6 [RECIPE] Finding the parametrization of complicated-looking trajecto-
ries by adding two simpler ones
Since everything is so mechanical once you have an equation for 𝐫(𝑡), there’s a shape of exam question
that comes up in 18.02 where you’re given some weird-looking path and need to get its equation 𝐫(𝑡)
yourself in order to unlock things like velocity/speed/etc.

Something like 90%+ of the time if the shape is weird it’s because it’s the sum of two other vectors and
you just add them. I’ll write a recipe just for comedic value:

Recipe for decomposing paths as a sum of two things

Suppose 𝑃  is a point following some weird trajectory. To parametrize 𝐏(𝑡), one common
approach is:

1. Find an expression for some other point of interest 𝑄, say 𝐐(𝑡).
2. Find an expression for 𝐯(𝑡), the vector pointing from 𝑄 to 𝑃 .
3. Output 𝐏(𝑡) = 𝐐(𝑡) + 𝐯(𝑡).

We give a bunch of examples of this to follow. In this section of the notes only, if 𝑃  is a point, I write
𝐏(𝑡) for the corresponding parametric curve.

Tip

This section will feel repetitive. Pretty much all the examples look the same after a while. You
have an amusement park ride, or a frisbee, or a planet rotating or something, or a wheel rolling
some way or other… they’re all thin flavor-text on the exact same thing over and over.

Okay, here are some examples.

Figure 21: Spinning frisbee.
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Sample Question

A frisbee has the shape of a circle of radius 𝑟, and one point 𝑃  on the edge of the frisbee is marked.
It’s spinning in a circular motion with angular velocity 𝜔 counterclockwise and radius 𝑟 about its
center, while simultaneously moving in a straight line with constant velocity (𝑣𝑥

𝑣𝑦
) in the plane.

The frisbee initially starts at (0, 0) with the marked point at (0, 𝑟).

Parametrize the position of the marked point 𝐏(𝑡) on the edge of the frisbee as a function of time.
(See Figure 21.)

Solution.  The frisbee is moving with constant velocity (𝑣𝑥
𝑣𝑦

).

1. The position of the center of the frisbee as a function of time is:

𝐎(𝑡) = (𝑣𝑥𝑡
𝑣𝑦𝑡

).

This gives the trajectory of the center of the frisbee in the plane.

2. The frisbee is also rotating about its center with angular velocity 𝜔. The marked point on the
edge of the frisbee follows a circular path around the center of the frisbee with radius 𝑟.

Since the marked point starts at (0, 𝑟) at 𝑡 = 0, its rotational motion around the center can be
described parametrically as:

𝐯(𝑡) = (
𝑟 cos(𝜋

2 + 𝜔𝑡)
𝑟 sin(𝜋

2 + 𝜔𝑡)) = (−𝑟 sin(𝜔𝑡)
𝑟 cos(𝜔𝑡) ).

Here, 𝜔 is the angular velocity (in radians per second), and the sine and cosine terms describe
the counterclockwise circular motion of the marked point around the center. (Note for 𝑡 = 0 we
get (0

𝑟) which is what we want.)

3. To find the total position of the marked point as a function of time, we need to combine the
translational motion of the frisbee’s center 𝐎(𝑡) with the rotational motion 𝐯(𝑡). Thus, the
position of the marked point at time 𝑡 is the sum of the two:

𝐏(𝑡) = 𝐎(𝑡) + 𝐯(𝑡).

Substituting the expressions for 𝐎(𝑡) and 𝐯(𝑡), we get:

𝐏(𝑡) = (𝑣𝑥𝑡
𝑣𝑦𝑡

) + (−𝑟 sin(𝜔𝑡)
𝑟 cos(𝜔𝑡) ).

Simplifying, we have:

𝐏(𝑡) = (𝑣𝑥𝑡 − 𝑟 sin(𝜔𝑡)
𝑣𝑦𝑡 + 𝑟 cos(𝜔𝑡)). □
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Sample Question

A planet orbits the sun in a circular path with radius 𝑅𝑠 and counterclockwise angular velocity 𝜔𝑠.
A moon orbits the planet in a circular path with radius 𝑅𝑚 and clockwise angular velocity 𝜔𝑚.
Parametrize the motion 𝐌(𝑡) of the moon relative to the sun, assuming the sun is at the origin,
the planet starts at (𝑅𝑠, 0), and the moon starts at (𝑅𝑠, −𝑅𝑚). (See Figure 22.)

Figure 22: A planet orbits a moon in circular motion. (In real life, I think they’re
probably ellipses and not circles.)

Solution.

1. The planet moves in a counterclockwise orbit around the sun with radius 𝑅𝑠 and angular velocity
𝜔𝑠. The position of the planet as a function of time is:

𝐏(𝑡) = (𝑅𝑠 cos(𝜔𝑠𝑡)
𝑅𝑠 sin(𝜔𝑠𝑡)

)

since the planet starts due east of the sun and spins counterclockwise. This describes a counter-
clockwise circular motion of the planet with period 2𝜋

𝜔𝑠
.

2. Since the moon is orbiting the planet clockwise, the direction of its motion is reversed compared
to the planet’s orbit. The moon starts at ⟨0, −𝑅𝑚⟩ relative to the planet (due south) and moves
with angular velocity 𝜔𝑚.

The position of the moon relative to the planet, moving clockwise, is given by:
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𝐯(𝑡) = (
𝑅𝑚 cos(3𝜋

2 − 𝜔𝑚𝑡)
𝑅𝑚 sin(3𝜋

2 − 𝜔𝑚𝑡)) = (−𝑅𝑚 sin(𝜔𝑚𝑡)
−𝑅𝑚 cos(𝜔𝑚𝑡)).

This describes the clockwise motion of the moon around the planet.

3. To find the total position of the moon relative to the sun, we combine the position of the planet
𝐏(𝑡) and the moon’s position relative to the planet 𝐯(𝑡). Thus, the position of the moon relative
to the sun is:

𝐌(𝑡) = 𝐏(𝑡) + 𝐯(𝑡).

Substituting the expressions for 𝐏(𝑡) and 𝐯(𝑡), we get:

𝐌(𝑡) = (𝑅𝑠 cos(𝜔𝑠𝑡)
𝑅𝑠 sin(𝜔𝑠𝑡)

) + (−𝑅𝑚 sin(𝜔𝑚𝑡)
−𝑅𝑚 cos(𝜔𝑚𝑡)).

Simplifying, we have:

𝐌(𝑡) = (𝑅𝑠 cos(𝜔𝑠𝑡) − 𝑅𝑚 sin(𝜔𝑚𝑡)
𝑅𝑠 sin(𝜔𝑠𝑡) − 𝑅𝑚 cos(𝜔𝑚𝑡)). □

Sample Question

A wheel of radius 𝑟 starts centered at (0, 𝑟) and moves in the +𝑥 direction with constant speed
𝑣. Let 𝑃  be a point on the rim of the wheel initially at (0, 0). Parametrize the trajectory of the
point 𝐏(𝑡). (A picture is shown in Figure 23.)

Figure 23: The cycloid formed as the wheel rolls to the right.

Solution.  This problem is a little trickier because although it’s easy to write the motion of the center
of the wheel, it’s not obvious what the angular velocity of the wheel 𝜔 should be. That will require
one idea: write the length of the tire track on the ground in two ways.

1. Easy step: The wheel rolls along a straight line with constant velocity 𝑣. The position of the center
of the wheel at time 𝑡 is:

𝐂(𝑡) = (𝑣𝑡
𝑟 ).

This describes the translational motion of the center of the wheel along the horizontal axis.

2. The tricky part of the problem is determining the angular velocity of the wheel. The key idea is
to look at the length of the tire track made on the ground. See Figure 24.

• On the one hand, after time 𝑡, the length of the tire track is

𝐿tire track = 𝑣𝑡
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because the wheel covers that much distance on the ground. This is drawn in brown on
Figure 24.

• On the other hand, after time 𝑡 the length of the tire track should also be

𝐿tire track = 𝜔𝑡 ⋅ 𝑟.

(It might be more natural for some of you if I write this as (𝜔𝑡
2𝜋) ⋅ (2𝜋𝑟) instead, because 𝜔𝑡

2𝜋
is the number of full rotations made, while 2𝜋𝑟 is the total circumference of the wheel.) This
is drawn in dark blue in Figure 24.

Figure 24: Calculating the length of the tire track on the ground in order to
determine the angular velocity 𝜔.

Setting 𝐿tire track equal in the two expressions gives

𝑣𝑡 = 𝜔𝑡 ⋅ 𝑟 ⟹ 𝜔 = 𝑣
𝑟
.

(We now forget about 𝐿tire track. Its only purpose was to give us a way to get our hands on 𝜔.)

Now that we’ve cleared this hurdle, the rest of the sample question is just like the earlier two.
The point on the rim starts at the bottom point of the wheel at 𝑡 = 0, due south. The rotation of
the wheel is clockwise (imagine actually rolling the wheel). Therefore, the position of the point
on the rim relative to the center of the wheel at time 𝑡 can be parametrized as:

𝐑(𝑡) = (
𝑟 cos(3𝜋

4 − 𝜔𝑡)
𝑟 sin(3𝜋

4 − 𝜔𝑡)) = (
−𝑟 sin(𝑣

𝑟 𝑡)
−𝑟 cos(𝑣

𝑟 𝑡)
).

This describes the circular motion of the point on the rim around the center of the wheel with
radius 𝑟 and angular velocity 𝑣𝑟 .

3. To find the total position of the point on the rim of the wheel, we combine the translational
motion of the center of the wheel 𝐂(𝑡) with the rotational motion of the point on the rim 𝐑(𝑡).
The total position of the point on the rim at time 𝑡 is:

𝐏(𝑡) = 𝐂(𝑡) + 𝐑(𝑡).

Substituting the expressions for 𝐂(𝑡) and 𝐑(𝑡), we get:

𝐏(𝑡) = (𝑣𝑡
𝑟 ) + (

−𝑟 sin(𝑣
𝑟 𝑡)

−𝑟 cos(𝑣
𝑟 𝑡)

).
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Simplifying, we have:

𝐏(𝑡) = (
𝑣𝑡 − 𝑟 sin(𝑣

𝑟 𝑡)
𝑟 − 𝑟 cos(𝑣

𝑟 𝑡)
). □

Now that you have parametric equations for each of these, you can also answer any questions solved
by the methods earlier like “what is the total distance traveled” or “what is the speed at this time” or
so on. Example:

Remark

The shape of 𝐏 is called a cycloid, and it’s shown in Figure 23. The shape looks quite scary!
However, you don’t actually need to know anything about the shape to compute things like the
arc length (see next sample question). The geometry picture is only used to extract the algebraic
expression of 𝐏(𝑡). After that, you can just forget about the picture and do calculus on the
expression you extracted.

Let’s see this.

Sample Question

A wheel of radius 1 starts centered at (0, 1) and moves in the +𝑥 direction with constant speed
1. Let 𝑃  be a point on the rim of the wheel initially at (0, 0). Compute the total arc length of the
trajectory of the point 𝑃  from time 𝑡 = 0 to 𝑡 = 2𝜋.

Solution.  We just got the general equation

𝐏(𝑡) = (
𝑣𝑡 − 𝑟 sin(𝑣

𝑟 𝑡)
𝑟 − 𝑟 cos(𝑣

𝑟 𝑡)
)

for a cycloid. For 𝑣 = 1 and 𝑟 = 1 this is

𝐏(𝑡) = ( 𝑡 − sin(𝑡)
𝑟 − 𝑟 cos(𝑡)).

We differentiate to get the velocity vector

𝐏′(𝑡) = (1 − cos(𝑡)
sin(𝑡) ).

Ergo, the arc length is given by the formula

𝐿 = ∫
2𝜋

0
√(1 − cos(𝑡))2 + sin(𝑡)2 d𝑡.

This is now an 18.01 integral question. In this particular case, the square root can be simplified using
trig calculation. We can expand the terms inside the square root:

(1 − cos(𝑡))2 + sin2(𝑡) = 1 − 2 cos(𝑡) + cos2(𝑡) + sin2(𝑡).

Using the identity sin2(𝑡) + cos2(𝑡) = 1, this simplifies to:

1 − 2 cos(𝑡) + 1 = 2 − 2 cos(𝑡).

109



Linear Algebra and Multivariable Calculus — Evan Chen

The trick is to use the half-angle formula to convert this to

1 − cos(𝑡) = 2 sin2( 𝑡
2
) ⟹ √2 − 2 cos(𝑡) = √4 sin2( 𝑡

2
) = |2 sin( 𝑡

2
)|.

Hence, the integral now becomes:

𝐿 = ∫
2𝜋

0
√2(1 − cos(𝑡)) d𝑡 = ∫

2𝜋

0
|2 sin( 𝑡

2
)| d𝑡.

Over the interval 0 ≤ 𝑡 ≤ 2𝜋 we always have sin( 𝑡
2) ≥ 0, so we drop the absolute value:

𝐿 = ∫
2𝜋

0
2 sin( 𝑡

2
) d𝑡 = [−4 cos( 𝑡

2
)]

2𝜋

0
= −4 cos(𝜋) + 4 cos(0) = 8. □

§12.7 [TEXT] Parametrizations with flexible time
Sometimes you’ll be asked to parametrize some path but not required to follow an exact time. (This
happens a lot in Chapter 33, when we introduce work integrals.) In that case, you’re welcome to pick
any parametrization that traces out the requested path, even the start and end time. Usually the strategy
is to pick one that makes subsequent calculation easier.

Sample Question

Let 𝒞 be the line segment starting at (0, 0, 0) and ending at (100, 200, 300). Give any parame-
trization 𝐫(𝑡) for 𝒞.

Solution.  The parametrization should start at (0, 0, 0), end at (100, 200, 300) and pass through the
segment. A snapshot of some examples points on its trajectory are

(0, 0, 0) ⟶ (1, 2, 3) ⟶ (10, 20, 30) ⟶ (50, 100, 150) ⟶ (100, 200, 300)

among many others (like (8𝜋, 16𝜋, 24𝜋), etc.). Anyway, all the following are acceptable parametriza-
tions:

• 𝐫(𝑡) = (𝑡, 2𝑡, 3𝑡) for 0 ≤ 𝑡 ≤ 100
• 𝐫(𝑡) = (100𝑡, 200𝑡, 300𝑡) for 0 ≤ 𝑡 ≤ 1
• 𝐫(𝑡) = (100𝑡7, 200𝑡7, 300𝑡7) for 0 ≤ 𝑡 ≤ 1, if you enjoy making life hard for yourself.

Again, this is easiest to internalize by example: in the first one, try writing down the location of the
point at 𝑡 = 0, 𝑡 = 1, 𝑡 = 2, …, 𝑡 = 100 and verify that it’s tracing out the correct thing.

In practice most people would prefer to work with the first or second one. □

Sample Question

Let 𝒞 be the line segment starting at (7, 8, 9) and ending at (107, 208, 309). Give any parame-
trization 𝐫(𝑡) for 𝒞.

Solution.  For example, the parametrization should start at (7, 8, 9), end at (107, 208, 309). Some
examples of points along the path:

(7, 8, 9) ⟶ (8, 10, 12) ⟶ (17, 28, 39) ⟶ (57, 108, 159) ⟶ (107, 208, 309).

So all the following are examples of acceptable parametrizations:

110



Linear Algebra and Multivariable Calculus — Evan Chen

• 𝐫(𝑡) = (𝑡 + 7, 2𝑡 + 8, 3𝑡 + 9) for 0 ≤ 𝑡 ≤ 100
• 𝐫(𝑡) = (100𝑡 + 7, 200𝑡 + 8, 300𝑡 + 9) for 0 ≤ 𝑡 ≤ 1
• 𝐫(𝑡) = (100 sin(𝑡) + 7, 200 sin(𝑡) + 8, 300 sin(𝑡) + 9) for 0 ≤ 𝑡 ≤ 𝜋

2 , if you really like trig func-
tions.

I recommend the first one. □

Sample Question

Let 𝒞 denote the arc of the parabola 𝑦 = 𝑥2 starting from (−1, 1) and moving right to (1, 1).

Solution.  Just to make things concrete, examples of points we expect to pass through in our path are

(−1, 1) ⟶ (−1
2
, 1
4
) ⟶ (−1

3
, 1
9
) ⟶ (0, 0) ⟶ (1

3
, 1
9
) ⟶ (1

2
, 1
4
) ⟶ (1, 1).

All of the following are thus examples:

• 𝐫(𝑡) = (𝑡, 𝑡2) for −1 ≤ 𝑡 ≤ 1. (Yes, negative time is okay!)
• 𝐫(𝑡) = (𝑡 − 1, (𝑡 − 1)2) for 0 ≤ 𝑡 ≤ 2 if you’re allergic to negative times.
• 𝐫(𝑡) = (2𝑡 − 1, (2𝑡 − 1)2) for 0 ≤ 𝑡 ≤ 1.
• 𝐫(𝑡) = (log(𝑡), log(𝑡)2) for 1𝑒 ≤ 𝑡 ≤ 𝑒 if you have nothing better to do with your day.

I recommend the first one. □

Sample Question

Let 𝒞 be the path traced out by following the parabola 𝑦 = 𝑥2

10 + 1 starting from (−2, 1.4) and
ending at (3, 1.9). (See Figure 25.) Give any parametrization 𝐫(𝑡) for 𝒞.

Figure 25: Walking along the parabola 𝑦 = 𝑥2

10 + 1. I recommend the parametriza-
tion 𝐫(𝑡) = (𝑡, 𝑡2

10 + 1) for −2 ≤ 𝑡 ≤ 3.

Solution.  Examples of points passed through in this trajectory are:

(−3, 1.9) ⟶ (−2, 1.4) ⟶ (−1, 1.1) ⟶ (0, 1) ⟶ (1, 1.1) ⟶ (2, 1.4) ⟶ (3, 1.9).

111



Linear Algebra and Multivariable Calculus — Evan Chen

In situations like this where the one coordinate just moves from one end to the other along the path,
one common strategy is to just use that coordinate as 𝑡 and then figure out the other coordinates
from there.

All of the following are examples of acceptable parametrizations:

• 𝐫(𝑡) = (𝑡, 𝑡2

10 + 1) for −2 ≤ 𝑡 ≤ 3.
• 𝐫(𝑡) = (𝑡 − 2, (𝑡−2)2

10 + 1) for 0 ≤ 𝑡 ≤ 5 if you’re allergic to negative times.
• 𝐫(𝑡) = (5𝑡 − 2, (5𝑡−2)2

10 + 1) for 0 ≤ 𝑡 ≤ 1 if you really like the end time to be 1.
• 𝐫(𝑡) = (5 ⋅ 2𝑡 − 7, (5⋅2𝑡−7)2

10 + 1) for 0 ≤ 𝑡 ≤ 1 if you want to torment graders.

I think most people in practice would prefer the first one. □

Sample Question

Let 𝒞 be the 120° arc of the unit circle starting from (0, −1) and ending at (1
2 ,

√
3

2 ), going
counterclockwise. (See Figure 26.) Give any parametrization 𝐫(𝑡) for 𝒞.

Figure 26: An 120° arc of the unit circle parametrized by 𝐫(𝑡) = (cos 𝑡, sin 𝑡) for
−𝜋

2 ≤ 𝑡 ≤ 𝜋
6 .

Solution.  All the following are examples of acceptable parametrizations:
• 𝐫(𝑡) = (cos 𝑡, sin 𝑡) for −𝜋

2 ≤ 𝑡 ≤ 𝜋
6 .

• 𝐫(𝑡) = (cos 𝑡, sin 𝑡) for 32𝜋 ≤ 𝑡 ≤ 13
6 𝜋, if you insist on using nonnegative 𝑡.

• 𝐫(𝑡) = (cos(𝑡 + 3
2𝜋), sin(𝑡 + 3

2𝜋)) for 0 ≤ 𝑡 ≤ 2
3𝜋.

• 𝐫(𝑡) = (
√

1 − 𝑡2, 𝑡) for −1 ≤ 𝑡 ≤
√

3
2  (not recommended).

Again, I recommend the simplest (first) one. □
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§12.8 [EXER] Exercises

Exercise 12.1.  Compute the arc length of the part of the parabola 𝑦 = 𝑥2 − 𝑥 − 12 between (−3, 0)
and (4, 0).

You will probably need the following antiderivative fact not commonly seen in 18.01:

∫ √𝑢2 + 1 d𝑢 = 𝑢
2
√𝑢2 + 1 +

log(𝑢 +
√

𝑢2 + 1)
2

+ 𝐶.

Exercise 12.2.  At an amusement park, a teacup ride consists of teacups rotating clockwise around
a fixed center while each individual teacup rotates counterclockwise. (See Figure 27 if you’ve never
seen one of these before.) The teacup ride is specified in ℝ2 as follows:

• The teacup ride revolves around (0, 0) with radius 𝑅 and angular velocity 𝜔ride clockwise.
• Each individual teacup rotates counterclockwise with angular velocity 𝜔cup and radius 𝑟.
• Initially, at 𝑡 = 0, the center of the teacup is at (𝑅, 0), and a toddler is positioned at the rightmost

point on the edge of the teacup relative to its center.

Compute the velocity vector of the toddler at time 𝑡.

Figure 27: You know, one of these teacup ride things. Image from Dreamland
Amusements.

Exercise 12.3.  A helicopter in ℝ3 is moving upward with constant speed 5 in the +𝑧 direction
while its rotor blades are spinning with clockwise angular velocity 𝜋

3  and radius 2 in the horizontal
plane. Let 𝑃  be a point on the tip of the blade, initially at (𝑟, 0, 0).

• Parametrize the motion of a point on the tip of one of the blades as a function of time, assuming
the helicopter starts at height 𝑧 = 0 and the blade points along the positive 𝑥-axis at 𝑡 = 0.

• Calculate the distance traveled by 𝑃  from time 𝑡 = 0 to time 𝑡 = 18.
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Figure 28: The clock problem from the AMC 10A in 2015.

Exercise 12.4 (*) (AMC 10A 2015).  In Figure 28, there’s a circular clock with radius 20 cm and a
circular disk of radius 10 cm externally tangent at the 12 o’clock position. The disk has an arrow
painted that points directly up and rolls clockwise. At what point on the clock face will the disk be
tangent when the arrow is next pointing in the upward vertical direction?
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Part Echo: Multivariable differentiation
For comparison, Part Echo corresponds roughly to §8 and §12.1-§12.3 of Poonen’s notes.

Chapter 13. Level curves (aka contour plots)

§13.1 [TEXT] Level curves replace 𝑥𝑦-graphs
In high school and 18.01, you were usually taught to plot single-variable functions in two dimensions,
so 𝑓(𝑥) = 𝑥2 would be drawn as a parabola 𝑦 = 𝑥2, and so on. You may have drilled into your head
that 𝑥 is an input and 𝑦 is an output.

However, for 18.02 we’ll typically want to draw pictures of functions like 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 in a
different way¹⁴, using what’s known as a level curve.

Definition

For any number 𝑐 and function 𝑓(𝑥, 𝑦) the level curve for the value 𝑐 is the plot of points for
which 𝑓(𝑥, 𝑦) = 𝑐.

The contrast to what you’re used to is that:

• In high school and 18.01, the variables 𝑥 and 𝑦 play different roles, with 𝑥 representing the input
and 𝑦 = 𝑓(𝑋) representing output.

• In 18.02, when we draw a function 𝑓(𝑥, 𝑦) both 𝑥 and 𝑦 are inputs; we treat them all with equal
respect. Meanwhile, the output of the function does not have a variable name. If we really want to
refer to it, we might sometimes write 𝑓 = 2 as a shorthand for “the level curve for output 2”.

To repeat that in table format:

18.01 𝑥𝑦-graphs 18.02 level curves

𝑥 is input Both variables are inputs
𝑦 is output No variable name for output

Table 5: Comparison between 18.01 𝑥𝑦-graphs and 18.02 level curve pictures.

We give some examples.

¹⁴This is a lot like how we drew planes in a symmetric form earlier. In high school algebra, you drew 2D graphs of
one-variable functions like 𝑦 = 2𝑥 + 5 or 𝑦 = 𝑥2 + 7. So it might have seemed a bit weird to you that we wrote planes
instead like 2𝑥 + 5𝑦 + 3𝑧 = 7 rather than, say, 𝑧 = 7−2𝑥−5𝑦

3 . But this form turned out to be better, because it let us easily
access the normal vector (which here is ⟨2, 5, 3⟩). The analogy carries over here.
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Example: the level curves of 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2

To draw the level curves of the function 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2, we begin by recalling that a level curve
corresponds to the points (𝑥, 𝑦) such that the function takes on a constant value, say 𝑐. For our
function, this becomes:

𝑦 − 𝑥2 = 𝑐

which rearranges to

𝑦 = 𝑥2 + 𝑐.

Let’s talk through some values of 𝑐.
• As an example, if 𝑐 = 0, then some points on the level curve would be (−3, 9), (−2, 4),

(−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), or even (
√

5, 5) and (
√

11, 11). You probably already
recognize what’s happening: 𝑦 = 𝑥2 happens to be an equation you met before in 18.01 form,
so you get a parabola. (More generally, if you get an equation in 18.01 form where 𝑦 is a
function of 𝑥, you can sketch it like you did before).

• If we change the value of 𝑐 = 2, this equation represents a family of parabolas. For example,
the level curve for 2 will be the parabola with points like (−2, 6), (−1, 3), (0, 2), (1, 3), (2, 6).

In general, as 𝑐 varies, the level curves are parabolas that shift upward or downward along the 𝑦
-axis. The shape of these curves is determined by the quadratic term 𝑥2, which indicates that all
level curves will have the same basic “U” shape.

Figure 29: The level curves of 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2.
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Example: the level curves of 𝑓(𝑥, 𝑦) = 𝑥− 𝑦2

Let’s draw level curves for 𝑓(𝑥, 𝑦) = 𝑥 − 𝑦2. This example is exactly like the previous one, except
the roles of 𝑥 and 𝑦 are flipped.

Figure 30: The level curves of 𝑓(𝑥, 𝑦) = 𝑥 − 𝑦2.

Example: the level curves of 𝑓(𝑥, 𝑦) = 𝑥2 +𝑦2

Let’s draw level curves of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 For each 𝑐 we want to sketch the curve

𝑥2 + 𝑦2 = 𝑐.

When 𝑐 < 0, no points at all appear on this curve, and when 𝑐 = 0 the only point is the origin
(0, 0). For 𝑐 > 0 this equation represents a family of circles centered at the origin (0, 0), with
radius 

√
𝑐. For example:

• For 𝑐 = 1, the level curve is a circle with radius 1.
• For 𝑐 = 4, the level curve is a circle with radius 2.
• For 𝑐 = 9, the level curve is a circle with radius 3.

As 𝑐 increases, the circles expand outward from the origin. These concentric circles represent the
level curves of the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2.

Figure 31: Four of the level curves for 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2.
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Example: the level curves of 𝑓(𝑥, 𝑦) = |𝑥| + |𝑦|

Let’s draw level curves of 𝑓(𝑥, 𝑦) = |𝑥| + |𝑦|. To draw the level curve for 𝑐, we are looking at

|𝑥| + |𝑦| = 𝑐.

Like before, if 𝑐 < 0 there are no pairs (𝑥, 𝑦) at all and for 𝑐 = 0 there is only a single point.

This equation represents a family of polygons. Specifically, for a given value of 𝑐, the points that
satisfy this equation form a diamond shape centered at the origin. Indeed, in the first quadrant
(where the absolute values don’t do anything) it represents the line segment joining (0, 𝑐) to
(𝑐, 0).

So for example,

• When 𝑐 < 0, there are no points.
• For 𝑐 = 0, the level curve is just the point (0, 0).
• For 𝑐 = 1, the level curve is a diamond with vertices at (1, 0), (−1, 0), (0, 1), and (0, −1).
• For 𝑐 = 2, the level curve is a larger diamond with vertices at (2, 0), (−2, 0), (0, 2), and

(0, −2).
• For 𝑐 = 3, the diamond expands further, with vertices at (3, 0), (−3, 0), (0, 3), and (0, −3).

As 𝑐 increases, the diamonds expand outward, maintaining their shape but increasing in size.
Each level curve is a square rotated by 45 degrees.

Figure 32: Four of the level curves for 𝑓(𝑥, 𝑦) = |𝑥| + |𝑦|.

§13.2 [RECIPE] Drawing level curves
Despite the fact this chapter is labeled “recipe”, there isn’t an easy method that works for every
function. You have to do it in an ad-hoc way depending on the exact function you’re given. For
many functions you’ll see on an exam, it’ll be pretty easy.

To summarize the procedure, given an explicit function like 𝑓(𝑥, 𝑦) and the value of 𝑐, one tries to plot
all the points (𝑥, 𝑦) in space with 𝑓(𝑥, 𝑦) = 𝑐. We gave three examples right above, where:

• The level curves of 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2 were easy to plot because for any given 𝑐, the equation just
became an 𝑥𝑦-plot like in 18.01.

• The level curves of 𝑓(𝑥, 𝑦) = 𝑥 − 𝑦2 were similar to the previous example, but the roles of 𝑥 and
𝑦 were flipped.

• To draw the level curves of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, you needed to know that 𝑥2 + 𝑦2 = 𝑟2 represents
a circle of radius 𝑟 centered at (0, 0).
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• To draw the level curves of 𝑓(𝑥, 𝑦) = |𝑥| + |𝑦|, we had to think about it an ad-hoc manner where
we worked in each quadrant; in Quadrant I we figured out that we got a line, and then we applied
the same image to the other quadrants to get diamond shapes.

So you can see it really depends on the exact 𝑓  you are given. If you wrote a really nasty function like
𝑓(𝑥, 𝑦) = 𝑒sin 𝑥𝑦 + cos(𝑥 + 𝑦), there’s probably no easy way to draw the level curve by hand.

§13.3 [TEXT] Level surfaces are exactly the same thing, with three variables
instead of two
Nothing above really depends on having exactly two variables. If we had a three-variable function
𝑓(𝑥, 𝑦, 𝑧), we could draw level surfaces for a value of 𝑐 by plotting all the points in ℝ3 for which
𝑓(𝑥, 𝑦, 𝑧) = 𝑐.

Example: Level surface of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 +𝑦2 + 𝑧2

If 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2, then the level surface for the value 𝑐 will be a sphere with radius√
𝑐 if 𝑐 ≥ 0. (When 𝑐 < 0, the level surface is empty.)

Example: Level surface of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥+ 2𝑦 + 3𝑧

If 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 2𝑦 + 3𝑧, all the level surfaces of 𝑓  are planes in ℝ3, which are parallel to each

other with normal vector (
1
2
3
).

§13.4 [EXER] Exercises

Exercise 13.1.  Draw 2D level curves for some values for the following functions:

• 𝑓(𝑥, 𝑦) = 3
2𝑥 + 𝑦

• 𝑓(𝑥, 𝑦) = 𝑥𝑦
• 𝑓(𝑥, 𝑦) = sin(𝑥2 + 𝑦2)
• 𝑓(𝑥, 𝑦) = 𝑒𝑦−𝑥2

• 𝑓(𝑥, 𝑦) = max(𝑥, 𝑦) (i.e. 𝑓  outputs the larger of its two inputs, so 𝑓(3, 5) = 5 and 𝑓(2, −9) =
2, for example).

Exercise 13.2 (*).  Give an example of a polynomial function 𝑓(𝑥, 𝑦) for which the level curve for
the value 100 consists of exactly seven points.
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Chapter 14. Partial derivatives

§14.1 [TEXT] The point of differentiation is linear approximation
In 18.01, when 𝑓 : ℝ → ℝ, you defined a derivative 𝑓 ′(𝑝) at each input 𝑝 ∈ ℝ, which you thought of
as the slope of the tangent line at 𝑝. Think 𝑓(5.01) ≈ 𝑓(5) + 𝑓 ′(5) ⋅ 0.01. This slope roughly tells
you, if you move a slight distance away from the input 𝑝, this is how fast you expect 𝑓  to change. To
drill the point home again, in 18.01, we had

𝑓(𝑝 + 𝜀) = 𝑓(𝑝) + 𝑓 ′(𝑝) ⋅ 𝜀.

See figure below.

Figure 33: In 18.01, the slope 𝑓 ′(𝑝) tells you how quickly 𝑓  changes near 𝑝.

The 18.01 derivative had type “scalar”. But for a two-variable function, that’s not enough. For concrete-
ness, let’s take

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2

as our example function (for which we have drawn level curves before), and consider some point 𝑃 =
(3, 4), so that 𝑓(3, 4) = 25.

Then, what would a point “close” to (3, 4) mean? The point (3.01, 4) is close, but so is (3, 4.01). For
that matter, so is (3.006, 4.008) — that’s also a point at distance 0.01 away! So having a single number
isn’t enough to describe the rate of change anymore.

For a two-variable function, we would really want two numbers, in the sense that we want to fill in
the blanks in the equation

𝑓(3 + 𝜀𝑥, 4 + 𝜀𝑦) ≈ 25 + (slope in 𝑥-direction) ⋅ 𝜀𝑥 + (slope in 𝑦-direction) ⋅ 𝜀𝑦.

Idea

For an 𝑛-variable functions, we have a rate of change in each of the 𝑛 directions. Therefore, we
need 𝑛 numbers and not just one.

The first blank corresponds to what happens if you imagine 𝑦 is held in place at 4, and we’re just
changing the 𝑥-value to 3.01. The second blank is similar. So we need a way to calculate these; the
answer to our wish is what’s called a partial derivative.
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§14.2 [TEXT] Computing partial derivatives is actually just 18.01
The good news about partial derivatives is that they’re actually really easy to calculate. You pretty
much just need to do what you were taught in 18.01 with one variable changing while pretending the
others are constants.

Here’s the definition:

Definition

Suppose 𝑓(𝑥, 𝑦) is a two-variable function. Then the partial derivative with respect to 𝑥, which
we denote either 𝑓𝑥 or 𝜕𝑓

𝜕𝑥 , is the result if we differentiate 𝑓  while treating 𝑥 as a variable and 𝑦
as a constant. The partial derivative 𝑓𝑦 = 𝜕𝑓

𝜕𝑦  is defined the same way.

Similarly, if 𝑓(𝑥, 𝑦, 𝑧) is a three-variable function, we write 𝑓𝑥 = 𝜕𝑓
𝜕𝑥  for the derivative when 𝑦

and 𝑧 are fixed.

Type signature

Each partial derivative has the same type signature as 𝑓 . That is:

• Given 𝑓 : ℝ𝑛 → ℝ which accepts points in ℝ𝑛 and outputs scalars.
• Then the partial derivative 𝜕𝑓

𝜕𝑥 = 𝑓𝑥 also accepts points in ℝ𝑛 and outputs scalars.

But that’s a lot of words. I think this is actually better explained by example. In fact you could probably
just read the examples and ignore the definition above.

Example: partial derivatives of 𝑓(𝑥, 𝑦) = 𝑥3𝑦2 + cos(𝑦)

Let 𝑓(𝑥, 𝑦) = 𝑥3𝑦2 + cos(𝑦).

Let’s compute 𝑓𝑥. Again, pretend 𝑦 is a constant, so look at the function

𝑥 ↦ 𝑦2 ⋅ 𝑥3 + cos(𝑦).

If we differentiate with respect to 𝑥, then 𝑥3 becomes 3𝑥2, and cos(𝑦) goes to 0 (it doesn’t have
any 𝑥 stuff in it). So

𝑓𝑥 = 𝑦2 ⋅ 3𝑥2.

Similarly, let’s compute 𝑓𝑦. This time we pretend 𝑥 is a constant, and look at

𝑦 ↦ 𝑥3 ⋅ 𝑦2 + cos(𝑦).

This time 𝑦2 becomes 2𝑦, and cos(𝑦) has derivative − sin(𝑦). So

𝑓𝑦 = 𝑥3 ⋅ 2𝑦 − sin(𝑦).
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Example: partial derivatives of 𝑓(𝑥, 𝑦, 𝑧) = 𝑒𝑥𝑦𝑧

Let 𝑓(𝑥, 𝑦, 𝑧) = 𝑒𝑥𝑦𝑧 for a three-variable example. To compute 𝑓𝑥, think of the function

𝑥 ↦ 𝑒𝑦𝑧⋅𝑥

where we pretend 𝑦 and 𝑧 are constants. Then the derivative is with respect to 𝑥 is just 𝑦𝑧𝑒𝑦𝑧⋅𝑥

(just like how the derivative of 𝑒3𝑥 is 3𝑒3𝑥). In other words,

𝑓𝑥(𝑥, 𝑦, 𝑧) = 𝑦𝑧 ⋅ 𝑒𝑥𝑦𝑧.

For analogous reasons:

𝑓𝑦(𝑥, 𝑦, 𝑧) = 𝑥𝑧 ⋅ 𝑒𝑥𝑦𝑧

𝑓𝑧(𝑥, 𝑦, 𝑧) = 𝑥𝑦 ⋅ 𝑒𝑥𝑦𝑧.

Example: partial derivatives of 𝑓(𝑥, 𝑦) = 𝑥2 +𝑦2 and linear approximation

Let’s go back to

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2

which we used in our earlier example as motivation, at the point 𝑃 = (3, 4).

Let’s fill in the numbers for the example 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 we chose. By now, you should be able
to compute that

𝑓𝑥(𝑥, 𝑦) = 2𝑥
𝑓𝑦(𝑥, 𝑦) = 2𝑦

Now, let’s zoom in on just the point 𝑃 = (3, 4). We know that

𝑓(𝑃 ) = 32 + 42 = 25
𝑓𝑥(𝑃 ) = 2 ⋅ 3 = 6
𝑓𝑦(𝑃 ) = 2 ⋅ 4 = 8.

So our approximation equation can be written as

(3 + 𝜀𝑥)2 + (4 + 𝜀𝑦)
2 ≈ 25 + 6𝜀𝑥 + 8𝜀𝑦. (10)

If you manually expand both sides, you can see this looks true. The two sides differ only by
𝜀2

𝑥 and 𝜀2
𝑦, and the intuition is that if 𝜀𝑥 and 𝜀𝑦 were small numbers, then their squares will be

negligibly small.

We’ll return to Equation 10 later when we introduce the gradient.

§14.3 [RECIPE] Computing partial derivatives
You probably can already figure out the recipe from the sections above, but let’s write it here just for
completeness.
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Recipe for calculating partial derivatives

To compute the partial derivative of a function 𝑓(𝑥, 𝑦) or 𝑓(𝑥, 𝑦, 𝑧) or 𝑓(𝑥1, …, 𝑥𝑛) with respect
to one of its input variables,

1. Pretend all the other variables are constants, and focus on just the variable you’re taking
the partial derivative to.

2. Calculate the derivative of 𝑓  with respect to just that variable like in 18.01.
3. Output the derivative you got.

This is easy, and only requires 18.01 material.

We just saw three examples where we computed the partials for 𝑓(𝑥, 𝑦) = 𝑥3𝑦2 + cos(𝑦), 𝑓(𝑥, 𝑦, 𝑧) =
𝑒𝑥𝑦𝑧, and 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. Here are a bunch more examples that you can try to follow along:

Sample Question

Calculate the partial derivatives of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧.

Solution.  The partial derivative with respect to 𝑥 is obtained by differentiating

𝑥 ↦ 𝑥 + 𝑦 + 𝑧.

Since we pretend 𝑦 and 𝑧 are constants, we just differentiate 𝑥 to get 1. The same thing happens with
𝑦 and 𝑧. Hence

𝑓𝑥(𝑥, 𝑦, 𝑧) = 1
𝑓𝑦(𝑥, 𝑦, 𝑧) = 1

𝑓𝑧(𝑥, 𝑦, 𝑧) = 1. □

Sample Question

Calculate the partial derivatives of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥.

Solution.  We differentiate with respect to 𝑥 first, where we view as the function

𝑥 ↦ (𝑦 + 𝑧)𝑥 + 𝑦𝑧

pretending that 𝑦 and 𝑧 are constants. This gives derivative 𝑓𝑥(𝑥, 𝑦, 𝑧) = 𝑦 + 𝑧. Similarly, 𝑓𝑦(𝑥, 𝑦, 𝑧) =
𝑥 + 𝑧 and 𝑓𝑧(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦. So

𝑓𝑥(𝑥, 𝑦, 𝑧) = 𝑦 + 𝑧
𝑓𝑦(𝑥, 𝑦, 𝑧) = 𝑧 + 𝑥

𝑓𝑧(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦. □

Sample Question

Calculate the partial derivatives of 𝑓(𝑥, 𝑦) = 𝑥𝑦, where we assume 𝑥, 𝑦 > 0.

Solution.  If we view 𝑦 as a constant and 𝑥 as a variable, then
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𝑥 ↦ 𝑥𝑦

is differentiated by the “power rule” to get 𝑦𝑥𝑦−1. However, if we view 𝑥 as constant and 𝑦 as a
variable, then

𝑦 ↦ 𝑥𝑦 = 𝑒log 𝑥⋅𝑦

ends up with derivative log 𝑥 ⋅ 𝑒log 𝑥⋅𝑦 = log 𝑥 ⋅ 𝑥𝑦. (Remember, in this book log denotes the natural
log.) Hence

𝑓𝑥(𝑥, 𝑦) = 𝑦𝑥𝑦−1

𝑓𝑦(𝑥, 𝑦) = log 𝑥 ⋅ 𝑥𝑦. □

§14.4 [EXER] Exercises

Exercise 14.1.  Compute all the partial derivatives of the following functions, defined for 𝑥, 𝑦, 𝑧 > 0:

• 𝑓(𝑥, 𝑦, 𝑧) = 𝑥
𝑦 + 𝑦

𝑧 + 𝑧
𝑥

• 𝑓(𝑥, 𝑦, 𝑧) = sin(𝑥𝑦𝑧)
• 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥.
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Chapter 15. The gradient
The gradient of 𝑓 : ℝ𝑛 → ℝ, denoted ∇𝑓 , is the single most important concept in the entire “Multi-
variable differentiation” part. Although its definition is actually quite easy to compute, I want to give
a proper explanation for where it comes from.

Throughout this chapter, remember two important ideas:

• The goal of the derivative is to approximate a function by a linear one.
• Everything you used slopes for before, you should use normal vectors instead.

If you want spoilers for what’s to come, see the following table.

Thing 18.01 18.02
Input 𝑓 : ℝ → ℝ 𝑓 : ℝ𝑛 → ℝ
Output 𝑓 ′ : ℝ → ℝ ∇𝑓 : ℝ𝑛 → ℝ𝑛

Think of as Slope (rise/run) Measures change in each of 𝑛 directions
Approximation Multiply by small run Dot product with small displacement
Picture Slope of tangent in 𝑥𝑦-graph Normal vector to tangent of level curve

Table 6: How to think of ∇𝑓  for multivariable functions, compared to the deriv-
ative in 18.01.

§15.1 [TEXT] The gradient rewrites linear approximation into a dot product
In 18.01, when 𝑓 : ℝ → ℝ was a function and 𝑝 ∈ ℝ was an input, we thought of the single number
𝑓 ′(𝑝) as the slope to interpret it geometrically. Now that we’re in 18.02, we have 𝑛 different rates of
change, but we haven’t talked about how to think of it geometrically yet.

It turns out the correct definition is to take the 𝑛 numbers and make them into a vector. Bear with me
for just one second:

Definition

If 𝑓(𝑥, 𝑦) is a two-variable function (so 𝑓 : ℝ2 → ℝ), the gradient of 𝑓 , denoted ∇𝑓 , is the
function ℝ2 → ℝ2 obtained by taking the two partial derivatives as the coordinates:

∇𝑓(𝑥, 𝑦) = (𝑓𝑥(𝑥, 𝑦)
𝑓𝑦(𝑥, 𝑦)).

The case of 𝑛 variables is analogous; for example if 𝑓(𝑥, 𝑦, 𝑧) is a three-variable function, then

∇𝑓(𝑥, 𝑦, 𝑧) =
(
((
(𝑓𝑥(𝑥, 𝑦, 𝑧)

𝑓𝑦(𝑥, 𝑦, 𝑧)
𝑓𝑧(𝑥, 𝑦, 𝑧))

))
)

.
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Type signature

The types are confusing here. To continue harping on type safety:

• Suppose 𝑓 : ℝ2 → ℝ accepts points in ℝ2 and outputs scalars in ℝ.
• Then ∇𝑓 : ℝ2 → ℝ2 accepts points in ℝ2 and outputs vectors in ℝ2.

Keep the distinction between points and vectors in mind when drawing pictures. We’ll always
draw points as dots, and vectors as arrows.

The reason for defining this gradient is that it lets us do linear approximation with a dot product, and
consequently dot products are going to be super important throughout this chapter. Let me show you
how. Let’s go back to our protagonist

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2

at the point 𝑃 = (3, 4). Way back in Equation 10 (on page 122), we computed 𝑓𝑥(𝑃 ) = 2 ⋅ 3 = 6 and
𝑓𝑦(𝑃 ) = 2 ⋅ 4 = 8 and used it to get the approximation

𝑓(𝑃 + ⟨𝜀𝑥, 𝜀𝑦⟩) = 𝑓(⟨3, 4⟩ + ⟨𝜀𝑥, 𝜀𝑦⟩)

= (3 + 𝜀𝑥)2 + (4 + 𝜀𝑦)
2 ≈ 25 + 6𝜀𝑥 + 8𝜀𝑦.

Now the idea that will let us do geometry is to replace the pair of numbers 𝜀𝑥 and 𝜀𝑦 with a single
“small displacement” vector 𝐯 = (𝜀𝑥

𝜀𝑦
), and the pair of numbers 6 and 8 with the vector (6

8) instead,
so that the approximation part just becomes a dot product:

𝑓((3
4) + 𝐯) ≈ 𝑓((3

4)) + (6
8) ⋅ 𝐯.

Warning: the directional derivative sucks

In some places you see the abbreviation 𝐷𝐯𝑓(𝑃 ) ≔ ∇𝑓(𝑃) ⋅ 𝐯 and the name “directional deriv-
ative” for it. I hate this term, because some people have different notations and definitions
(according to Wikipedia, some authors require 𝐯 to be a unit vector, etc.).

So I will always just write the dot product ∇𝑓(𝑃) ⋅ 𝐯 instead, which is unambiguous and means
you have one less symbol to remember. The gradient does everything directional derivative can
do, and does it better.

In full abstraction, we can rewrite linear approximation as:

Memorize: Linear approximation

Suppose 𝑓  is differentiable at a point 𝑃 . Then for small displacement vectors 𝐯, linear approxi-
mation promises that

𝑓(𝑃 + 𝐯) ≈ 𝑓(𝑃) + ∇𝑓(𝑃) ⋅ 𝐯.

In other words the net change from 𝑓(𝑃 ) to 𝑓(𝑃 + 𝐯) is approximated by the dot product
∇𝑓(𝑃) ⋅ 𝐯.
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Up until now, all we’ve done is rewrite the earlier equation with a different notation; so far, nothing
new has been introduced. Why did we do all this work to use different symbols to say the same thing?

The important idea is what I told you a long time ago: anything you used to think of in terms of
slopes, you should rethink in terms of normal vectors. It turns out that to complete the analogy
to differentiation, the normal vector is going to be that gradient ∇𝑓(𝑃), and we’ll see why in just a
moment (spoiler: it’s because of the dot product). For now, you should just know that ∇𝑓(𝑃) is going
to be the right way to draw pictures of all 𝑛 rates of change at once, although I haven’t explained
why yet.

Before going on, let’s write down the recipes and some examples just to make sure the definition of
the gradient makes sense, then I’ll explain why the gradient is the normal vector we need to complete
our analogy.

§15.2 [RECIPE] Calculating the gradient

Recipe for calculating the gradient

1. Compute every partial derivative of the given function.
2. Output the vector whose components are those partial derivatives.

Sample Question

Consider the six functions

𝑓1(𝑥, 𝑦) = 𝑥3𝑦2 + cos(𝑦), 𝑓2(𝑥, 𝑦, 𝑧) = 𝑒𝑥𝑦𝑧

𝑓3(𝑥, 𝑦) = 𝑥2 + 𝑦2, 𝑓4(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧
𝑓5(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 𝑓6(𝑥, 𝑦) = 𝑥𝑦

from back in Section 14.2 and Section 14.3. Compute their gradients.

Solution.  Take the partial derivatives we already computed and make them the components:

∇𝑓1(𝑥, 𝑦) = ( 3𝑥2𝑦2

2𝑥3𝑦 − sin(𝑦)), ∇𝑓2(𝑥, 𝑦) =
(
((
(𝑦𝑧𝑒𝑥𝑦𝑧

𝑥𝑧𝑒𝑥𝑦𝑧

𝑥𝑦𝑒𝑥𝑦𝑧
)
))
),

∇𝑓3(𝑥, 𝑦) = (2𝑥
2𝑦), ∇𝑓4(𝑥, 𝑦, 𝑧) =

(
((
(1

1
1)
))
),

∇𝑓5(𝑥, 𝑦, 𝑧) =
(
((
(𝑦 + 𝑧

𝑥 + 𝑧
𝑥 + 𝑦)

))
), ∇𝑓6(𝑥, 𝑦) = ( 𝑦𝑥𝑦−1

log(𝑦) ⋅ 𝑥𝑦). □

(Remember log is the natural log, not base 10.)

§15.3 [RECIPE] Linear approximation
We actually could have stated an equivalent recipe right after we defined partial derivatives, but
conceptually I think it’s better to think of everything in terms of the gradient, so I waited until after I
had defined the gradient to write the recipe.
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Recipe for linear approximation

To do linear approximation of 𝑓(𝑃 + 𝐯) for a small displacement vector 𝐯:

1. Compute ∇𝑓(𝑃), the gradient of 𝑓  at the point 𝑃 .
2. Take the dot product ∇𝑓(𝑃) ⋅ 𝐯 to get a number, the approximate change.
3. Output 𝑓(𝑃 ) plus the change from the previous step.

Sample Question

Let 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. Approximate the value of 𝑓(3.01, 4.01) by using linear approximation
from (3, 4).

Solution.  Compute the gradient by taking both partial derivatives:

∇𝑓(𝑥, 𝑦) = (2𝑥
2𝑦).

So the gradient vector at the starting point is given by

∇𝑓(3, 4) = (2 ⋅ 3
2 ⋅ 4) = (6

8).

The target point (3.01, 4.01) differs from the starting point (3, 4) by the displacement 𝐯 = (0.01, 0.01).
So the approximate change in 𝑓  is given by

(6
8)

⏟
=∇𝑓(3,4)

⋅ (0.01
0.01)

⏟
=𝐯

= (6 ⋅ 0.01 + 8 ⋅ 0.01) = 0.14.

Therefore,

𝑓(3.01, 4.01) ≈ 𝑓(3, 4)⏟
=25

+ 0.14 = 25.14. □

Sample Question

Let 𝑓(𝑥, 𝑦) = 𝑥3 − 𝑦3. Approximate the value of 𝑓(2.01, −1.01) by using linear approximation
from (2, −1).

Solution.  Compute the gradient by taking both partial derivatives:

∇𝑓(𝑥, 𝑦) = ( 3𝑥2

−3𝑦2).

So the gradient vector at the starting point (2, −1) is given by

∇𝑓(2, −1) = ( 3(2)2

−3(−1)2) = (12
−3).

The target point (2.01, −1.01) differs from the starting point (2, −1) by the displacement 𝐯 =
(0.01, −0.01). So the approximate change in 𝑓  is given by
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(12
−3)

⏟
=∇𝑓(2,−1)

⋅ ( 0.01
−0.01)

⏟⏟⏟⏟⏟
=𝐯

= (12 ⋅ 0.01 + (−3) ⋅ (−0.01)) = 0.15.

Therefore,

𝑓(2.01, −1.01) ≈ 𝑓(2, −1)⏟
=9

+ 0.15 = 9.15 . □

Sample Question

Let 𝑓(𝑥, 𝑦) = 𝑒𝑥 sin(𝑦) + 777. Approximate the value of 𝑓(0.04, 0.03) by using linear approxi-
mation from the point (0, 0).

Solution.  Compute the gradient by taking both partial derivatives:

∇𝑓(𝑥, 𝑦) = (𝑒𝑥 sin 𝑦
𝑒𝑥 cos 𝑦).

So the gradient vector at the starting point (0, 0) is given by

∇𝑓(0, 0) = (𝑒0 sin 0
𝑒0 cos 0) = (0

1).

The target point (0.04, 0.03) differs from the starting point (0, 0) by (0.04, 0.03). So the approximate
change in 𝑓  is given by

(0
1)

⏟
=∇𝑓(0,0)

⋅ (0.04
0.03)

⏟
=𝐯

= 0 ⋅ 0.04 + 1 ⋅ 0.03 = 0.03.

Therefore,

𝑓(0.04, 0.03) ≈ 𝑓(0, 0)⏟
=777

+ 0.03 = 777.03 . □

§15.4 [TEXT] Gradient descent
At the end of Section  15.1, we promised the geometric definition of the dot product would pay
dividends. We now make good on that promise.

The motivating question here is:

Question

Let 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. Imagine we’re standing at the point 𝑃 = (3, 4). We’d like to take a step
0.01 away in some direction of our choice. For example, we could go to (2.99, 4), or (3, 4.01) or
(2.992, 4.006), or any other point on the circle we’ve marked in the figure below. (For the third
point, note that √(3 − 2.992)2 − (4 − 4.006)2 = 0.01, so that point is indeed 0.01 away.)

• Which way should we step if we want to maximize the 𝑓-value at the new point?
• Which way should we step if we want to the 𝑓-value to stay about the same?
• Which way should we step if we want to minimize the 𝑓-value at the new point?
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You can see a cartoon of the situation in Figure 34. Note that this figure is not to scale, because 0.01 is
too small to be legibly drawn, so the black circle is drawn much larger than it actually is.

Figure 34: Starting from 𝑃 = (3, 4), we make a step 𝐯 away, where |𝐯| = 0.01.
Not to scale.

To answer the question, we use the geometric interpretation of the dot product now. Remember that
the change in 𝑓  is approximated by

𝑓(𝑃 + 𝐯) − 𝑓(𝑃) ≈ ∇𝑓(𝑃) ⋅ 𝐯.

The geometric definition of the dot product is that it equals

∇𝑓(𝑃) ⋅ 𝐯 = |∇𝑓(𝑃)| |𝐯| cos 𝜃

where 𝜃 is the included angle. But |∇𝑓(𝑃)| is fixed (in this example, it’s 
√

62 + 82 = 10) and |𝐯| is
fixed as well (in this example we chose it to be the small number 0.01).

So actually all we care about is the angle 𝜃! Think about that for a moment. Then remember how the
cosine function works:

• cos(0°) = 1 is the most positive value of the cosine, and that occurs when 𝐯 and ∇𝑓(𝑃) point the
same direction.

• cos(180°) = −1 is the most negative value of the cosine, and that occurs when 𝐯 and ∇𝑓(𝑃)
point opposite directions.

• If ∇𝑓(𝑃) and 𝐯 are perpendicular (so 𝜃 = 90° or 𝜃 = 270°), then the dot product is zero.

Translation:
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Memorize

• Move along the gradient to increase 𝑓  as quickly as possible.
• Move against the gradient to decrease 𝑓  as quickly as possible.
• Move perpendicular to the gradient to avoid changing 𝑓  by much either direction.

§15.5 [TEXT] Normal vectors to the tangent line/plane
We only need to add one more idea: keeping 𝑓  about the same should correspond to moving along the
tangent line or plane.

Indeed, in the 2D case, the tangent line is the line that “hugs” the level curve the closest, so we think
of it as the direction causing 𝑓  to avoid much change. The same is true for a tangent plane to a level
surface in the 3D case; the plane hugs the curve near the point 𝑃 . So that means the last bullet could
be rewritten as

Memorize

The gradient ∇𝑓(𝑃) is normal to the tangent line/plane at 𝑃 . It points towards the direction that
increases 𝑓 .

Example

In the previous example with a level curve, the gradient pointed away from the interior. This is
not true in general. For example, imagine instead the function

𝑓(𝑥, 𝑦) = 1
𝑥2 + 𝑦2 .

The point (3, 4) lies on the level curve of 𝑓(3, 4) = 1
25 . The level curve of 𝑓(𝑥, 𝑦) with value 1

25
is also a circle of radius 5, because it corresponds to the equation 1

𝑥2+𝑦2 = 1
25 .

However, the gradient looks quite different: with enough calculation one gets

∇𝑓(𝑥, 𝑦) =
(
((
(

−2𝑥
(𝑥2+𝑦2)2

−2𝑦
(𝑥2+𝑦2)2

)
))
).

Evaluating at (3, 4), we get

∇𝑓(3, 4) = (
− 6

625
− 8

625
).

Hence, for the function 𝑓(𝑥, 𝑦) = 1
𝑥2+𝑦2 , drawing the figure analogous to Figure 34 gives some-

thing that looks quite similar, except the green arrow points the other way and is way smaller.
This makes sense: as you move towards the origin, you expect 1

𝑥2+𝑦2  to get larger. See Figure 35.
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Figure 35: Similar picture but for 𝑓(𝑥, 𝑦) = 1
𝑥2+𝑦2 . It looks very similar to

Figure 34, but now the gradient points the other way and has much smaller absolute
value, indicating that the value of 𝑓  increases as we go towards the center (but only
slightly). Not to scale.

Remark

Back in the 3D geometry in the linear algebra part of the course, we usually neither knew nor
cared what the sign and magnitude of the normal vector was. That is, when asked “what is a

normal vector to the plane 𝑥 − 𝑦 + 2𝑧 = 8?”, you could answer (
1

−1
2

) or (
−1
1

−2
) or even (

−100
100

−200
).

But this doesn’t apply to the gradient anymore: while it is a normal vector to the tangent line/
plane, the magnitude carries additional information we shouldn’t just throw away.

§15.6 [RECIPE] Computing tangent lines/planes to level curves/surfaces
At this point, we can compute tangent lines and planes easily. We apply the old recipe in Section 5.4
(finding a plane given a point with a known normal vector) with ∇𝑓(𝑃) as the normal vector. To spell
it out:
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Recipe: Tangent line/plane to level curve/surface

To find the tangent line/plane to a level curve/surface of a function 𝑓  at point 𝑃 :

1. Compute the gradient ∇𝑓 . This is a normal vector, so it tells you the left-hand side for the
equation of the line/plane.

2. Adjust the right-hand side so it passes through 𝑃 , like in Section 5.4.

Sample Question

Compute the tangent line to 𝑥2 + 𝑦2 = 25 at the point (3, 4).

Solution.  Let 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, so we are looking at the level curve for 25 of 𝑓 . We have seen already
that

∇𝑓 = (2𝑥
2𝑦) ⟹ ∇𝑓(3, 4) = (6

8).

Hence, the tangent line should take the form

6𝑥 + 8𝑦 = 𝑑

for some 𝑑. To pass through 𝑃 = (3, 4), we need 𝑑 = 6 ⋅ 3 + 8 ⋅ 4, so the answer is

6𝑥 + 8𝑦 = 50 . □

Sample Question

Compute the tangent line to 𝑦 = 𝑥2 + 5 at the point (3, 14).

Solution.  Isn’t this an 18.01 question? Yes, but the level curves work fine here to. We think of this
parabola as the level curve of 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2 for the value 5. The gradient is then

∇𝑓 = (−2𝑥
1 ) ⟹ ∇𝑓(3, 14) = (−6, 1).

Hence the tangent line should take the line −6𝑥 + 𝑦 = 𝑑 for some 𝑑. We need to pass through (3, 14),
so we take 𝑑 = (−6) ⋅ 3 + 14 = −4 to get the answer

−6𝑥 + 𝑦 = −4 .

(Written in 18.01 form this would be 𝑦 = 6𝑥 − 4, which shouldn’t be a surprise, because we know the
derivative of 𝑥2 + 5 at 𝑥 = 3 is 6.) □

§15.7 [RECAP] A recap of Part Echo on Multivariable Differentation
Let’s summarize the last few sections.

• We replaced the old graphs we used in 18.01 with level curve and level surface pictures in
Chapter 13. These new pictures differed from 18.01 pictures because all the variables on the axes
are inputs now, and we treat them all with equal respect.

133



Linear Algebra and Multivariable Calculus — Evan Chen

• We explained in Chapter  14 how to take a partial derivative of 𝑓(𝑥, 𝑦) or 𝑓(𝑥, 𝑦, 𝑧), which
measures the change in just one of the variables.

• We used these partial derivatives to define the gradient ∇𝑓  in Chapter  15. This made linear
approximation into a dot product, where 𝑓(𝑃 + 𝐯) ≈ 𝑓(𝑃) + ∇𝑓(𝑃) ⋅ 𝐯 for a small displacement
𝐯.

• Using the geometric interpretation of a dot product, ∇𝑓(𝑃) was a normal vector to the level curve
of 𝑓  passing through 𝑃 , and:

‣ Going along the gradient increases 𝑓  most rapidly
‣ Going against the gradient decreases 𝑓  most rapidly
‣ Going perpendicular to the gradient puts you along the tangent line or plane at 𝑃 .

§15.8 [EXER] Exercises

Exercise 15.1.  Compute the equation of the tangent plane to the sphere 𝑥2 + 𝑦2 + 𝑧2 = 14 at the
point (1, 2, 3).

Exercise 15.2.  The level curve of a certain differentiable function 𝑓(𝑥, 𝑦) for the value −7 turns
out to be a circle of radius 2 centered at (0, 0).

• Give an example of one such function 𝑓 .
• What are all possible vectors that ∇𝑓(1.2, −1.6) could be?
• Do linear approximation to estimate 𝑓(1.208, −1.594) starting from the point (1.2, −1.6).

Exercise 15.3.  For each part, either give an example of 𝑓 : ℝ2 → ℝ or show that none exist.

• Can you find a function 𝑓 : ℝ2 → ℝ such that ∇𝑓(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩?
• Can you find a function 𝑓 : ℝ2 → ℝ such that ∇𝑓(𝑥, 𝑦) = ⟨100𝑥, 𝑦⟩?
• Can you find a function 𝑓 : ℝ2 → ℝ such that ∇𝑓(𝑥, 𝑦) = ⟨𝑦, 𝑥⟩?
• Can you find a function 𝑓 : ℝ2 → ℝ such that ∇𝑓(𝑥, 𝑦) = ⟨100𝑦, 𝑥⟩?

Exercise 15.4 (*).  Let 𝑎, 𝑏, 𝑐, 𝑑 be nonzero real numbers and let

𝑓(𝑥, 𝑦) = 𝑎𝑒𝑥+𝑦 + 𝑏𝑒𝑥−𝑦.

Suppose the level curve of 𝑓  for the value 𝑐 is tangent to the line 𝑦 = 5𝑥 at the origin, and also
passes through (0, 𝑑). Compute 𝑑.
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Chapter 16. Anti-gradients
This chapter is actually usually not taught until much later in 18.02, in Part India. However, I’m going
to stick it in here, while your brain hasn’t been infested with integrals yet, since it’s a standalone
question. However, if you prefer to follow 18.02 more strictly, you could skip this chapter for now and
come back a month or two later once you actually need to know how to do it.

The goal of this chapter is to do ∇ backwards:

Goal

If you know ∇𝑓 , can you go back and find 𝑓?

§16.1 [TEXT] There’s still +𝐶 everywhere
I’ll note right away that you still have the +𝐶 from 18.01. To elaborate, you might remember in 18.01
that for ∫ 𝑥2 d𝑥 = 𝑥3

3 + 𝐶 for any constant 𝐶 , and we usually just ignore the +𝐶 because it does
nothing.

For 18.02 we’ll do the same thing. For example, if 𝑓1(𝑥, 𝑦) = 𝑥2 + 𝑦2 and 𝑓2(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 17,
then they have the same gradient:

∇𝑓1 = ∇𝑓2 = (2𝑥
2𝑦).

However, we just agree to not care about the constant; if asked to find a potential function, and 𝑓  is
any acceptable answer, then so is 𝑓 + 100. But there are will be no other answers besides 𝑓 + 𝐶 for
various 𝐶 .

§16.2 [TEXT] Guessing works pretty well
Sometimes you might be able to just guess 𝑓 , and if so, good for you. See if you can guess the answers
to the following ones:

∇𝑓 = (𝑥
𝑦)

∇𝑓 = (𝑦𝑒𝑥𝑦

𝑥𝑒𝑥𝑦)

∇𝑓 =
(
((
(𝑦𝑧

𝑧𝑥
𝑥𝑦)

))
).

§16.3 [TEXT] Antiderivative method, if you’re promised there is one

How to find an anti-gradient with two variables

1. Let 𝑓  denote the gradient function.
2. Integrate the given 𝜕𝑓

𝜕𝑥  with respect to 𝑥 to get some equation of the form 𝑓(𝑥, 𝑦) =
expression + 𝐶1(𝑦) for some function 𝐶1(𝑦).

3. Integrate the given 𝜕𝑓
𝜕𝑦  with respect to 𝑦 to get some equation of the form 𝑓(𝑥, 𝑦) =

expression + 𝐶2(𝑥) for some function 𝐶2(𝑥).
4. Stitch them together and output a function 𝑓 .
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With three variables, it’s similar, but more work.

How to find an anti-gradient with three variables

1. Let 𝑓  denote the gradient function.
2. Integrate the given 𝜕𝑓

𝜕𝑥  with respect to 𝑥 to get some equation of the form 𝑓(𝑥, 𝑦, 𝑧) =
expression + 𝐶1(𝑦, 𝑧) for some function 𝐶1(𝑦, 𝑧).

3. Integrate the given 𝜕𝑓
𝜕𝑦  with respect to 𝑦 to get some equation of the form 𝑓(𝑥, 𝑦, 𝑧) =

expression + 𝐶2(𝑥, 𝑧) for some function 𝐶2(𝑥, 𝑧).
4. Integrate the given 𝜕𝑓

𝜕𝑧  with respect to 𝑧 to get some equation of the form 𝑓(𝑥, 𝑦, 𝑧) =
expression + 𝐶3(𝑥, 𝑦) for some function 𝐶3(𝑥, 𝑦).

5. Stitch everything together to output 𝑓 .

Let’s do a two-variable example first.

Sample Question

We are given the gradient of a function 𝑓(𝑥, 𝑦):

∇𝑓(𝑥, 𝑦) = (𝑥 + cos 𝑦
−𝑥 sin 𝑦 )

Recover 𝑓 .

Solution.  This means:

𝜕𝑓
𝜕𝑥

= 𝑥 + cos 𝑦 and 𝜕𝑓
𝜕𝑦

= −𝑥 sin 𝑦.

Integrate 𝜕𝑓
𝜕𝑥  and 𝜕𝑓

𝜕𝑦  with respect to 𝑥 and 𝑦:

𝑓(𝑥, 𝑦) = ∫ 𝜕𝑓
𝜕𝑥

d𝑥 = ∫ cos 𝑦 d𝑥 = 𝑥2

2
+ 𝑥 cos 𝑦 + 𝐶1(𝑦).

𝑓(𝑥, 𝑦) = ∫ 𝜕𝑓
𝜕𝑦

d𝑦 = ∫ −𝑥 sin 𝑦 d𝑦 = 𝑥 cos 𝑦 + 𝐶2(𝑥).

Stitching these together to get the final expression for 𝑓(𝑥, 𝑦) as:

𝑓(𝑥, 𝑦) = 𝑥2

2
+ 𝑥 cos 𝑦 + 𝐶

for any constant 𝐶 . □

Sample Question

We are given the gradient of a function 𝑓(𝑥, 𝑦):

∇𝑓(𝑥, 𝑦) = ( 3𝑥2 + 4𝑥𝑦 + 𝑦2

2𝑥2 + 2𝑥𝑦 − 3𝑦2)

Recover 𝑓 .
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Solution.  This means:

𝜕𝑓
𝜕𝑥

= 3𝑥2 + 4𝑥𝑦 + 𝑦2 and 𝜕𝑓
𝜕𝑦

= 2𝑥2 + 2𝑥𝑦 − 3𝑦2.

Integrate 𝜕𝑓
𝜕𝑥  and 𝜕𝑓

𝜕𝑦  with respect to 𝑥 and 𝑦:

𝑓(𝑥, 𝑦) = ∫ 𝜕𝑓
𝜕𝑥

d𝑥 = ∫(3𝑥2 + 4𝑥𝑦 + 𝑦2) d𝑥 = 𝑥3 + 2𝑥2𝑦 + 𝑥𝑦2 + 𝐶1(𝑦)

𝑓(𝑥, 𝑦) = ∫ 𝜕𝑓
𝜕𝑦

d𝑦 = ∫(2𝑥2 + 2𝑥𝑦 − 3𝑦2) d𝑦 = 2𝑥2 + 𝑥𝑦2 − 𝑦3 + 𝐶2(𝑥).

Stitching this together gives

𝑓(𝑥, 𝑦) = 𝑥3 + 2𝑥2𝑦 + 𝑥𝑦2 − 𝑦3 + 𝐶 . □

Here’s a three-variable version.

Sample Question

We are given the gradient of a function 𝑓(𝑥, 𝑦, 𝑧):

∇𝑓(𝑥, 𝑦, 𝑧) =
(
((
(𝑦2 − sin(𝑥)

2𝑥𝑦 + 4𝑦𝑧
𝑒𝑧 + 2𝑦2

)
))
).

Recover 𝑓 .

Solution.  Again, integrate with respect to all three components:

𝑓(𝑥, 𝑦, 𝑧) = ∫(𝑦2 − sin 𝑥) d𝑥 = 𝑦2𝑥 + cos 𝑥 + 𝐶1(𝑦, 𝑧)

𝑓(𝑥, 𝑦, 𝑧) = ∫(2𝑥𝑦 + 4𝑦𝑧) d𝑦 = 𝑥𝑦2 + 2𝑧𝑦2 + 𝐶2(𝑥, 𝑧)

𝑓(𝑥, 𝑦, 𝑧) = ∫(𝑒𝑧 + 2𝑦2) d𝑦 = 𝑒𝑧 + 2𝑦2𝑧 + 𝐶3(𝑥, 𝑦).

Here again 𝐶1(𝑦, 𝑧) is some function depending only on 𝑦 and 𝑧; similarly for 𝐶2 and 𝐶3. Now stitch
everything together:

𝑓(𝑥, 𝑦, 𝑧) = 𝑦2𝑥 + cos 𝑥 + 2𝑦2𝑧 + 𝑒𝑧 + 𝐶 . □

§16.4 [TEXT] Actually most of the time no potential function 𝑓  exists
So far this might feel like 18.01 integration beefed up to many variables. But something is actually
different. Up until now I’ve picked gradients for which there was an answer.

But most of the time that’s not true: the thing that’s different in 18.02 is that for a randomly
written question this task is really impossible. That’s actually a major difference.
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Digression: There’s a huge difference between “not easy to write the answer” and “no
such function exists”

Weren’t there impossible integrals in 18.01? Well, it depends on what you mean by “impossible”.
For example, a question you won’t see in 18.01 is

∫ cos(𝑥2) d𝑥

which can be translated to “find a function 𝑓  such that 𝑓 ′(𝑥) = cos(𝑥2)”. The reason you’re not
asked this in 18.01 is because, while such a function 𝑓  does exist, it can’t be expressed in a way
that makes sense to 18.01 students.

But I mean, you could always cheat and write

𝑓(𝑡) = ∫
𝑡

0
cos(𝑥2) d𝑥.

The right-hand side really evaluates to some number for every 𝑡, e.g. if you do numerical analysis
𝑓(1) ≈ 0.904524, 𝑓(2) ≈ 0.461461, etc. So there really is some function 𝑓  whose derivative is
cos(𝑥2). It just doesn’t have any good way to write it down. That means, if you tried to solve the
question in 18.01 methods, you just eventually run out of methods and ideas to try.

In the 18.02 version, we’re about to see that even simple analogous questions might have answer
“no such function exists”. So when you try to solve an impossible anti-gradient question, some-
thing really different will happen: rather than running out of methods and ideas, you can follow
the usual method and then reach a contradiction.

Question

Determine whether or not there exists a differentiable function 𝑓(𝑥, 𝑦) such that

∇𝑓 = (2𝑦
𝑥 ).

Solution.  We can imagine we follow through the same method as before. Integration gives

𝑓(𝑥, 𝑦) = ∫ 2𝑦 d𝑥 = 2𝑥𝑦 + 𝐶1(𝑦)

𝑓(𝑥, 𝑦) = ∫ 𝑥 d𝑦 = 𝑥𝑦 + 𝐶2(𝑥).

For these to be equal we need 2𝑥𝑦 + 𝐶1(𝑦) = 𝑥𝑦 + 𝐶2(𝑥), so 𝑥𝑦 + 𝐶1(𝑦) = 𝐶2(𝑥), which is impos-
sible! What’s going on?

(It’s tempting to write 𝐶1(𝑦) = 𝐶 and 𝐶2(𝑥) = 𝑥𝑦 + 𝐶 , but that’s a type error. These new functions
𝐶1 and 𝐶2 can only depend on their arguments. Indeed, look carefully at everything we wrote for 𝐶𝑖
previously: for example, whenever we wrote 𝐶1(𝑦) or 𝐶1(𝑦, 𝑧), we never allow it to depend on 𝑥.)

In mathematics there’s a concept of proof by contradiction: if you start from an assumption, and then do
some logic and reasoning to reach an impossible conclusion, then the starting assumption was wrong.
Here, the starting assumption that there was some function 𝑓  such that ∇𝑓 = (2𝑦

𝑥 ). Starting from this
assumption we found that there were functions 𝐶1(𝑦) and 𝐶2(𝑥) such that 𝐶2(𝑥) − 𝐶1(𝑦) = 𝑥𝑦 holds
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for all real numbers 𝑥 and 𝑦. So our assumption was wrong: there can’t be such function 𝑓 . Not like
18.01 where “𝑓  exists but is hard to write down”; the function 𝑓  literally cannot exist. □

§16.5 [TEXT] Shortcut for weeding out impossible questions
Okay, so I bet you’re all wondering now, “how can I tell if the question is impossible?”.

Well, one strategy would just be to run the recipe I showed you and see if it works out.

• If you find a function 𝑓  that works, great.
• If you run into a contradiction, well, now you know it’s impossible.

But that’s a lot of work. We’d like a shortcut, and there is one.

The idea is that for functions (for which the partial derivatives are continuous), the partial derivatives
commute. What that means, if say 𝑓(𝑥, 𝑦) is a two-variable function, the following is true:

Memorize: partial derivatives commute

If 𝑓𝑥 and 𝑓𝑦 are both continuously differentiable then

𝑓𝑥𝑦 = 𝑓𝑦𝑥.

If you like 𝜕 notation better, this could also be written as

𝜕
𝜕𝑦

𝜕𝑓
𝜕𝑥

= 𝜕
𝜕𝑥

𝜕𝑓
𝜕𝑦

.

In other words, if you try to differentiate with respect to 𝑥, then with respect to 𝑦, you get the same
thing as 𝑦 first then 𝑥. Sometimes people write this as

𝜕2𝑓
𝜕𝑥𝜕𝑦

= 𝜕2𝑓
𝜕𝑦𝜕𝑥

.

This result is at least a bit surprising, and I actually don’t expect you to believe me without seeing
some examples. So let’s see some examples:

Example showing that the order of differentiation doesn’t matter

Let 𝑓(𝑥, 𝑦) = 𝑥7𝑦3.
• If we differentiate with respect to 𝑥 then to 𝑦 we get 𝑓𝑥 = 7𝑥6𝑦3 ⟹ ( 𝜕

𝜕𝑦)𝑓𝑥 = 21𝑥6𝑦2.
• Do it the other order: 𝑓𝑦 = 3𝑥6𝑦2 ⟹ ( 𝜕

𝜕𝑥)𝑓𝑦 = 21𝑥6𝑦2.
• Either way we get the same result

𝑓𝑥𝑦 = 𝑓𝑦𝑥 = 21𝑥6𝑦2.
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Another example showing that the order of differentiation doesn’t matter

Let 𝑓(𝑥, 𝑦) = cos(𝑥 + 𝑦)𝑦8.
• First, differentiate 𝑓  with respect to 𝑥:

𝑓𝑥 = − sin(𝑥 + 𝑦)𝑦8 ⟹ 𝜕
𝜕𝑦

𝑓𝑥 = 𝜕
𝜕𝑦

(− sin(𝑥 + 𝑦)𝑦8)

= − cos(𝑥 + 𝑦)𝑦8 − 8𝑦7 sin(𝑥 + 𝑦)
• Do it the other order: First, differentiate 𝑓  with respect to 𝑦:

𝑓𝑦 = (− sin(𝑥 + 𝑦)𝑦8 + 8𝑦7 cos(𝑥 + 𝑦)) ⟹ 𝜕
𝜕𝑥

𝑓𝑦 = 𝜕
𝜕𝑥

(− sin(𝑥 + 𝑦)𝑦8 + 8𝑦7 cos(𝑥 + 𝑦))

= − cos(𝑥 + 𝑦)𝑦8 − 8𝑦7 sin(𝑥 + 𝑦)
• Either way, we get the same result:

𝑓𝑥𝑦 = 𝑓𝑦𝑥 = − cos(𝑥 + 𝑦)𝑦8 − 8𝑦7 sin(𝑥 + 𝑦)

Okay, so how about the example we gave earlier?

Question

Determine whether or not there exists a differentiable function 𝑓(𝑥, 𝑦) such that

∇𝑓 = (2𝑦
𝑥 ).

Well, if there was such an 𝑓 , and we got a mismatch, then

𝑓𝑥𝑦 = 𝜕
𝜕𝑦

𝑓𝑥 = 𝜕
𝜕𝑦

(2𝑦) = 2

𝑓𝑦𝑥 = 𝜕
𝜕𝑥

𝑓𝑦 = 𝜕
𝜕𝑥

𝑥 = 1.

So via proof by contradiction, no such 𝑓  could exist.

§16.6 [RECIPE] Ruling out the existence of an anti-gradient
As it turns out, this test I described is good enough for 18.02 — it will catch all impossible questions.
Specifically, the following theorem is true.
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Memorize: Criteria for 2D anti-gradient to exist

Consider two functions (𝑝(𝑥,𝑦)
𝑞(𝑥,𝑦)) defined on all of ℝ2, where 𝑝 and 𝑞 are continuously differen-

tiable. Then there exists 𝑓  such that

∇𝑓 = (𝑝(𝑥, 𝑦)
𝑞(𝑥, 𝑦))

if and only if

𝜕𝑝
𝜕𝑦

= 𝜕𝑞
𝜕𝑥

.

You should think of this as 𝑓𝑥𝑦 = 𝑓𝑦𝑥. We’ll see this again much later in Part India, but in different
language: “the 2D scalar curl of 𝑓  is zero”.

The 3D version tests all the possible pairs:

Memorize: Criteria for 3D anti-gradient to exist

Consider three functions (
𝑝(𝑥,𝑦,𝑧)
𝑞(𝑥,𝑦,𝑧)
𝑟(𝑥,𝑦,𝑧)

) defined on all of ℝ3, where 𝑝, 𝑞, 𝑟 are continuously differ-

entiable. Then there exists 𝑓  such that

∇𝑓 =
(
((
(𝑝(𝑥, 𝑦, 𝑧)

𝑞(𝑥, 𝑦, 𝑧)
𝑟(𝑥, 𝑦, 𝑧))

))
)

if and only if all three of the following equations hold:

𝜕𝑝
𝜕𝑦

= 𝜕𝑞
𝜕𝑥

, 𝜕𝑝
𝜕𝑧

= 𝜕𝑟
𝜕𝑥

, 𝜕𝑞
𝜕𝑧

= 𝜕𝑟
𝜕𝑦

.

The above three equations should be remembered as 𝑓𝑥𝑦 = 𝑓𝑦𝑥, 𝑓𝑦𝑧 = 𝑓𝑧𝑦, 𝑓𝑧𝑦 = 𝑓𝑥𝑦. We’ll see this
also in Part India again hidden in a different name: “the 3D scalar curl of 𝑓  is zero”. In that part, the
given right-hand side will be called called a vector field and the function 𝑓  will be called a potential
function for it. But ignore those names for now.

§16.7 [EXER] Exercises

Exercise 16.1.  Suppose 𝑓(𝑥, 𝑦) is a differentiable function and that

∇𝑓(𝑥, 𝑦) = (𝑥2 + 𝑎𝑥𝑦 + 2𝑦2 + 𝑦 + 1
𝑥2 + 𝑥 + 𝑏𝑥𝑦 + 𝑦2 + 2 )

for some constants 𝑎 and 𝑏. Compute the constants 𝑎 and 𝑏, and determine 𝑓 .
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Part Foxtrot: Optimization
For comparison, Part Foxtrot corresponds roughly to §9 and §12.4-§12.6 of Poonen’s notes.

Chapter 17. Critical points

§17.1 [TEXT] Critical points in 18.01
First, a comparison to 18.01. Way back when you had a differentiable single-variable function 𝑓 : ℝ →
ℝ, and you were trying to minimize it, you used the following terms:

18.01 term Meaning
Global minimum Minimum of the function 𝑓  across the entire region you’re considering
Local minimum A point at which 𝑓  is smaller than any nearby points in a small neighborhood
Critical point A point where 𝑓 ′(𝑥) = 0

Table 7: 18.01 terminology for critical points

Each row includes all the ones above it, but not vice-versa. Here’s a picture of an example showing
these for a random function 𝑓(𝑥) = −1

5𝑥6 − 2
7𝑥5 + 2

3𝑥4 + 𝑥3. From left to right in Figure 36, there
are four critical points:

• A local maximum (that isn’t a global maximum), drawn in blue.
• A local minimum (that isn’t a global minimum), draw in green.
• An critical inflection point — neither a local minimum nor a local maximum. Drawn in orange.
• A global maximum, drawn in purple.

Note there’s no global minimum at all, since the function 𝑓  goes to −∞ in both directions as 𝑥 → −∞
or 𝑥 → +∞.

Figure 36: Some examples of critical points in an 18.01 graph of a single variable
function.

§17.2 [TEXT] Critical points in 18.02
In 18.02, when we consider 𝑓 : ℝ𝑛 → ℝ the only change we make is:
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Definition

For 18.02, we generalize the definition of critical point to be a point 𝑃  for which ∇𝑓(𝑃) = 𝟎 is
the zero vector. (The other two definitions don’t change.)

As soon as I say this I need to carry over the analogous warnings from 18.01:

Warning

• Keep in mind that each of the implications

Global minimum ⟹ Local minimum ⟹ Critical point, i.e. ∇𝑓 = 𝟎

is true only one way, not conversely. So a local minimum may not be a global minimum; and
a point with gradient zero might not be a minimum, even locally. You should still find all the
critical points, just be aware a lot of them may not actually be min’s or max’s.

• There may not be any global minimum or maximum at all, like we just saw.

Definition

In 18.02, a critical point that isn’t a local minimum or maximum is called a saddle point.

Example

The best example of a saddle point to keep in your head is the origin for the function

𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2.

Why is this a saddle point? We have 𝑓(0, 0) = 0, and the gradient is zero too, since

∇𝑓 = (2𝑥
2𝑦) ⟹ ∇𝑓(0, 0) = (2 ⋅ 0

2 ⋅ 0) = (0
0).

The problem is that the small changes in 𝑥 and 𝑦 clash in sign. Specifically, if we go a little bit to
either the left or right in the 𝑥-direction, then 𝑓  will increase a little bit, e.g.

𝑓(0.1, 0) = 𝑓(−0.1, 0) = 0.01 > 0.

But the −𝑦2 term does the opposite: if we go a little bit up or down in the 𝑦-direction, then 𝑓  will
decrease a little bit.

𝑓(0, 0.1) = 𝑓(0, −0.1) = −0.01 < 0.

So the issue is the clashing signs of small changes in 𝑥 and 𝑦 directions. This causes 𝑓  to neither
be a local minimum nor local maximum.

There’s actually nothing special about ±𝑥 and ±𝑦 in particular; I only used those to make
arithmetic easier. You can see Figure 37 for values of 𝑓  at other nearby points.
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Figure 37: Values of 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 at a distance of 0.1 from the saddle point
(0, 0). Green values are positive and red ones are negative. It’s a saddle point
because there are both.

Remark

The name “saddle point” comes from the following picture: if one looks at the surface

𝑧 = 𝑥2 − 𝑦2

then near (0, 0) you have something that looks like a horse saddle. It curves upwards along the
𝑥-direction, but downwards along the 𝑦-direction.

We’ll get to the recipe for distinguishing between saddle points and local minimums and maximums
in a moment; like in 18.01, there is something called the second derivative test. First, one digression
and a few examples of finding critical points.

§17.3 [SIDENOTE] Saddle points are way more common than critical inflection
points
At first glance, you might be tempted to think that a saddle point is the 18.02 version of the critical
inflection point. However, that analogy is actually not so good for your instincts, and saddle points
feel quite different from 18.01 critical inflection points. Let me explain why.

In 18.01, it was possible for a critical point to be neither a local minimum or maximum, and we called
these critical inflection points. However, in 18.01 this was actually really rare. To put this in perspective,
suppose we considered a random 18.01 function of the form

𝑓(𝑥) = □𝑥3 + □𝑥2 + □𝑥 + □

where each square was a random integer between −1000000 and 1000000 inclusive. Of the approx-
imately 1025 functions of this shape, you will find that while there are plenty of critical points, the
chance of finding a critical inflection point is something like 10−15 — far worse than the lottery. (Of
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course, if you know where to look, you can find them: 𝑓(𝑥) = 𝑥3 has a critical inflection point at the
origin, for example.)

In 18.02 this is no longer true. If we picked a random function of a similar form

𝑓(𝑥) = □𝑥3 + □𝑥2 + □𝑥 + □𝑦3 + □𝑦2 + □𝑦 + □

where we fill each square with a number from −1000000 to 1000000 then you’ll suddenly see saddle
points everywhere. For example, when I ran this simulation 10000 times, among the critical points
that showed up, I ended up with about

• 24.6% local minimums
• 25.3% local maximums
• 50.1% saddle points.

And the true limits (if one replaces 106 with 𝑁  and takes the limit as 𝑁 → ∞) are what you would
guess from the above: 25%, 25%, 50%. (If you want to see the code, it’s in the Appendix, Chapter 56.)

Why is the 18.02 situation so different? It comes down to this: in 18.02, you can have two clashing
directions. For the two experiments I’ve run here, consider the picture in Figure 38. Here 𝑃  is a critical
point, and we consider walking away from it in one of two directions. I’ll draw a blue + arrow if 𝑓
increases, and a red − arrow if 𝑓  decreases.

Figure 38: Why the 18.01 and 18.02 polynomial experiments have totally different
outcomes.

In the 18.01 experiment, we saw that two arrows pointing opposite directions almost always have the
same color. So in 18.01, when we could only walk in one direction, that meant almost every point was
either a local minimum or a local maximum. But the picture for 18.02 is totally different because there’s
nothing that forces the north/south pair to have the same sign as the east/west pair. For a “random”
function, if you believe the colors are equally likely, then half the time the arrows don’t match colors
and you end up with a saddle point.

This whole section was for two-variable functions 𝑃(𝑥) + 𝑄(𝑦), so it’s already a simplification. If you
ran an analogous three-variable experiment defined similarly for polynomials 𝑓(𝑥, 𝑦, 𝑧) = 𝑃(𝑥) +
𝑄(𝑦) + 𝑅(𝑧):

• 12.5% local minimums
• 12.5% local maximums
• 75.0% saddle points.

If we return to the world of any two-variable function, the truth is even more complicated than this. In
this sidenote I only talked about functions 𝑓(𝑥, 𝑦) that looked like 𝑃(𝑥) + 𝑄(𝑦) where 𝑃  and 𝑄 were
polynomials. The 𝑥 and 𝑦 parts of the function were completely unconnected, so we only looked in the
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four directions north/south/east/west. But most two-variable functions have some more dependence
between 𝑥 and 𝑦, like 𝑓(𝑥, 𝑦) = 𝑥2𝑦3 or 𝑓(𝑥) = 𝑒𝑥 sin(𝑦) or similar. Then you actually need to think
about more directions than just north/south/east/west.

Digression

For example, Poonen’s lecture notes (see question 9.22) show a weird monkey saddle: the point
(0, 0) is a critical point of

𝑓(𝑥, 𝑦) = 𝑥𝑦(𝑥 − 𝑦)

where the values of 𝑓  nearby split into six regions, alternating negative and positive, in contrast
to Figure 37 where there were only four zones on the circle. (See also Wikipedia for monkey
saddle.) Poonen also invites the reader to come up with an octopus saddle (which sounds like it
needs sixteen regions, eight down ones for each leg of the octopus).

§17.4 [RECIPE] Finding critical points
For finding critical points, on paper you can just follow the definition:

Recipe for finding critical points

To find the critical points of 𝑓 : ℝ𝑛 → ℝ

1. Compute the gradient ∇𝑓 .
2. Set it equal to the zero vector and solve the resulting system of 𝑛 equations in 𝑛 variables.

The thing that might be tricky is that you have to solve a system of equations. Depending on how
difficult your function is to work with, that might require some creativity in order to get the algebra
right. We’ll show some examples where the algebra is really simple, and examples where the algebra
is much more involved.

Sample Question

Compute the critical points of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 2𝑦2 + 3𝑧2.

Solution.  The gradient is

∇𝑓(𝑥, 𝑦, 𝑧) =
(
((
(2𝑥

4𝑦
6𝑧)

))
).

In order for this to equal (
0
0
0
), we need to solve the three-variable system of equations

2𝑥 = 0
4𝑦 = 0
6𝑧 = 0

which is so easy that it’s almost insulting: 𝑥 = 𝑦 = 𝑧 = 0. The only critical point is (0, 0, 0). □
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Sample Question

Compute the critical points of 𝑓(𝑥, 𝑦) = 𝑥𝑦(6 − 𝑥 − 𝑦).

Solution.  This example is a lot more annoying than the previous one, despite having fewer variables,
because casework is forced upon you. You need to solve four systems of linear equations, not just one,
as you’ll see.

We expand

𝑓(𝑥, 𝑦) = 6𝑥𝑦 − 𝑥2𝑦 − 𝑥𝑦2.

So

∇𝑓 = (6𝑦 − 2𝑥𝑦 − 𝑦2

6𝑥 − 𝑥2 − 2𝑥𝑦).

Hence, the resulting system of equations to solve is

𝑦(6 − 2𝑥 − 𝑦) = 0
𝑥(6 − 2𝑦 − 𝑥) = 0.

The bad news is that these are quadratic equations. Fortunately, they come in factored form, so we can
rewrite them as OR statements:

𝑦(6 − 2𝑥 − 𝑦) = 0 ⟹ (𝑦 = 0  OR 2𝑥 + 𝑦 = 6)
𝑥(6 − 2𝑦 − 𝑥) = 0 ⟹ (𝑥 = 0  OR 𝑥 + 2𝑦 = 6).

So actually there are 22 = 4 cases to consider, and we have to manually tackle all four. These cases fit
into the following 2 × 2 table; we solve all four systems of equations.

Top eqn. gives 𝑦 = 0 Top eqn. gives 2𝑥 + 𝑦 = 6
Bottom eqn. gives 𝑥 = 0 {𝑦=0

𝑥=0 ⟹ (𝑥, 𝑦) = (0, 0) {2𝑥+𝑦=6
𝑥=0 ⟹ (𝑥, 𝑦) = (0, 6)

Bottom eqn. gives 𝑥 + 2𝑦 = 6 {𝑦=0
𝑥+2𝑦=6 ⟹ (𝑥, 𝑦) = (6, 0) {2𝑥+𝑦=6

𝑥+2𝑦=6 ⟹ (𝑥, 𝑦) = (2, 2)

,

So we get there are four critical points, one for each case: (0, 0), (0, 6), (6, 0) and (2, 2). □

§17.5 [TEXT] General advice for solving systems of equations
In the last example with 𝑓(𝑥, 𝑦) = 𝑥𝑦(6 − 𝑥 − 𝑦), we saw the solving a system of equations is not
necessarily an easy task. In general, solving a system of generic equations, even when the number
of variables equals the number of unknowns, can be disproportionately difficult in the number of
variables.
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Digression: Even simple-looking systems can be challenging

It’s easy to generate examples of systems that can’t be solved by hand. But it’s also possible to
generate examples of systems that look innocent, and can be solved by hand in a nice way, but
for which finding that nice way is extremely challenging.

One example of such a system of equations is

𝑥3 = 3𝑥 − 12𝑦 + 50
𝑦3 = 12𝑦 + 3𝑧 − 2
𝑧3 = 27𝑧 + 27𝑥.

There is a way to solve it by hand, but it’s quite hard to come up with, even for the best high
school students in the world. (The source of the problem is the USA Team Selection Test 2009.)

This means that you need to put away your chef hat for a moment and put on your problem-solving
cap: The good news is that it’s all high-school algebra: no calculus involved, no derivatives, etc. The
bad news is that it’s tricky. You really have to think.

Tips on systems of equations

• When solving a system of equations, treat it like a self-contained algebra puzzle. That
means you cannot just blindly follow a recipe, but need to actually think.

• Possible strategy in some situations: try to isolate one variable in terms of others. For
example, if you see 𝑥2 + 𝑥 + 2𝑦 = 7, one strategy is to rewrite it as 𝑦 = 1

2(7 − (𝑥2 + 𝑥))
and then use that substitution to kill all the 𝑥’s for your system. This reduces the number of
variables by 1, at the cost of some work.

• If there’s symmetry in the system of equations, see if you can exploit it to save work.

• Try to factor things when you spot factors. For example, if you see 𝑥𝑦 − 𝑥 = 0, write it as
𝑥(𝑦 − 1) = 0, then either 𝑥 = 0 or 𝑦 = 1.

• If you are taking square roots of both sides, That is, if 𝑎2 = 𝑏2, you conclude 𝑎 = ±𝑏, not
𝑎 = 𝑏.

• Be careful in making sure you don’t miss cases if you start getting OR statements. In the
last example, there were 22 = 4 cases. You can easily imagine careless students accidentally
forgetting a case.

• See if you can “guess” some obvious solutions to start (e.g. all-zero). If so, note them down
so you know that they should show up later.

I also need one warning: be really careful about division by zero. For example, in the example from
last section, careless students might try to divide by 𝑦 and 𝑥 to get

6𝑦 − 2𝑥𝑦 − 𝑦2 = 0 ⟹ 2𝑥 + 𝑦 = 6
6𝑥 − 2𝑥𝑦 − 𝑥2 = 0 ⟹ 𝑥 + 2𝑦 = 6.

But this is wrong, because 𝑥 and 𝑦 could be zero too! If you make this mistake you’re only getting to
one of the four critical points. This is important enough I’ll box it:
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Warning: Watch for division by zero

Any time you divide both sides of an equation, ask yourself if you the expression you’re
dividing by could be 0 as well. If so, that case needs to be handled separately.

I’m going to give two examples, each with three variables, to show these ideas in the tip I just
mentioned. Fair warning: these are deliberately a bit trickier, to give some space to show ideas. Don’t
worry if you can’t do these two yourself. The exam ones will probably tone down this algebra step
a bit.

Sample Question

Compute all the critical points of the function

𝑓(𝑥, 𝑦, 𝑧) = 𝑥3 + 𝑦3 + 𝑧3 − 3𝑥𝑦𝑧.

Solution.  We first compute the gradient:

∇𝑓 =
(
((
(3𝑥2 − 3𝑦𝑧

3𝑦2 − 3𝑧𝑥
3𝑧2 − 3𝑥𝑦)

))
).

The critical points occur when ∇𝑓 = 𝟎, which gives us the system of equations (after dividing by 3):

𝑥2 = 𝑦𝑧
𝑦2 = 𝑧𝑥
𝑧2 = 𝑥𝑦.

We’d like to divide out by the variables, but this would be division by zero. Indeed, note (0, 0, 0) is a
solution!

• If 𝑥 = 0, then it follows 𝑧 = 0 from the last equation, then 𝑦 = 0 from the second.
• By symmetry, if any of the three variables is zero, then all three are.

Now let’s suppose all the variables are nonzero. Then we can write the first equation safely as 𝑧 = 𝑥2

𝑦
and use that to get rid of 𝑧 in the second equation:

𝑦2 = (𝑥2

𝑦
)𝑥 ⇒ 𝑥3 = 𝑦3.

Similarly, we get 𝑦3 = 𝑧3 and 𝑧3 = 𝑥3.

So in fact 𝑥 = 𝑦 = 𝑧, because we can safely take cube roots of real numbers. And any triple with 𝑥 =
𝑦 = 𝑧 works fine.

In conclusion, every point of the form (𝑡, 𝑡, 𝑡) is a critical point — an infinite family of critical points!
□
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Sample Question

Compute all the critical points of the function

𝑓(𝑥, 𝑦, 𝑧) = 𝑧(𝑥 − 𝑦)(𝑦 − 𝑧) − 2𝑥𝑧.

Solution.  The gradient is given by

∇𝑓 =
(
((
( 𝑧(𝑦 − 𝑧) − 2𝑧

𝑧(−2𝑦 + 𝑥 + 𝑧)
𝑦(𝑥 − 𝑦) − 2𝑧(𝑥 − 𝑦) − 2𝑥)

))
).

That looks scary, but it turns out the first two equations factor. Cleaning things up, we get:

𝑧(𝑦 − 𝑧 − 2) = 0
𝑧(−2𝑦 + 𝑥 + 𝑧) = 0

𝑦(𝑥 − 𝑦) − 2(𝑥 − 𝑦)𝑧 − 2𝑥 = 0.

In the first equation, we have cases on 𝑧 = 0 and 𝑦 = 𝑧 + 2.

• First case: If 𝑧 = 0, then both the first and second equation are true and give no further infor-
mation. So we turn to the last equation, which for 𝑧 = 0 says

𝑦(𝑥 − 𝑦) − 2𝑥 = 0.

This is a linear equation in 𝑥 that we can isolate:

(𝑦 − 2)𝑥 − 𝑦2 = 0 ⟹ (𝑦 − 2)𝑥 = 𝑦2.

Again, before dividing by 𝑦 − 2, we check the cases:

‣ If 𝑦 = 2, we get an obvious contradiction 0 = 4.
‣ So we can assume 𝑦 ≠ 2 and 𝑥 = 𝑦2

𝑦−2 .

Hence, for any real number 𝑦 ≠ 2, we get a critical point

( 𝑦2

𝑦 − 2
, 𝑦, 0).

• Now assume 𝑧 ≠ 0. Then we can safely divide by 𝑧 in the first two equations to get

𝑦 = 𝑧 + 2
𝑥 = 2𝑦 − 𝑧.

Our strategy now is to write everything in terms of 𝑧. The first equation tells us 𝑦 = 𝑧 + 2, so the
second equation says

𝑥 = 2(𝑧 + 2) + 𝑧 = 𝑧 + 4.

We have one more equation, so we make the two substitutions everywhere and expand:

0 = (𝑧 + 2)((𝑧 + 4) − (𝑧 + 2)) − 2((𝑧 + 4) − (𝑧 + 2))𝑧 − 2(𝑧 + 4)
= 2(𝑧 + 2) − 4𝑧 − 2(𝑧 + 4) = −4𝑧 − 4
⟹ 𝑧 = −1.

Hence, we get one more critical point (3, 1, −1).
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In conclusion, the answer is

( 𝑦2

𝑦 − 2
, 𝑦, 0)  for every 𝑦 ≠ 2 , plus one extra point (3, 1, −1). □

§17.6 [RECIPE] The second derivative test for two-variable functions
Earlier we classified critical points by looking at nearby points. Technically speaking, we did not give
a precise definition of “nearby”, just using small numbers like 0.01 or 0.1 to make a point. So in 18.02,
the exam will want a more systematic theorem for classifying critical points as local minimum, local
maximum, or saddle point.

I thought for a bit about trying to explain why the second derivative test works, but ultimately I decided
to not include it in these notes. Here’s some excuses why:

Digression

The issue is that getting the “right” understanding of this would require me to talk about quadratic
forms. However, in the prerequisite parts Alfa and Bravo of these notes, we only did linear algebra,
and didn’t cover quadratic forms in this context at all. I hesitate to introduce an entire chapter
on quadratic forms (which are much less intuitive than linear functions) and then tie that to
eigenvalues of a 2 × 2 matrix just to justify a single result not reused later. (Poonen has some
hints on quadratic forms in section 9 of his notes if you want to look there though.)

The other downside is that even if quadratic forms are done correctly, the second derivative test
doesn’t work in all cases anyway, if the changes of the function near the critical point are sub-
quadratic (e.g. degree three). And multivariable Taylor series are not on-syllabus for 18.02.

So to get this section over with quickly, I’ll just give the result. I’m sorry this will seem to come out
of nowhere.

Recipe: The second derivative test

Suppose 𝑓(𝑥, 𝑦) has a critical point at 𝑃 . We want to tell whether it’s a local minimum, local
maximum, or saddle point. Assume 𝑓  has a continuous second derivative near 𝑃 .

1. Let 𝐴 = 𝑓𝑥𝑥(𝑃 ), 𝐵 = 𝑓𝑥𝑦(𝑃 ) = 𝑓𝑦𝑥(𝑃 ), 𝐶 = 𝑓𝑦𝑦(𝑃 ). These are the partial derivatives of
the partial derivatives of 𝑓  (yes, I’m sorry), evaluated at 𝑃 . If you prefer gradients, you could
write this instead as

∇𝑓𝑥(𝑃 ) = (𝐴
𝐵), ∇𝑓𝑦(𝑃 ) = (𝐵

𝐶).

2. If 𝐴𝐶 − 𝐵2 ≠ 0, output the answer based on the following chart:
• If 𝐴𝐶 − 𝐵2 < 0, output “saddle point”.
• If 𝐴𝐶 − 𝐵2 > 0 and 𝐴, 𝐶 > 0, output “local minimum”.
• If 𝐴𝐶 − 𝐵2 > 0 and 𝐴, 𝐶 < 0, output “local maximum”.

3. If 𝐴𝐶 − 𝐵2 = 0, the second derivative test is inconclusive. Any of the above answers are
possible, including weird/rare saddle points like the monkey saddle. You have to use a
different method instead.
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The quantity 𝐴𝐶 − 𝐵2 is sometimes called the Hessian determinant; it’s the determinant of the matrix
(𝐴

𝐵
𝐵
𝐶).

Tip

It is indeed a theorem that if 𝑓  is differentiable twice continuously, then 𝑓𝑥𝑦 = 𝑓𝑦𝑥. That is, if you
take a well-behaved function 𝑓  and differentiate with respect to 𝑥 then differentiate with respect
to 𝑦, you get the same answer as if you differentiate with respect to 𝑦 and respect to 𝑥. You’ll see
this in the literature written sometimes as

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝑓 = 𝜕
𝜕𝑦

𝜕
𝜕𝑥

𝑓.

Warning: This is only for two variables

The second derivative test only works for 𝑓(𝑥, 𝑦). There is no analog for 𝑓(𝑥, 𝑦, 𝑧) in this class.

Sample Question

Use the second derivative test to classify the critical point (0, 0) of the function

𝑓(𝑥, 𝑦) = 𝑥3 + 𝑥2 + 𝑦3 − 𝑦2.

Solution.  Start by computing the partial derivatives:

∇𝑓 = (3𝑥2 + 2𝑥
3𝑦2 − 2𝑦) ⟹ {𝑓𝑥 = 3𝑥2 + 2𝑥

𝑓𝑦 = 3𝑦2 − 2𝑦 .

We now do partial differentiation a second time on each of these. Depending on your notation, you
can write this as either

∇𝑓𝑥 = (6𝑥 + 2
0 ) ∇𝑓𝑦 = ( 0

6𝑦 − 2)

or

𝑓𝑥𝑥 = 6𝑥 + 2, 𝑓𝑥𝑦 = 𝑓𝑦𝑥 = 0, 𝑓𝑦𝑦 = 6𝑦 − 2.

Again, the repeated 𝑓𝑥𝑦 = 𝑓𝑦𝑥 is either 𝜕
𝜕𝑦(6𝑥 + 2) = 0 or 𝜕

𝜕𝑥(6𝑦 − 2) = 0; for well-behaved func-
tions, you always get the same answer for 𝑓𝑥𝑦 and 𝑓𝑦𝑥.

At the origin, we get

𝐴 = 6 ⋅ 0 + 2 = 2
𝐵 = 0
𝐶 = 6 ⋅ 0 − 2 = −2.

Since 𝐴𝐶 − 𝐵2 = −4 < 0, we output the answer “saddle point”. □
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Sample Question

Compute the critical points of 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝑦2 + 2𝑦 and classify them using the second deriv-
ative test.

Solution.  Start by computing the gradient:

∇𝑓 = ( 𝑦
𝑥 + 2𝑦 + 2).

Solve the system of equations 𝑦 = 0 and 𝑥 + 2𝑦 + 2 = 0 to get just (𝑥, 𝑦) = (−2, 0). Hence this is the
only critical point.

We now compute the second derivatives:

𝑓𝑥𝑥 = 𝜕
𝜕𝑥

(𝑦) = 0

𝑓𝑥𝑦 = 𝑓𝑦𝑥 = 𝜕
𝜕𝑦

(𝑦) = 𝜕
𝜕𝑥

(𝑥 + 2𝑦 + 2) = 1

𝑓𝑦𝑦 = 𝜕
𝜕𝑦

(𝑥 + 2𝑦 + 2) = 2.

These are all constant functions in this example; anyway, we have 𝐴 = 0, 𝐵 = 1, 𝐶 = 2, and 𝐴𝐶 −
𝐵2 = −1 < 0, so output “saddle point”. □

§17.7 [EXER] Exercises

Exercise 17.1.  Compute the critical point(s) of 𝑓(𝑥, 𝑦) = 𝑥3 + 2𝑦3 − 6𝑥𝑦 and classify them as local
minimums, local maximums, or saddle points.

Exercise 17.2.  Compute the critical point(s) of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦3 + 𝑧4 and classify them as local
minimums, local maximums, or saddle points.

Exercise 17.3 (*).  Does there exist a differentiable function 𝑓 : ℝ2 → ℝ such that every point in ℝ2

is a saddle point?

Exercise 17.4 (*).  Give an example of a differentiable function 𝑓 : ℝ2 → ℝ with the following
property: every lattice point (𝑥, 𝑦) (i.e. a point where both 𝑥 and 𝑦 are integers) is a saddle point,
and there are no other saddle points. For example, (2, −7), (100, 100), and (−42, −13) should be
saddle points, but (1

2 , 0), (𝜋, −
√

2), and (
√

7,
√

11) should not be.
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Chapter 18. Regions
In 18.02, you’ll be asked to find global minimums or maximums over a constraint region ℛ, which
is only a subregion of ℝ𝑛. For example, if you have a three-variable function 𝑓(𝑥, 𝑦, 𝑧) given to you,
you may be asked questions like

• What is the global maximum of 𝑓  (if any) across all of ℝ3?
• What is the global maximum of 𝑓  (if any) across the octant¹⁵ 𝑥, 𝑦, 𝑧 > 0?
• What is the global maximum of 𝑓  (if any) across the cube given by −1 ≤ 𝑥, 𝑦, 𝑧 ≤ 1?
• What is the global maximum of 𝑓  (if any) across the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1?
• … and so on.

It turns out that thinking about constraint regions is actually half the problem. In 18.01 you usually
didn’t have to think much about it, because the regions you got were always intervals, and that made
things easy. But in 18.02, you will need to pay much more attention.

Warning: if you are proof-capable, read the grown-up version

This entire chapter is going to be a lot of wishy-washy terms that I don’t actually give definitions
for. If you are a high-school student preparing for a math olympiad, or you are someone who can
read proofs, read the version at https://web.evanchen.cc/handouts/LM/LM.pdf instead. We
use open/closed sets and compactness there to do things correctly.

§18.1 [TEXT] Constraint regions

Digression: An English lesson on circle vs disk, sphere vs ball

To be careful about some words that are confused in English, I will use the following conventions:

• The word circle refers to a one-dimensional object with no inside, like 𝑥2 + 𝑦2 = 1. It has
no area.

• The word open disk refers to points strictly inside a circle, like 𝑥2 + 𝑦2 < 1
• The word closed disk refers to a circle and all the points inside it, like 𝑥2 + 𝑦2 = 1 or 𝑥2 +

𝑦2 < 1.
• The word disk refers to either an open disk or a closed disk.

Similarly, a sphere refers only to the surface, not the volume, like 𝑥2 + 𝑦2 + 𝑧2 = 1. Then we
have open ball, closed ball, and ball defined in the analogous way.

In 18.02, all the constraint regions we encounter will be made out of some number (possibly zero) of
equalities and inequalities. We provide several examples.

Examples of regions in ℝ

In ℝ:
• All of ℝ, with no further conditions.
• An open interval like −1 < 𝑥 < 1 in ℝ.
• A closed interval like −1 ≤ 𝑥 ≤ 1 in ℝ.

¹⁵Like “quadrant” with 𝑥𝑦-graphs. If you’ve never seen this word before, ignore it.
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Examples of two-dimensional regions in ℝ2

In ℝ2, some two-dimensional regions:
• All of ℝ2, with no further conditions.
• The first quadrant 𝑥, 𝑦 > 0, not including the axes
• The first quadrant 𝑥, 𝑦 ≥ 0, including the positive 𝑥 and 𝑦 axes.
• The square −1 < 𝑥 < 1 and −1 < 𝑦 < 1, not including the four sides of the square.
• The square −1 ≤ 𝑥 ≤ 1 and −1 ≤ 𝑦 ≤ 1, including the four sides.
• The open disk 𝑥2 + 𝑦2 < 1, filled-in unit disk without its circumference.
• The closed disk 𝑥2 + 𝑦2 ≤ 1, filled-in unit disk including its circumference.

Examples of one-dimensional regions in ℝ2

In ℝ2, some one-dimensional regions:
• The unit circle 𝑥2 + 𝑦2 = 1, which is a circle of radius 1, not filled.
• Both 𝑥2 + 𝑦2 = 1 and 𝑥, 𝑦 > 0, a quarter-arc, not including (1, 0) and (0, 1).
• Both 𝑥2 + 𝑦2 = 1 and 𝑥, 𝑦 ≥ 0, a quarter-arc, including (1, 0) and (0, 1).
• The equation 𝑥 + 𝑦 = 1 is a line.
• Both 𝑥 + 𝑦 = 1 and 𝑥, 𝑦 > 0: a line segment not containing the endpoints (1, 0) and (0, 1).
• Both 𝑥 + 𝑦 = 1 and 𝑥, 𝑦 ≥ 0: a line segment containing the endpoints (1, 0) and (0, 1).

I could have generated plenty more examples for ℝ2, and I haven’t even gotten to ℝ3 yet. That’s why
the situation of constraint regions requires more thought in 18.02 than 18.01, (whereas in 18.01 there
were pretty much only a few examples that happened).

In order to talk about the regions further, I have to introduce some new words. The three that you
should care about for this class are the following: “boundary”, “limit cases”, and “dimension”.

Warning: This is all going to be waving hands furiously

As far as I know, in 18.02 it’s not possible to give precise definitions for these words. So you have
to play it by ear. All the items below are rules of thumb that work okay for 18.02, but won’t hold
up in 18.100/18.900.

• The boundary is usually the points you get when you choose any one of the ≤ and ≥ constraints
and turn it into and = constraint. For example, the boundary of the region cut out by −1 ≤ 𝑥 ≤ 1
and −1 ≤ 𝑦 ≤ 1 (which is a square of side length 2) are the four sides of the square, where either
𝑥 = ±1 or 𝑦 = ±1.

• The limit cases come in two forms:
‣ If any of the variables can go to ±∞, all those cases are usually limit cases.
‣ If you have any < and > inequalities, the cases where the variables approach those strict

bounds are usually limit cases.

• The dimension of ℛ is the hardest to define in words but easiest to guess. I’ll give you two ways
to guess it:

‣ Geometric guess: pick a point 𝑃  in ℛ that’s not on the boundary. Look at all the points of ℛ
that are close to 𝑃 , i.e. a small neighborhood.
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– Say ℛ is one-dimensional if the small neighborhood could be given a length.
– Say ℛ is two-dimensional if the small neighborhood could be given an area.
– Say ℛ is three-dimensional if the small neighborhood could be given a volume.

‣ Algebraic guess: the dimension of a region in ℝ𝑛 is usually equal to 𝑛 minus the number of
= in constraints.

Overall, trust your instinct on dimension; you’ll usually be right.

The table below summarizes how each constraint affects each of the three words above.

Constraint Boundary Limit case Dimension
≤ or ≥ Change to = to get boundary No effect No effect
< or > No effect Approach for limit case No effect
= No effect No effect Reduces dim by one

Table 8: Effects of the rules of thumb.

Let’s use some examples.

Example: the circle, open disk, and closed disk

See Figure 39.

• The circle 𝑥2 + 𝑦2 = 1 is a one-dimensional shape. Again, we consider this region to be
one-dimensional even though the points live in ℝ2. The rule of thumb is that with 2 variables
and 1 equality, the dimension should be 2 − 1 = 1.

Because there are no inequality constraints at all, and because 𝑥 and 𝑦 can’t be larger than
1 in absolute value, there is no boundary and there are no limit cases.

• The open disk 𝑥2 + 𝑦2 < 1 is two-dimensional now, since it’s something that makes sense
to assign an area. (Or the rule of thumb that with 2 variables and 0 equalities, the dimension
should be 2 − 0 = 2.)

There is one family of limit cases: when 𝑥2 +𝑦2 approaches 1−. But there is no boundary.

• The closed disk 𝑥2 + 𝑦2 ≤ 1 is also two-dimensional. Because 𝑥 and 𝑦 can’t be larger than
1 in absolute value, and there were no < or > constraints, there are no limit cases to consider.
But there is a boundary of 𝑥2 +𝑦2 = 1.

Figure 39: Pictures of 𝑥2 + 𝑦2 = 1, 𝑥2 + 𝑦2 < 1, and 𝑥2 + 𝑦2 ≤ 1.
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In compensation for the fact that I’m not giving you true definitions, I will instead give you a pile of
examples, their dimensions, boundaries, and limit cases. See Table 9, Table 10, Table 11.

Region Dim. Boundary Limit cases
All of ℝ 1D No boundary 𝑥 → ±∞

−1 < 𝑥 < 1 1D No boundary 𝑥 → ±1
−1 ≤ 𝑥 ≤ 1 1D 𝑥 = ±1 No limit cases

Table 9: Examples of regions inside ℝ and their properties.

Region Dim. Boundary Limit cases
All of ℝ2 2D No boundary 𝑥 → ±∞ or 𝑦 → ±∞

𝑥, 𝑦 > 0 2D No boundary 𝑥 → 0+ or 𝑦 → 0+

or 𝑥 → +∞ or 𝑦 → +∞
𝑥, 𝑦 ≥ 0 2D 𝑥 = 0 or 𝑦 = 0 𝑥 → +∞ or 𝑦 → +∞

−1 < 𝑥 < 1
−1 < 𝑦 < 1 2D No boundary 𝑥, 𝑦 → ±1
−1 ≤ 𝑥 ≤ 1
−1 ≤ 𝑦 ≤ 1 2D 𝑥 = ±1 or 𝑦 = ±1 No limit cases

𝑥2 + 𝑦2 < 1 2D No boundary 𝑥2 + 𝑦2 → 1−

𝑥2 + 𝑦2 ≤ 1 2D 𝑥2 + 𝑦2 = 1 No limit cases
𝑥2 + 𝑦2 = 1 1D No boundary No limit cases
𝑥2 + 𝑦2 = 1

𝑥, 𝑦 > 0 1D No boundary 𝑥 → 0+ or 𝑦 → 0+

𝑥2 + 𝑦2 = 1
𝑥, 𝑦 ≥ 0 1D (1, 0) and (0, 1) No limit cases

𝑥 + 𝑦 = 1 1D No boundary 𝑥 → ±∞ or 𝑦 → ±∞
𝑥 + 𝑦 = 1
𝑥, 𝑦 > 0 1D No boundary 𝑥 → 0+ or 𝑦 → 0+

𝑥 + 𝑦 = 1
𝑥, 𝑦 ≥ 0 1D (1, 0) and (0, 1) No limit cases

Table 10: Examples of regions inside ℝ2 and their properties
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Region Dim. Boundary Limit cases
All of ℝ3 3D No boundary Any var to ±∞
𝑥, 𝑦, 𝑧 > 0 3D No boundary Any var to 0 or ∞
𝑥, 𝑦, 𝑧 ≥ 0 3D 𝑥 = 0 or 𝑦 = 0 or 𝑧 = 0 Any var to ∞

𝑥2 + 𝑦2 + 𝑧2 < 1 3D No boundary 𝑥2 + 𝑦2 + 𝑧2 → 1−

𝑥2 + 𝑦2 + 𝑧2 ≤ 1 3D 𝑥2 + 𝑦2 + 𝑧2 = 1 No limit cases
𝑥2 + 𝑦2 + 𝑧2 = 1 2D No boundary No limit cases
𝑥2 + 𝑦2 + 𝑧2 = 1

𝑥, 𝑦, 𝑧 > 0 2D No boundary (1, 0) and (0, 1)

𝑥2 + 𝑦2 + 𝑧2 = 1
𝑥, 𝑦, 𝑧 ≥ 0 2D Three quarter-circle arcs¹⁶ No limit cases

𝑥 + 𝑦 + 𝑧 = 1 2D No boundary Any var to ±∞
𝑥 + 𝑦 + 𝑧 = 1

𝑥, 𝑦, 𝑧 > 0 2D No boundary Any var to 0+

𝑥 + 𝑦 + 𝑧 = 1
𝑥, 𝑦, 𝑧 ≥ 0 2D 𝑥 = 0 or 𝑦 = 0 or 𝑧 = 0 No limit cases

Table 11: Examples of regions inside ℝ3 and their properties

Digression on intentionally misleading constraints that break the rule of thumb

I hesitate to show these, but here are some examples where the rules of thumb fail:

• An unusually cruel exam-writer might rewrite the unit circle as

𝑥2 + 𝑦2 ≤ 1  and 𝑥2 + 𝑦2 ≥ 1

instead of the more natural 𝑥2 + 𝑦2 = 1. Then if you were blindly following the rules of
thumb, you’d get the wrong answer.

• In ℝ3 the region cut out by the single equation

𝑥2 + 𝑦2 + 𝑧2 = 0

is actually 0-dimensional, because there’s only one point in it: (0, 0, 0).

That said, intentionally misleading constraints like this are likely off-syllabus for 18.02.

§18.2 [RECIPE] Working with regions
This is going to be an unsatisfying recipe, because it’s just the rules of thumb. But again, for 18.02, the
rules of thumb should work on all the exam questions.

¹⁶To be explicit, the first quarter circle is 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 ≥ 0 and 𝑧 = 0. The other two quarter-circle arcs are similar.
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Recipe: The rule of thumb for regions defined by equations and inequalities

Given a region ℛ contained in ℝ𝑛, to guess its dimension, limit cases, and boundary:

• The dimension is probably 𝑛 minus the number of = constraints.
• The limit cases are obtained by turning < and > into limits, and considering when any of

the variables can go to ±∞.
• The boundary is obtained when any ≤ and ≥ becomes =.

See Table 8 for a summary of these rules of thumbs, and again consult Table 9, Table 10, Table 11 for
a lot of examples.
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Chapter 19. Optimization problems
Now that we understand both critical points of 𝑓  and regions ℛ, we turn our attention to the problem
of finding global minimums and maximums.

§19.1 [TEXT] The easy and hard cases
Suppose you have a function 𝑓 : ℝ𝑛 → ℝ that you can compute ∇𝑓  for, and a region ℛ. We’re going
to distinguish between two cases:

• The easy case is if ℛ has dimension 𝑛 as well. The rule of thumb says there should be zero “=”
constraints.

• The hard case is if ℛ has dimension 𝑛 − 1. Rule of thumb says there should be one “=” constraint.
In the hard case, we will use Lagrange multipliers.

We won’t cover the case where ℛ has dimension 𝑛 − 2 or less in 18.02 (i.e. two or more constraints),
although it can be done.

§19.2 [RECIPE] The easy case

Recipe for optimization without Lagrange Multipliers

Suppose you want to find the optimal values of 𝑓 : ℝ𝑛 → ℝ over a region ℛ, and ℛ has dimension
𝑛.

0. Figure out the boundary and limit cases for the region ℛ. (You don’t need to look at 𝑓  for
this step.)

1. Evaluate 𝑓  on all the critical points of 𝑓  in the region ℛ.
2. Evaluate 𝑓  on all the boundary points of 𝑓  in the region ℛ.
3. Evaluate 𝑓  on all the limit cases of 𝑓  in the region ℛ.
4. Output the points in the previous steps that give the best values, or assert the optimal value

doesn’t exist (if points in step 3 do better than steps 1-2).

If there are any points at which ∇𝑓  is undefined, you should check those as well. However, these
seem to be pretty rare for the examples that show up in 18.02.

Warning: Don’t underestimate the boundary!

In 18.01, you probably only optimized functions over intervals 𝐼 = [𝑎, 𝑏], in which case the
boundary was just two inputs 𝑎 and 𝑏. In 18.02, the situation is completely different: the boundary
(if it is nonempty) will often have infinitely many points. So it can take a lot of work to do the
boundary case! Don’t underestimate the possible complexity of Step 2.

In particular, Step 2 might even require you to use Lagrange multipliers, i.e. that one step of the
easy case is an entire instance of the hard case. For that reason, the naming “easy case” and “hard
case” is a bit of a misnomer.

We’ll start with an example with no boundary for which the limit cases are easy to examine, so Step
2 and Step 3 are mostly harmless. Later on we’ll do more examples where Step 2 and Step 3 are more
intricate.

160



Linear Algebra and Multivariable Calculus — Evan Chen

Sample Question

Compute the minimum and maximum possible value, if they exist of

𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 + 8
𝑥𝑦

over 𝑥, 𝑦 > 0.

Solution.  The region ℛ is the first quadrant which is indeed two-dimensional (no = constraints), so
we’re in the easy case and the recipe applies here. We check all the points in turn:

0. ℛ has no boundary and limit cases when any variable approaches 0 or +∞.

1. To find the critical points, calculate the gradient

∇𝑓(𝑥, 𝑦) =
(
((

1 − 8
𝑥2𝑦

1 − 8
𝑥𝑦2 )

))

and then set it equal to (0
0). This gives us the simultaneous equations

1 = 8
𝑥2𝑦

= 8
𝑥𝑦2 .

This implies 𝑥2𝑦 = 𝑥𝑦2 or 𝑥 = 𝑦 (we have 𝑥, 𝑦 > 0 in ℛ, so we’re not worried about division by
zero) and so the only critical point is (𝑥, 𝑦) = (2, 2).

2. The region ℛ has no boundary, so there are no boundary points to check.

3. The region ℛ has four different kinds of limit cases:

• 𝑥 → 0+

• 𝑦 → 0+

• 𝑥 → +∞
• 𝑦 → +∞.

In fact all four of these cases cause 𝑓 → +∞. In each of the first two cases, the term 8
𝑥𝑦  in 𝑓

causes 𝑓 → +∞. In the case 𝑥 → ∞, the term 𝑥 causes 𝑓 → +∞. In the case 𝑦 → ∞, the term
𝑦 causes 𝑓 → +∞.

Putting these together:

• The global minimum is (2, 2), at which 𝑓(2, 2) = 6.
• There is no global maximum, since we saw limit cases where 𝑓 → +∞. □

§19.3 [TEXT] Lagrange multipliers
Let 𝑓 : ℝ𝑛 → ℝ be a function we’re optimizing over some region ℛ. We now turn to the case where
ℛ, is dimension 𝑛 − 1, because of a single constraint of the form 𝑔(𝑥, 𝑦) = 𝑐 or 𝑔(𝑥, 𝑦, 𝑧) = 𝑐.

We need a new definition of critical point. To motivate it, let’s consider a particular example in
Figure 40. Here 𝑛 = 2, and

• 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, and
• 𝑔(𝑥, 𝑦) = 𝑐 is the red level curve shown in the picture below;
• ℛ is just the level curve 𝑔(𝑥, 𝑦) = 𝑐 (no further < or ≤ constraints).
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Trying to optimize 𝑓  subject to 𝑔(𝑥, 𝑦) = 𝑐 in this picture is the same as finding the points on the level
curve which are furthest or closest to the origin. I’ve marked those two points as 𝑃  and 𝑄 in the figure.
The trick to understanding how to get them is to also draw the level curves for 𝑓  that pass through 𝑃
and 𝑄: then we observe that the level curves for 𝑓  that get those minimums and maximums ought to
be tangent to 𝑔(𝑥, 𝑦) = 𝑐 at 𝑃  and 𝑄.

Figure 40: An example of a LM-type optimization problem, where one finds points
on 𝑔(𝑥, 𝑦) = 𝑐 which optimize 𝑓

Now how can we check whether there’s a tangency? Answer: look at the gradient! We expect that ∇𝑓
and ∇𝑔, at the points 𝑃  and 𝑄, should point in the same direction. So that gives us the strategy: look
for the points where ∇𝑓  and ∇𝑔 point the same way.

I don’t think the following term is an official name, but I like it, and I’ll use it:

Definition

An LM-critical point is a point 𝑃  on the curve/surface 𝑔(𝑃 ) = 𝑐 such that either

• ∇𝑓(𝑃) = 𝜆∇𝑔(𝑃) for some scalar 𝜆; OR
• ∇𝑔(𝑃) = 𝟎.

Note that there are two possible situations. If you want, you can think about this as requiring that
∇𝑓(𝑃) and ∇𝑔(𝑃) are linearly dependent, so it’s only one item. However, in practice, people end up
usually breaking into cases like this.
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Digression

The parameter 𝜆 is the reason for the name “Lagrange multipliers”; it’s a scalar multiplier on ∇𝑔.
Personally, I don’t think this name makes much sense.

Also, some sources will define an LM-critical point in the following (in my opinion, more con-
fusing) way. Let’s say 𝑓(𝑥, 𝑦, 𝑧) is a three-variable function. Define a four-variable “Lagrangian
function” 𝐿(𝑥, 𝑦, 𝑧, 𝜆) = 𝑓(𝑥, 𝑦, 𝑧) − 𝜆𝑔(𝑥, 𝑦, 𝑧). Then an LM-critical point is a point for which
either ∇𝑔 = 𝟎 or ∇𝐿 = 𝟎, i.e. a normal critical point of 𝐿. It can be checked this is equivalent to
the original definition, but I personally find this unnatural. However, if you like this definition,
feel free to use it instead.

Now that we have this, we can describe the recipe for the “hard” case. The only change is to replace
the old critical point definition (where ∇𝑓(𝑃) = 𝟎) with the LM-critical point definition.

§19.4 [RECIPE] Lagrange multipliers

Recipe for Lagrange multipliers

Suppose you want to find the optimal values of 𝑓 : ℝ𝑛 → ℝ over a region ℛ, and ℛ has dimension
𝑛 − 1 due to a single constraint 𝑔 = 𝑐 for some 𝑔 : ℝ𝑛 → ℝ.

0. Figure out the boundary and limit cases for the region ℛ. (You don’t need to look at 𝑓  for
this step.)

1. Evaluate 𝑓  on all the LM-critical points of 𝑓  that lie on the region ℛ.
2. Evaluate 𝑓  on all the boundary points of 𝑓  of the region ℛ.
3. Evaluate 𝑓  on all the limit cases of 𝑓  of the region ℛ.
4. Output the points in the previous steps that give the best values, or assert the optimal value

doesn’t exist (if points in step 3 do better than steps 1-2).

If there are any points at which ∇𝑓  or ∇𝑔 are undefined, you should check those as well. However,
these seem to be pretty rare for the examples that show up in 18.02.

Again, this is the same recipe as Section 19.2, except we changed “critical point” to “LM-critical point”.

Tip

Remember how finding critical points could lead to systems of equations that required quite a bit
of algebraic skill to solve? The same is true for Lagrange multipliers, but even more so, because of
the new parameter 𝜆 that you have to care about. So the reason this is called the “hard case” isn’t
because the 18.02 ideas needed are different, but because the algebra can become quite involved
in finding LM-critical points.

In fact, in high school math competitions, the algebra can sometimes become so ugly that the
method of Lagrange multipliers is sometimes jokingly called “Lagrange murderpliers” to reflect
the extreme amount of calculation needed for some problems.
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Sample Question

Compute the minimum and maximum possible value, if they exist, of

𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧

over 𝑥, 𝑦, 𝑧 > 0 satisfying the condition 𝑥𝑦𝑧 = 8.

Solution.  We carry out the recipe.

0. The region ℛ is two-dimensional, consisting of strict inequalities 𝑥, 𝑦, 𝑧 > 0 and the condition
𝑔(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 = 8. So there is no boundary, but there are limit cases if any variables
approaches 0 or +∞.

1. To find the LM-critical points, we need to compute both ∇𝑓  and ∇𝑔. We do so:

∇𝑓(𝑥, 𝑦, 𝑧) =
(
((
(1

1
1)
))
)

∇𝑔 = (𝑦𝑧, 𝑧𝑥, 𝑥𝑦).

Now, there are no points with ∇𝑔 = (
0
0
0
) in the region ℛ, because in ℛ all the variables are

constrained to be positive. So we now solve the system

1 = 𝜆𝑦𝑧
1 = 𝜆𝑧𝑥
1 = 𝜆𝑥𝑦

and see what values it takes.

The trick to solving the system of equations is to divide the first two to get rid of the parameter
𝜆, which we don’t really care about, to get

1
1

= 𝜆𝑦𝑧
𝜆𝑧𝑥

= 𝑦
𝑥

.

So we must have 𝑥 = 𝑦. Similarly, we find 𝑦 = 𝑧 and 𝑧 = 𝑥.

Hence the LM-critical point must have 𝑥 = 𝑦 = 𝑧. Since 𝑥𝑦𝑧 = 8, it follows the only LM-critical
point is (2, 2, 2). Evaluating 𝑓  here gives 𝑓(2, 2, 2) = 6.

2. The region ℛ has no boundary, because no ≤ or ≥ constraints are present.

3. The region ℛ has limit cases when any of the variables 𝑥, 𝑦, 𝑧 either approach 0 or +∞. However,
remember that 𝑥𝑦𝑧 = 8. So if any variable approaches 0, some other variable must become large.
Consequently, in every limit case, we find that 𝑓 → +∞.

Collating all these results:

• The unique global minimum is (2, 2, 2) at which 𝑓(2, 2, 2) = 6.
• There is no global maximum. □
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Remark

If you’re paying close enough attention, you might realize this sample question we just did is
a thin rewriting of the example in Section 19.2. This illustrates something: sometimes you can
rewrite a hard-case optimization problem in 3 variables to an easy-case one with 2 variables.

§19.5 [TEXT] Advice for solving systems of equations (reprise)
Back in Section 17.5, when we were finding all the critical points, I reminded you to be careful about
division-by-zero, handle cases carefully, and gave you some advice for solving systems. Solving the
system for LM-critical points is a similar situation: systems of equations are hard, and you have to treat
it like a self-contained high school algebra puzzle.

For systems of equations generated by Lagrange multipliers, there’s a new feature: a variable 𝜆 whose
value is never used, but which appears in every equation besides the constraint 𝑔 = 𝑐. So a couple tips
specific to Lagrange Multiplier systems:

Tip: Advice for Lagrange Multiplier systems

In addition to the tips in Section 17.5, here are some strategies that sometimes help:

• It might make sense to try to get rid of 𝜆 ASAP, if that’s easy to do. After all, we don’t actually
care what 𝜆 is.

• Alternatively, you can try to kill every variable except 𝜆! This is commonly used if each
equations involves only one non-𝜆 variable. That is, solve for 𝑥 in terms of 𝜆; do the same for
𝑦 and 𝑧. Then plug these in the original constraint equation to solve for 𝜆, and hence extract
(𝑥, 𝑦, 𝑧).

Note the second advice bullet is the opposite of the first advice bullet! Again, systems of equations
can’t be solved by blindly following recipes. You should use whatever method you think makes
sense for the given problem. You don’t need anyone’s permission to use so-and-so approach.

Warning: Make sure you only divide by nonzero things!

Remember: watch out for division by zero! For example, if you get to the equation 2𝜆𝑦 = 10𝑦,
for example, this implies EITHER 𝜆 = 5 OR 𝑦 = 0.

During the 2024 midterm, an equation like this appeared as part of a step in a standard Lagrange
multipliers question. Something like 50%-80% of students who got this equation would forget one
of the two cases (which one they forgot about varied). Don’t let this be you! Whenever you try
to cancel, check for division by zero!

Here’s an example where a good idea is to kill 𝜆 ASAP:

Sample Question

Use Lagrange multipliers to find the smallest possible value of 𝑥2 + 𝑥𝑦 + 𝑦2 + 𝑦 subject to the
constraint 𝑥 + 2𝑦 = 3.
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Solution.  We want to minimize the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2 + 𝑦 subject to the constraint
𝑔(𝑥, 𝑦) = 𝑥 + 2𝑦 = 3.

0. The constraint region has no boundary, but limit cases along the line 𝑥 + 2𝑦 = 3 if either 𝑥 →
+∞ and 𝑦 → −∞ and either 𝑥 → −∞ and 𝑦 → +∞.

1. Computing the gradients gives

∇𝑓 = ( 2𝑥 + 𝑦
𝑥 + 2𝑦 + 1)

∇𝑔 = (1
2).

Note ∇𝑔 is never 𝟎. Thus, the Lagrange multiplier equation becomes:

( 2𝑥 + 𝑦
𝑥 + 2𝑦 + 1) = 𝜆(1

2).

This gives the following system of equations:

2𝑥 + 𝑦 = 𝜆
𝑥 + 2𝑦 + 1 = 2𝜆.

Combining these two equations gives us an easy way to get rid of 𝜆:

𝑥 + 2𝑦 + 1 = 2 ⋅ (2𝑥 + 𝑦)⏟
=𝜆

= 4𝑥 + 2𝑦.

Cancel 2𝑦 on both sides gives us 𝑥:

𝑥 + 1 = 4𝑥 ⟹ 𝑥 = 1
3

Now substitute 𝑥 = 1
3  into the constraint 𝑥 + 2𝑦 = 3 to get:

2𝑦 = 3 − 1
3

= 8
3

⟹ 𝑦 = 4
3
.

In other words, the only LM-critical point is (1
3 , 4

3), at which point we have

𝑓(1
3
, 4
3
) = (1

3
)

2
+ (1

3
)(4

3
) + (4

3
)

2

+ 4
3

= 1
9

+ 4
9

+ 16
9

+ 4
3

= 11
3

.

2. There is no boundary to check.

3. If any of the variables goes to +∞ (and hence the other goes to −∞), the value of 𝑓  will become
large too.¹⁷

In conclusion, the global minimum is 𝑓(1
3 , 4

3) = 11
3 . □

And here’s an example where we kill every variable except 𝜆:

¹⁷This is actually a bit tricky to see, because in this limit case you have two positive terms 𝑥2 and 𝑦2 and one negative
term 𝑥𝑦. One idea is to write

𝑓(𝑥, 𝑦) ≈ 3
4
𝑥2 + (𝑥

2
+ 𝑦)

2
= 3

4
𝑦2 + (𝑥 + 𝑦

2
)

2

for large 𝑥 and 𝑦. The first expression shows that if 𝑥 is big, then so is 𝑓 ; The first expression shows that if 𝑦 is big, then
so is 𝑓 .
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Sample Question

Use Lagrange multipliers to find the smallest possible value of 𝑥2 + 𝑦2 + 𝑧2 + 𝑦 − 𝑧 subject to
the constraint 𝑥 + 2𝑦 + 3𝑧 = 4.

Solution.  We want to minimize the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 + 𝑦 − 𝑧 subject to the con-
straint (𝑥, 𝑦, 𝑧) = 𝑥 + 2𝑦 + 3𝑧 = 4.

0. The 𝑔 = 4 region is a plane with no boundary but limit cases if any variable becomes ±∞.

1. Let’s find all the LM-critical points. We start by calculating all the gradients:

∇𝑓 =
(
((
( 2𝑥

2𝑦 + 1
2𝑧 − 1)

))
)

∇𝑔 =
(
((
(1

2
3)
))
).

Note the gradient ∇𝑔 is never 𝟎. Thus, the Lagrange multiplier equation becomes:

(
((
( 2𝑥

2𝑦 + 1
2𝑧 − 1)

))
) = 𝜆

(
((
(1

2
3)
))
)

or

2𝑥 = 𝜆,
2𝑦 + 1 = 2𝜆,
2𝑧 − 1 = 3𝜆.

Let’s get rid of every variable besides 𝜆, by solving in 𝜆:

2𝑥 = 𝜆 ⟹ 𝑥 = 𝜆
2

2𝑦 + 1 = 2𝜆 ⟹ 𝑦 = 𝜆 − 1
2

2𝑧 − 1 = 3𝜆 ⟹ 𝑧 = 3𝜆 + 1
2

.

Now substitute 𝑥 = 𝜆
2 , 𝑦 = 𝜆 − 1

2 , and 𝑧 = 3𝜆+1
2  into the constraint 𝑥 + 2𝑦 + 3𝑧 = 4:

𝜆
2

+ 2(𝜆 − 1
2
) + 3(3𝜆 + 1

2
) = 4

⟹ 𝜆
2

+ 2𝜆 − 1 + 9𝜆 + 3
2

= 4

⟹ 10𝜆 + 3
2

+ 2𝜆 − 1 = 4

⟹ 10𝜆 + 3 + 4𝜆 − 2 = 8
⟹ 14𝜆 + 1 = 8

⟹ 𝜆 = 1
2
.
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Now that we have 𝜆, plug back in to get (𝑥, 𝑦, 𝑧):

𝑥 = 𝜆
2

= 1
4
,

𝑦 = 𝜆 − 1
2

= 1
2

− 1
2

= 0,

𝑧 = 3𝜆 + 1
2

=
3(1

2) + 1
2

=
3
2 + 1

2
= 5

4
.

This gives a single LM-critical point (𝑥, 𝑦, 𝑧) = (1
4 , 0, 5

4), where 𝑓(1
4 , 0, 5

4) = 3
8 .

2. There are no boundary cases to consider.

3. The limit cases are if one of the variables goes to ±∞. However, in such a situation 𝑓  obviously
becomes large, so there are no minimums in the situation.

In conclusion, the global minimum is 𝑓(1
4 , 0, 5

4) = 3
8 . □

Digression: Clever geometric approach for observant students

We show a way you can skip all the calculus steps in the previous problem if you can see how to
rewrite the question as a geometry one. This approach is so clever that you don’t even need to
find (1

4 , 0, 5
4); it will directly tell you the minimum value. Don’t try this on an exam unless you

really know what you’re doing.

Let 𝑃 ≔ (𝑥, 𝑦, 𝑧) be a point. Let ℋ denote the plane 𝑥 + 2𝑦 + 3𝑧 = 4. The magic trick is to
rewrite

𝑓 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑦 − 𝑧 = 𝑥2 + (𝑦 + 1
2
)

2
+ (𝑧 − 1

2
)

2
− 1

2
= 𝑃𝑄2 − 1

2

where 𝑄 ≔ (0, −1
2 , 1

2). In other words, 𝑓(𝑃 ) is a shift of the squared distance of 𝑃  from 𝑄. So
actually, the global minimum we found (1

4 , 0, 5
4) is the point on the plane ℋ closest to 𝑄 =

(0, −1
2 , 1

2).

But if all you care about is the distance from 𝑄 = (0, −1
2 , 1

2) to the ℋ, then using calculus is
overkill: instead use the recipe from way back in Section 5.6:

min(𝑃𝑄) =
|1 ⋅ 0 + 2 ⋅ −1

2 + 3 ⋅ 1
2 − 4|

√
12 + 22 + 32

= 7
2
√

14
.

So the minimum is

min(𝑓) = min(𝑃𝑄)2 − 1
2

= ( 7
2
√

14
)

2

− 1
2

= 3
8
.

Thus, an extremely clever student could have bypassed the entire problem by translating it into
a geometry question. Don’t worry, you won’t be expected to come up with something like this
in 18.02.

To top all that of, here is a Lagrange multipliers example that requires considering tons of cases. This
is probably too lengthy of a calculation for 18.02 because of the amount of arithmetic required; it’s
here just to illustrate.
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Sample Question

Compute the minimum and maximum possible of 𝑥3 + 3𝑦3 + 4𝑧3 subject to 𝑥4 + 𝑦4 + 𝑧4 = 2.

Solution.  The region has no boundary nor limit cases. So, we will only focus on calculating the LM-
critical points.

The gradients of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥3 + 3𝑦3 + 4𝑧3 and 𝑔(𝑥, 𝑦, 𝑧) = 𝑥4 + 𝑦4 + 𝑧4 are given by

∇𝑓 =
(
((
( 3𝑥2

9𝑦2

12𝑧2
)
))
)

∇𝑔 =
(
((
(4𝑥3

4𝑦3

4𝑧3
)
))
).

We begin by simplifying each equation:

• 3𝑥2 − 4𝜆𝑥3 = 0 becomes: 𝑥2(3 − 4𝜆𝑥) = 0. This gives two possibilities:
‣ 𝑥 = 0, or
‣ 𝜆 = 3

4𝑥  (assuming 𝑥 ≠ 0).
• 9𝑦2 − 4𝜆𝑦3 = 0 becomes: 𝑦2(9 − 4𝜆𝑦) = 0. This gives two possibilities:

‣ 𝑦 = 0, or
‣ 𝜆 = 9

4𝑦  (assuming 𝑦 ≠ 0).
• 12𝑧2 − 4𝜆𝑧3 = 0 becomes: 𝑧2(12 − 4𝜆𝑧) = 0. This gives two possibilities:

‣ 𝑧 = 0, or
‣ 𝜆 = 3

𝑧  (assuming 𝑧 ≠ 0).

This gives a total of eight cases! We will go through them all individually.

Case 1 where 𝑥 = 0, 𝑦 = 0, 𝑧 ≠ 0 From the constraint 𝑧4 = 2, we get:

𝑧 = ± 4
√

2.

Thus, 𝜆 = 3
𝑧 = ± 3

4√2
.

Case 2 where 𝑥 = 0, 𝑦 ≠ 0, 𝑧 = 0 From the constraint 𝑦4 = 2, we get:

𝑦 = ± 4
√

2.

Thus, 𝜆 = 9
4𝑦 = ± 9

4 4√2
.

Case 3 where 𝑥 ≠ 0, 𝑦 = 0, 𝑧 = 0 From the constraint 𝑥4 = 2, we get:

𝑥 = ± 4
√

2.

Thus, 𝜆 = 3
4𝑥 = ± 3

4 4√2
.

Case 4 where 𝑥 = 0, 𝑦 ≠ 0, 𝑧 ≠ 0 From the constraint 𝑦4 + 𝑧4 = 2, we solve using 𝜆 = 9
4𝑦  and 𝜆 =

3
𝑧 . Equating these, we get:

9
4𝑦

= 3
𝑧

⟹ 𝑧 = 4
3
𝑦.

Substitute into the constraint:
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𝑦4 + (4
3
𝑦)

4

= 2 ⟹ 𝑦4 + 256
81

𝑦4 = 2.

This simplifies to:

337
81

𝑦4 = 2 ⟹ 𝑦4 = 162
337

⟹ 𝑦 = ± 4√162
337

.

Thus, 𝑧 = ±4
3

4√162
337 .

Case 5 where 𝑥 ≠ 0, 𝑦 = 0, 𝑧 ≠ 0 From the constraint 𝑥4 + 𝑧4 = 2, we solve using 𝜆 = 3
4𝑥  and 𝜆 =

3
𝑧 . Equating these, we get:

3
4𝑥

= 3
𝑧

⟹ 𝑧 = 4𝑥.

Substitute into the constraint:

𝑥4 + (4𝑥)4 = 2 ⟹ 𝑥4 + 256𝑥4 = 2 ⟹ 257𝑥4 = 2.

Thus, 𝑥4 = 2
257 , and:

𝑥 = ± 4√ 2
257

, 𝑧 = ±4 4√ 2
257

.

Case 6 where 𝑥 ≠ 0, 𝑦 ≠ 0, 𝑧 = 0 From the constraint 𝑥4 + 𝑦4 = 2, we solve using 𝜆 = 3
4𝑥  and 𝜆 =

9
4𝑦 . Equating these, we get:

3
4𝑥

= 9
4𝑦

⟹ 𝑦 = 3𝑥.

Substitute into the constraint:

𝑥4 + (3𝑥)4 = 2 ⟹ 𝑥4 + 81𝑥4 = 2 ⟹ 82𝑥4 = 2.

Thus, 𝑥4 = 1
41 , and:

𝑥 = ± 4√ 1
41

, 𝑦 = ±3 4√ 1
41

.

Case 7 where 𝑥 ≠ 0, 𝑦 ≠ 0, 𝑧 ≠ 0 Equating the three expressions for 𝜆:

3
4𝑥

= 9
4𝑦

= 3
𝑧
.

From 3
4𝑥 = 9

4𝑦 , we get 𝑦 = 3𝑥, and from 3
4𝑥 = 3

𝑧 , we get 𝑧 = 4𝑥. Substitute into the constraint:

𝑥4 + (3𝑥)4 + (4𝑥)4 = 2 ⟹ 𝑥4 + 81𝑥4 + 256𝑥4 = 2 ⟹ 338𝑥4 = 2.

Thus, 𝑥4 = 2
338 , and:

𝑥 = ± 4√ 1
169

, 𝑦 = ±3 4√ 1
169

, 𝑧 = ±4 4√ 1
169

.

Since 169 = 132 is a square, this could be written more simply as

𝑥 = ± 1√
13

, 𝑦 = ± 3√
13

, 𝑧 = ± 4√
13

.
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Case 8 where 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 This doesn’t yield a valid solution because it doesn’t like on the
constraint 𝑥4 + 𝑦4 + 𝑧4 = 2.

Hence there are a whopping total of 26 LM-critical points. They are:
• 𝑥 = 0, 𝑦 = 0, 𝑧 = ± 4

√
2,

• 𝑥 = 0, 𝑦 = ± 4
√

2, 𝑧 = 0,
• 𝑥 = ± 4

√
2, 𝑦 = 0, 𝑧 = 0,

• 𝑥 = 0, 𝑦 = ± 4√162
337 , 𝑧 = ±4

3
4√162

337 .
• 𝑥 = ± 4√ 2

257 , 𝑧 = ±4 4√ 2
257 , 𝑦 = 0,

• 𝑥 = ± 4√ 1
41 , 𝑦 = ±3 4√ 1

41 , 𝑧 = 0,
• 𝑥 = ± 1√

13 , 𝑦 = ± 3√
13 , 𝑧 = ± 4√

13 .

When searching for the maximum, we should always take + for ± to maximize 𝑓(𝑥, 𝑦, 𝑧); similarly,
the minimum uses only − for ±. Note also that plugging in all −’s is the negative of plugging in all
+’s. So this reduces us from 26 cases to just 7. If we actually try all seven, we find that the last one is
the optimal one; that is, the maximum and minimums are

𝑓( 1√
13

, 3√
13

, 4√
13

) = 2
√

13

𝑓(− 1√
13

, − 3√
13

, − 4√
13

) = −2
√

13. □

§19.6 [TEXT] Example of easy case with a “common-sense” boundary
As we alluded to earlier, the boundary of the so-called “easy case” can have infinitely many points, so
you cannot just plug them in one by one to inspect them all. In some situations, it will still be doable
just by inspection, because the function is really easy to describe on the boundary. We give one such
example below.

Sample Question

Compute the minimum possible value of

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑥𝑦 − 6𝑦

in the first quadrant 𝑥, 𝑦 ≥ 0.

Solution.  Follow the recipe:

0. The first quadrant has limit cases if either 𝑥 → +∞ or 𝑦 → +∞. The boundary consists of two
rays: the positive 𝑥 axis (from (0, 0) due east) and the positive 𝑦 axis (from (0, 0) due north).

1. We calculate the critical points. The gradient is given by

∇𝑓 = ( 4𝑥 + 𝑦
2𝑦 + 𝑥 − 6).

Setting the gradient to the zero vector, we need to solve the system

4𝑥 + 𝑦 = 0
𝑥 + 2𝑦 − 6 = 0

which is an easy linear system. If we let 𝑦 = −4𝑥 from the first equation, we get
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2(−4𝑥) + 𝑥 − 6 = 0 ⟹ −8𝑥 + 𝑥 − 6 = 0 ⟹ −7𝑥 = 6 ⟹ 𝑥 = −6
7
.

Since we are working in the first quadrant where 𝑥 ≥ 0, this value is not valid. Therefore, there
are no critical points in our region ℛ.

2. As we saw, we have two boundaries. There are infinitely many points on the positive 𝑥 and 𝑦
axis, so we cannot just plug them all in one by one. In principle, you could redo the entire easy-
case recipe for each boundary parts, and it will work.

However, luckily, the function is quite easy to analyze on each part, and we can do it with just high
school algebra, no calculus needed. This way we don’t need to go through the whole recipe again.

The boundary of 𝑥 = 0 and 𝑦 ≥ 0 Substitute 𝑥 = 0 into the function: 𝑓(0, 𝑦) = 2(0)2 + 𝑦2 +
0 ⋅ 𝑦 − 6𝑦 = 𝑦2 − 6𝑦. In other words, we need to see what the smallest value of

𝑓(0, 𝑦) = 𝑦2 − 6𝑦  across all 𝑦 ≥ 0

could be. You could use the derivative of 𝑦, but I think the fastest thing to do is actually
complete the square: the function

𝑓(0, 𝑦) = (𝑦 − 3)2 − 9

obviously has the smallest value at 𝑓(0, 3) = −9. (And 𝑓(0, 0) = 0 and 𝑓(0, +∞) = +∞
are both worse.)

The boundary of 𝑦 = 0 and 𝑥 ≥ 0 Substitute 𝑦 = 0 into the function:

𝑓(𝑥, 0) = 2𝑥2 + 02 + 𝑥(0) − 6(0) = 2𝑥2.

It’s obvious that 𝑓(𝑥, 0) is minimized at 𝑥 = 0. (Note that 𝑓(+∞, 0) = +∞ is worse.)

3. In the limit case where either 𝑥 → +∞ and 𝑦 → +∞ it’s clear that 𝑓 → +∞.

In conclusion, the best value is actually the one from Step 2: we have 𝑓(0, 3) = −9 being the smallest
possible value. □

§19.7 [TEXT] Example of easy case that ends up using Lagrange multipliers
for the boundary
Now here’s a case where the boundary requires Lagrange multipliers. So, it’s really a hard-case
optimization problem within an easy-case optimization problem. If you’ve seen the movie Inception,
yes, one of those.

Sample Question

Compute the minimum and maximum possible value, if they exist, of

𝑓(𝑥, 𝑦, 𝑧) = 𝑥4 + 𝑦4 + 𝑧4

over the region 𝑥2 + 𝑦2 + 𝑧2 ≤ 1.

Solution.  At first glance, this seems like it should be in the easy case! The region ℛ consisting of the
closed ball 𝑥2 + 𝑦2 + 𝑧2 ≤ 1 is indeed three-dimensional. But the reason this sample question is in
this section is because we will find that checking the boundary case requires another application of
Lagrange multipliers.
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Let’s carry out the easy case recipe.

0. There are no limit cases, but a boundary 𝑥2 + 𝑦2 + 𝑧2 = 1, the unit sphere (not filled).

1. First let’s find the critical points of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥4 + 𝑦4 + 𝑧4. Write

∇𝑓 =
(
((
(4𝑥3

4𝑦3

4𝑧3
)
))
).

Solving the insultingly easy system of equations 4𝑥3 = 4𝑦3 = 4𝑧3 = 0 we see the only critical
point is apparently 𝑥 = 𝑦 = 𝑧 = 0. The value there is 𝑓(0, 0, 0) = 0.

2. The boundary of ℛ is 𝑥2 + 𝑦2 + 𝑧2 = 1, the unit sphere; we denote this sphere by 𝒮. So now
we have to evaluate 𝑓  on this boundary. The issue is that there are too many points on this unit
sphere! We can’t just check them one by one. And unlike the previous example, the function is
not simple enough that we can use common sense to deal with it.

Therefore, we will use Lagrange multipliers with the constraint function 𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 +
𝑧2 to find the minimum possible value of 𝑓  on this new region 𝒮.

0. The new region 𝒮 has no boundary and no limit cases.

1. Let’s find the LM-critical points for 𝑓  on 𝒮. Take the gradient of 𝑔 to get

∇𝑔 =
(
((
(2𝑥

2𝑦
2𝑧)

))
).

The only point at which ∇𝑔 = 𝟎 is 𝑥 = 𝑦 = 𝑧 = 0 which isn’t on the sphere 𝒮, so we don’t
have to worry about ∇𝑔 = 𝟎 the case. Now we instead solve

(
((
(4𝑥3

4𝑦3

4𝑧3
)
))
) = 𝜆

(
((
(2𝑥

2𝑦
2𝑧)

))
).

This requires some manual labor to solve, because there are lots of cases. The equation for
𝑥 says that

4𝑥3 = 𝜆 ⋅ 2𝑥 ⟺ 𝑥 = 0  or 𝑥 = ±√𝜆
2

and similarly for 𝑦 and 𝑧:

4𝑦3 = 𝜆 ⋅ 2𝑦 ⟺ 𝑦 = 0  or 𝑦 = ±√𝜆
2

4𝑧3 = 𝜆 ⋅ 2𝑧 ⟺ 𝑧 = 0  or 𝑧 = ±√𝜆
2

A priori, this seems like it will require us to take a lot of cases. However, we can take
advantage of symmetry to reduce the amount of work we have to do. The trick is to get rid
of 𝜆 as follows:

Observation: All the nonzero variables 𝑥, 𝑦, 𝑧 should have the same absolute value.

To spell it out:
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• If all three variables are nonzero, then |𝑥| = |𝑦| = |𝑧| = 1√
3  (because 𝑥2 + 𝑦2 + 𝑧2 =

1 as well).
• If two variables are nonzero, then their absolute values are 1√

2  by the same token.
• And if only one variable is nonzero, it is ±1.

(Note of course that (0, 0, 0) does not lie on 𝒮.) Think about why this works.

So there are 26 LM-critical points given by the following list:
• (± 1√

3 , ± 1√
3 , ± 1√

3); there are 8 points in this case. The 𝑓-values are all 13 .
• (± 1√

2 , ± 1√
2 , 0); there are 4 points in this case. The 𝑓-values are all 12 .

• (± 1√
2 , 0, ± 1√

2); there are 4 points in this case. The 𝑓-values are all 12 .
• (0, ± 1√

2 , ± 1√
2); there are 4 points in this case. The 𝑓-values are all 12 .

• (±1, 0, 0); there are 2 points in this case. The 𝑓-values are all 1.
• (0, ±1, 0); there are 2 points in this case. The 𝑓-values are all 1.
• (0, 0 ± 1); there are 2 points in this case. The 𝑓-values are all 1.

Phew! Okay. The other cases are much shorter:

2. 𝒮 has no boundary to consider.

3. 𝒮 has no limit cases to consider.

3. ℛ has no limit cases to consider.

Okay, marathon done. Collate everything together. The values of 𝑓  we saw were 0, 1
3 , 1

2  and 1, and
there were no limit cases of any sort. So:

• 𝑓(0, 0, 0) = 0 is the global minimum.
• 𝑓(±1, 0, 0) = 𝑓(0, ±1, 0) = 𝑓(0, 0, ±1) = 1 are the global maximums. □

§19.8 [SIDENOTE] A little common sense can you save you a lot of work
If you step back and think a bit before you try to dive into calculus, you might find that having a bit
of “common sense” might save you a lot of work. What I mean is, imagine you gave the question to
your high school self before you learned any calculus at all. Would they be able to say anything about
what properties the answer could have? The answer is, yes, pretty often.

Let’s take the example we just did: we asked for the minimum and maximum of

𝑓(𝑥, 𝑦, 𝑧) = 𝑥4 + 𝑦4 + 𝑧4

over the region 𝑥2 + 𝑦2 + 𝑧2 ≤ 1. To show the recipe, I turned off my brain and jumped straight into a
really long calculation. But it turns out you can cut out a lot of the steps if you just use some common
sense, not involving any calculus:

• The minimum is actually obvious: it’s just 0, because fourth powers are always nonnegative! So
𝑓 ≥ 0 is obvious even to a high schooler, and 𝑓(0, 0, 0) = 0.

• For the maximum you can actually see a priori that it must occur on the boundary 𝑥2 + 𝑦2 +
𝑧2 = 1. Why is this? Suppose you had a point in the strict interior 𝑃 = (0.1, 0.2, 0.3) with 𝑓 >
0. Then 𝑓(𝑃 ) = 𝑓(0.1, 0.2, 0.3) is some number. But you could obviously increase the value of 𝑓
just by scaling the absolute value of things in 𝑃 ! For example, if I double all the coordinates of 𝑃
to get 𝑄 = (0.2, 0.4, 0.6), then 𝑓(𝑄) = 16𝑓(𝑃). As long as 𝑄 stays within the sphere, this will be
a better value.

So any point in the interior is obviously not a maximum: if you have a point 𝑃  strictly the interior,
you could increase 𝑓(𝑃 ) by moving 𝑃  farther from the origin.
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That means if we had used a bit of common sense, we could have gotten the minimum with no work
at all, and we could have skipped straight to the LM step for the maximum. So if you aren’t too
overwhelmed by material already in this class, look for shortcuts like this when you can.

Digression: Even faster solution for observant students

We saw the minimum is obviously 0 if you just thought about it. In fact, you can also similarly
find the maximum with no calculus at all if you realize the answer should be 𝑓(1, 0, 0) = 1.

Here’s how. What we’re trying to prove is that

𝑥4 + 𝑦4 + 𝑧4 ≤ 1

whenever 𝑥2 + 𝑦2 + 𝑧2 ≤ 1. Because 𝑦2 and 𝑧2 are nonnegative, it’s obvious that 𝑥2 ≤ 1. But in
fact it’s easy to see that

𝑥4 ≤ 𝑥2  is true whenever 𝑥2 ≤ 1.

Similarly, 𝑦4 ≤ 𝑦2 and 𝑧4 ≤ 𝑧2. Thus

𝑥4 + 𝑦4 + 𝑧4 ≤ 𝑥2 + 𝑦2 + 𝑧2 = 1.

§19.9 [SIDENOTE] Compactness as a way to check your work
This is an optional section containing a nice theorem from 18.100 that could help you check your work,
but isn’t necessary in theory if you never make mistakes. (But in practice…)

I need a new word called “compact”, and like before, it’s beyond the scope of 18.02 to give a proper
definition. However, I will hazard the following one: for 18.02 examples, ℛ is compact if there are
no limit cases. That is,

• All the constraints are =, ≤, or ≥; no < or >,
• None of the variables can go to ±∞.

Then the theorem I promised you is:

Tip: Compact optimization theorem

If ℛ is a compact region, and 𝑓  is a function to optimize on the region which is continuously
defined everywhere, then there must be at least one global minimum, and at least one global
maximum.

This works in both the easy case (no Lagrange multipliers) and the hard case (with Lagrange multi-
pliers).

Here’s some examples of how this theorem can help you:
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Example

• Suppose you are asked to optimize a continuous function 𝑓(𝑥, 𝑦) on the square −1 ≤ 𝑥 ≤ 1,
−1 ≤ 𝑦 ≤ 1. We saw this square has no limit cases. Then the compact optimization theorem
promises you that the answer “no global minimum” or “no global maximum” will never occur.

• Suppose you are asked to optimize a continuous function 𝑓(𝑥, 𝑦, 𝑧) on the sphere 𝑥2 +
𝑦2 + 𝑧2 = 1 (which means you are probably going to use Lagrange multipliers). We saw
this sphere has no limit cases (and not even a boundary). Then the compact optimization
theorem promises you that the answer “no global minimum” or “no global maximum” will
never occur.

• Suppose you are asked to optimize a continuous function 𝑓(𝑥, 𝑦, 𝑧) on the closed ball 𝑥2 +
𝑦2 + 𝑧2 ≤ 1, like in the last example. This closed ball also has no limit cases, so the compact
optimization theorem promises you that the answer “no global minimum” or “no global
maximum” will never occur.

§19.10 [RECAP] Recap of Part Foxtrot on Optimization
• We introduced the notion of critical points as points where ∇𝑓 = 𝟎.

‣ We saw that critical points could be local minimums, local maximums, or saddle points.
‣ We introduced the second derivative test as a way to tell some of these cases apart, although

the second derivative test can be inconclusive.
• We talked about how regions have dimensions, limit cases, and boundaries. Although we didn’t

give a proper definition, we explain rules of thumb that work in 18.02.
• For optimization problems with no = constraints, we check the critical points, limit cases, and

boundaries.
• For optimization problems with one = constraint, we check the LM-critical points, limit cases,

and boundaries.
• Finding either critical points or LM-critical points involves solving systems of equations. There is

no fixed recipe for this, but we gave some possible strategies that you can try depending on the
exact shape of the system you get.

§19.11 [EXER] Exercises

Exercise 19.1.  Let 𝐴𝐵𝐶 be the triangle in the 𝑥𝑦-plane with vertices 𝐴 = (0, 12), 𝐵 = (−5, 0),
𝐶 = (9, 0). For what point 𝑃  in the plane is the sum

𝑃𝐴2 + 𝑃𝐵2 + 𝑃𝐶2

as small as possible?

Exercise 19.2.  Compute the minimum possible value of 𝑥 + 𝑦 given that sin(𝑥) + sin(𝑦) = 1 and
𝑥, 𝑦 ≥ 0.

Exercise 19.3 (Suggested by Ting-Wei Chao).  Compute the global minimum of the function

𝑓(𝑥, 𝑦) = |𝑥2 + 𝑦2 − 25| − 3𝑥 − 4𝑦.
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Chapter 20. Practice midterm for Parts Delta, Echo, Foxtrot
This is a practice midterm that was given on October 21, 2024,¹⁸ covering topics in Parts Delta, Echo,
Foxtrot. Solutions are in Chapter 47.

Exercise 20.1.  A butterfly is fluttering in the 𝑥𝑦 plane with position given by 𝐫(𝑡) = ⟨cos(𝑡), cos(𝑡)⟩,
starting from time 𝑡 = 0 at 𝐫(0) = ⟨1, 1⟩.

• Compute the speed of the butterfly at 𝑡 = 𝜋
3 .

• Compute the arc length of the butterfly’s trajectory from 𝑡 = 0 to 𝑡 = 2𝜋.
• Sketch the butterfly’s trajectory from 𝑡 = 0 to 𝑡 = 2𝜋 in the 𝑥𝑦 plane.

Exercise 20.2.  Let 𝑘 > 0 be a fixed real number and let 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑘𝑦2. Assume that the level
curve of 𝑓  for the value 21 passes through the point 𝑃 = (1, 2). Compute the equation of the tangent
line to this level curve at the point 𝑃 .

Exercise 20.3.  Let 𝑓(𝑥, 𝑦) = 𝑥5𝑦 for 𝑥, 𝑦 > 0. Use linear approximation to estimate 𝑓(1.001, 3.001)
starting from the point (1, 3).

Exercise 20.4.  Consider the function 𝑓 : ℝ2 → ℝ defined by

𝑓(𝑥, 𝑦) = cos(𝜋𝑥) + 𝑦4

4
− 𝑦3

3
− 𝑦2.

• Compute all the critical points and classify them as saddle point, local minimum, or local
maximum.

• Compute the global minimums and global maximums of 𝑓 , if they exist.

Exercise 20.5.  Compute the minimum and maximum possible value of 𝑥 + 2𝑦 + 2𝑧 over real
numbers 𝑥, 𝑦, 𝑧 satisfying 𝑥2 + 𝑦2 + 𝑧2 ≤ 100.

Exercise 20.6.  Consider the level surface of 𝑓(𝑥, 𝑦, 𝑧) = (𝑥 − 1)2 + (𝑦 − 1)3 + (𝑧 − 1)4 that
passes through the origin 𝑂 = (0, 0, 0). Let ℋ denote the tangent plane to this surface at 𝑂. Give
an example of two nonzero tangent vectors to this surface at 𝑂 whose span is ℋ.

¹⁸A cute quote from an anonymous student: “lowk i feel like ur so cracked every review thing u give is like 3x harder
than the actual thing 😭 but thank you for hosting these ur amazing”.

177



Linear Algebra and Multivariable Calculus — Evan Chen

Part Golf: 2D integrals of scalar functions
For comparison, Part Golf corresponds to §13.1-§13.5 of Poonen’s notes.

Chapter 21. A zoomed out pep talk of Part Golf
This whole chapter is a pep talk. We’ll get to recipes and details in later sections.

§21.1 [TEXT] The big table of integrals
The rest of 18.02 is going to cover a bunch of different integrals. If you’ve been following my advice
to pay attention to type safety so far, it’ll help you here. I’ll freely admit that I (Evan) often make type-
errors in this part of 18.02 as well, so don’t let your guard down.

Remember that:

Idea

Suppose 𝑓 : ℝ𝑛 → ℝ is given, and 0 ≤ 𝑑 ≤ 𝑛. The goal of a 𝑑-dimensional integral of 𝑓  is to add
up all the values of 𝑓  among some 𝑑-dimensional object living in ℝ𝑛.

For example, this idea even makes sense for 𝑑 = 0! In 18.02, a 0-dimensional object is a point (or a
bunch of points), and you can evaluate 𝑓  at a point by just plugging it in. So philosophically, a 0-
dimensional integral is just a finite sum of 𝑓  at some points. This might seem stupid that I bring up this
degenerate case, but it turns out later when we cover div/grad/curl the 0-dimensional case is relevant.

Here’s a giant chart in Figure 41. (The chart is so big it doesn’t quite fit in the page, but you can
download a large PDF version).

Figure 41:  For each 0 ≤ 𝑑 ≤ 𝑛 ≤ 3, we draw the kind of integral and give it a
name. Download at https://web.evanchen.cc/textbooks/poster-ints.pdf.
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This chart has ten different kinds of integrals, one for each (𝑑, 𝑛) with 0 ≤ 𝑑 ≤ 𝑛 ≤ 3. Here’s a
rundown of the things in the chart.

• The case 𝑑 = 0 is stupid, as I just said, and it’s only here because I’ll reference it later.

• The case 𝑑 = 1 and 𝑛 = 1 was covered in 18.01. Good old single-variable integral computed using
the antiderivative, via the fundamental theorem of calculus.

• After that, the conceptually simplest cases are actually 𝑑 = 𝑛 = 2 and 𝑑 = 𝑛 = 3 — the ones
on the diagonal. In general, these might be called double/area integrals for 𝑛 = 2 and triple/
volume integrals for 𝑛 = 3. We’ll say a bit in a moment about how to compute these in practice,
but the good news is that often you can just chain together old 18.01 integrals; you don’t even
need a parametrization some of the time.

• When 𝑑 = 1 and 2 ≤ 𝑛 ≤ 3, what you get are line integrals. The idea is that you have a trajectory
in ℝ𝑛 which is defined by some parametric equation 𝐫 : ℝ → ℝ𝑛. You also have a function 𝑓 :
ℝ𝑛 → ℝ. The line integral lets you add up the values of 𝑓  along the trajectory.

This is just turns out to be a single 18.01 integral. Usually your path is parametrized by a single
variable 𝑡. So even though the expression inside the integral

∫
𝑡1

𝑡0

𝑓(𝐫(𝐭)) |𝐫′(𝑡)| d𝑡

inside the integral might look intimidating, if you are really given a concrete 𝑓  and 𝐫(𝑡), then what
you really have is

∫
𝑡1

𝑡0

[expression involving only 𝑡] d𝑡

which is an 18.01 integral! And so that’s something you already know how to do.

In other words, if you have 𝑑 = 1 and 𝑛 > 1, you basically replace it right away with a single
integral over the parametrizing line segment. In other words line integrals translate directly
into single 18.01 integrals.

• When 𝑑 = 2 and 𝑛 = 3, we have the surface integral. To compute these, you usually have to
parametrize a surface; but since a surface is two-dimensional, rather than 𝐫(𝑡) for a time parameter
𝑡 you have 𝐫(𝑢, 𝑣) for two parameters 𝑢 and 𝑣 to describe the surface. That makes these a little
more annoying.

But like the line integral, after you work out the parametrization stuff, the surface integral will
transform into a 2-variable area integral. In other words surface integrals translate directly
into area integral.

So the bottom trio — 2D/3D line integral and surface integral — end up being special instances of the
single and double integrals. We’ll see some examples of this later; but it’ll actually be the last thing we
cover in part Golf. Most of part Golf is dedicated towards double and triple integrals instead.

§21.2 [TEXT] Warning about the bottom trio
The integrals in Figure 41 would be better called scalar-field line integral and scalar-field surface
integral to emphasize that this is integration for a scalar function 𝑓 : ℝ2 → ℝ or 𝑓 : ℝ3 → ℝ. The
reason you won’t see this term much is the following important caveat the line integral and surface
integral in Figure 41 are used rarely.
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In 18.02 the only cases where we use these are:
• Arc length (for 𝑑 = 1) and surface area (for 𝑑 = 2)
• Questions related to mass, or center of mass, of objects like wires (for 𝑑 = 1) or metal plates (for

𝑑 = 2).

In this book, this will happen in Chapter 29, and then after that the line and surface integrals will
always be the vector field variant instead (in Part India and Juliett). If you want to flip ahead, take a
glance at Figure 75 and Table 15.

§21.3 [TEXT] Idea of how these are computed when 𝑑 = 𝑛 and 𝑛 ≥ 2
So as I just said, focus for now on 𝑑 = 𝑛 = 2 or 𝑑 = 𝑛 = 3 (the double and triple integral cells in chart
Figure 41).

The easiest cases are when the region you’re integrating is a rectangle or prism. Despite looking scary
because of the number of integral signs, they are actually considered the “easy case” to think about for
practical calculations:

• A double integral over a rectangle is two 18.01 integrals followed one after another.
• A triple integral over a rectangular prism really is three 18.01 integrals followed one after another.

Then there are cases where 𝑑 = 𝑛 = 2 or 𝑑 = 𝑛 = 3 but the region is not rectangular. For example,
maybe in ℝ2 you are trying to do an area integral over the disk 𝑥2 + 𝑦2 ≤ 1 or you are trying to do
a volume integral over the ball 𝑥2 + 𝑦2 + 𝑧2 ≤ 1 for example.

• Even in this case, sometimes you could still set up a double integral or triple integral without
having to change variables. For example, an integral over the disk

∬
𝑥2+𝑦2≤1

𝑓(𝑥, 𝑦) d𝑥 d𝑦

might actually be rewritten a double integral

∫
1

−1
∫

√1−𝑦2

−√1−𝑦2

𝑓(𝑥, 𝑦) d𝑥 d𝑦.

Although it looks more frightening because the limits of integration are expressions and not
numbers, it doesn’t require any new techniques. It really is just two 18.01 integrals, one after
another.

• If rewriting as a double or triple integral fails, then the strategy is instead to change variables.
This method will be covered extensively in Chapter 23.

So to summarize

Idea

Whenever you try to compute a multivariable integral in Figure 41, your goal is to translate it
into a rectangular-looking single/double/triple integral, then evaluate by using your old 18.01
methods many times.

This is actually really, really good news! You might have remembered from 18.01 that computing
integrals of single-variable functions like ∫ 𝑒𝑥 sin(𝑥) was, well, hard!¹⁹ Computing antiderivatives was

¹⁹It’s 12𝑒𝑥(sin(𝑥) − cos(𝑥)) + 𝐶 , by the way.
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not easy at all; in fact, it’s so nontrivial that MIT students made an event called the integration bee
that’s like the spelling bee but for integrals (I’m not kidding). You might have feared that in 18.02, you
might need to learn something even more horrifying.

But no, you don’t! It’s a lot like how you might be scared of multivariate differentiation at first, with
the symbols ∇𝑓  or partial derivatives, until you realize that calculating partial derivatives is something
you actually already know how to do from 18.01.

The same will be true for multivariable integrals. The challenge won’t actually be the anti-derivatives,
which are unchanged from 18.01. The hard part will actually be figuring out the limits of integration!
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Chapter 22. Double integrals
One common theme from 18.02 that you might have noticed in part Foxtrot is that, unlike in 18.01
where you were hyper-focused on the function 𝑓  you were optimizing, in 18.02 the region you’re
working with deserves a lot of attention. This will be true for the material in this chapter too — you
ought to paying most attention to the region before you even look at the function 𝑓  that’s being
integrated.

§22.1 [RECIPE] Integrating over rectangles
If you want to integrate over a rectangle, this is super easy. It’s basically like partial derivatives, where
you pretend some variables are constant and only one variable is going to vary at once. It’s easier to
see an example before the recipe.

Warning: Some sources might not write the variables in the ∫’s for you

Rather than writing just ∫𝑏
𝑎

𝑓(𝑡) d𝑡, I will usually prefer to write ∫𝑏
𝑡=𝑎

𝑓(𝑡) d𝑡, to make it easier
to see which variable is integrated over. Not all sources will be nice enough to do this and will
actually make you read the d𝑥 and d𝑦 backwards; e.g. if you see

∫
6

0
∫

1

0
𝑥𝑦2 d𝑥 d𝑦

then this actually means

∫
6

0
(∫

1

0
𝑥𝑦2 d𝑥) d𝑦

so 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 6. For me reading backwards like this is annoying as hell, so I think
it’s just much easier to write

∫
6

𝑦=0
∫

1

𝑥=0
𝑥𝑦2 d𝑥 d𝑦

and I recommend you use that notation instead. The advantage is that then you pretty much don’t
have to look at the d𝑥 d𝑦 at the far right anymore; the information you need is all in one place
at the far left.

Sample Question

Integrate ∫6
𝑦=0

∫1
𝑥=0

𝑥𝑦2 d𝑥 d𝑦.

Solution.

1. The first step is to compute the inner integral with respect to 𝑥, treating 𝑦 as a constant.

The inner integral is:

∫
1

𝑥=0
𝑥𝑦2 d𝑥.

Since 𝑦2 is treated as a constant with respect to 𝑥, we can factor it out of the integral:
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𝑦2 ∫
1

𝑥=0
𝑥 d𝑥.

Now, compute ∫1
𝑥=0

𝑥 d𝑥:

∫
1

𝑥=0
𝑥 d𝑥 = [𝑥2

2
]

1

0

= 12

2
− 02

2
= 1

2
.

Thus, the result of the inner integral is:

𝑦2 ⋅ 1
2

= 𝑦2

2
.

2. Now, substitute the result of the inner integral into the outer integral:

∫
6

𝑦=0

𝑦2

2
d𝑦 = 1

2
∫

6

𝑦=0
𝑦2 d𝑦 = 1

2
[𝑦3

3
]

6

0

= 1
2
(63

3
− 03

3
) = 36 .

□

Easy, right? The general recipe is the same.

Recipe for integrating over a rectangle

To integrate something of the form ∫(∫ d𝑦) d𝑥:
1. Evaluate the inner integral as in 18.01, treating 𝑥 as constant. This should give you some

expression in 𝑥 with no 𝑦’s left.
2. Replace the inner integral with the result from the previous step to get an 18.01 integral

with only 𝑥 in it. Integrate that.

Here’s another example.

Sample Question

Evaluate the double integral:

∫
𝜋

𝑥=0
∫

1

𝑦=0
𝑥 cos(𝑥𝑦) d𝑦 d𝑥.

Solution.

1. The first step is to compute the inner integral with respect to 𝑦, treating 𝑥 as a constant. The
inner integral is:

∫
1

𝑦=0
𝑥 cos(𝑥𝑦) d𝑦.

Since 𝑥 is treated as a constant with respect to 𝑦, we can factor 𝑥 out of the integral:

𝑥 ∫
1

𝑦=0
cos(𝑥𝑦) d𝑦.
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Now, we compute ∫1
𝑦=0

cos(𝑥𝑦) d𝑦.

∫
1

𝑦=0
cos(𝑥𝑦) d𝑢 = [1

𝑥
sin(𝑥𝑦)]

1

0
= sin(𝑥)

𝑥
.

Thus, the result of the inner integral is:

𝑥 ⋅ sin(𝑥)
𝑥

= sin(𝑥).

2. Now, substitute the result of the inner integral into the outer integral:

∫
𝜋

𝑥=0
sin(𝑥) d𝑥.

We know that ∫ sin(𝑥) d𝑥 = − cos(𝑥). Therefore:

∫
𝜋

𝑥=0
sin(𝑥) d𝑥 = [− cos(𝑥)]𝜋0 = − cos(𝜋) + cos(0).

Using cos(𝜋) = −1 and cos(0) = 1, we get:

−(−1) + 1 = 1 + 1 = 2 .

□

§22.2 [RECIPE] Doing 𝑥𝑦-integration without a rectangle
In general, a lot of 2D regions ℛ can still be done with 𝑥𝑦 integration, even when they aren’t rectangles.
In that case, the integral is notated

∬
ℛ

𝑓(𝑥, 𝑦) d𝑥 d𝑦 ≔ integral of 𝑓  over ℛ

for whatever function 𝑓  you’re integrating. If the region is given by a few inequalities you can also
write the region directly in, i.e. ∬

𝑥2+𝑦2≤1
𝑓(𝑥, 𝑦) d𝑥 d𝑦 would mean the integral of 𝑓  over the unit disk.

Here’s how you do it.

Remark

A lot of other sources might write this as ∬
ℛ

𝑓(𝑥, 𝑦) d𝐴 instead, which is shorter; it’s understood
that the area element d𝐴 is shorthand for d𝑥 d𝑦.

However, when you’re starting off I will still explicitly write d𝑥 d𝑦, because I don’t want to hide
the integration variables — training wheels, I guess. That said, if you know what you’re doing
and want to write d𝐴 to save time, go for it!

We’ll talk more about the weirder d symbols later.
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Recipe for converting to 𝑥𝑦-integration

1. Draw a picture of the region as best you can.
2. Write the region as a list of inequalities.²⁰
3. Pick one of 𝑥 and 𝑦, and use your picture to describe all the values it could take.
4. Solve for the other variable in all the inequalities.

Remark: This recipe works fine for rectangles, too!

You can do this recipe even with a rectangle. If you do, what the recipe tells you that for a rectangle
you can integrate in either order: given the rectangle of points (𝑥, 𝑦) with 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑐 <
𝑦 ≤ 𝑑, we have

∫
𝑏

𝑥=𝑎
∫

𝑑

𝑦=𝑐
𝑓(𝑥, 𝑦) d𝑦 d𝑥 = ∫

𝑑

𝑦=𝑐
∫

𝑏

𝑥=𝑎
𝑓(𝑥, 𝑦) d𝑥 d𝑦.

Sometimes this will be easier. One shape of exam question will to be choose 𝑓  such that the left-
hand side is annoying to calculate directly but the right-hand side is easy to calculate, and ask
for the left-hand side. So this is meant to test your ability to recognize when the other order is
better.

For example, let’s take the region in Poonen’s example 13.1:

Sample Question

Show both ways of setting up an integral of a function 𝑓(𝑥, 𝑦) over the region bounded by 𝑦 −
𝑥 = 2 and 𝑦 = 𝑥2.

Figure 42: The region between 𝑦 = 𝑥2 and 𝑦 − 𝑥 = 2.

Solution.  See Figure 42. There are two intersection points that it’s pretty clear we’ll want to know, so
we can solve for those intersection points by solving the system and add them to our picture:

²⁰I don’t think other sources always write the inequalities the way I do. But I think this will help you a lot with making
sure bounds go the right way.
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{𝑦 − 𝑥 = 2
𝑦 = 𝑥2 ⟹ 𝑥 + 2 = 𝑥2 ⟹ 𝑥 = −1  or 𝑥 = 2

⟹ (𝑥, 𝑦) = (−1, 1)  or (𝑥, 𝑦) = (2, 4).

I’ll also mark (0, 0), the bottom of the parabola.

So we want the part of the plane that lies above the parabola 𝑦 = 𝑥2 but below the line 𝑦 − 𝑥 = 2. So
I think you’ll find things easier to think about if you consider the region as the system of inequalities

𝑦 ≥ 𝑥2

𝑦 − 𝑥 ≤ 2.

Now there are two ways to do the slicing, depending on which of 𝑥 and 𝑦 you want outside.

If 𝑥 is outer First, let’s imagine we let 𝑥 be the outer integral. Then from the picture, you can see
−1 ≤ 𝑥 ≤ 2. If we solve for 𝑦, we find its region is

𝑥2 ≤ 𝑦 ≤ 𝑥 + 2.

See Figure 43.

Figure 43: Dissecting Figure  42 vertically, which is pretty nice. There’s a
single top lid (blue) and a bottom lip (purple) so that for each given 𝑥 the slice
of 𝑦 (drawn in green) is easy to describe.

Hence, we get the double integral as

∫
2

𝑥=−1
∫

𝑥+2

𝑦=𝑥2

𝑓(𝑥, 𝑦) d𝑦 d𝑥.
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If 𝑦 is outer On the other hand, let’s imagine we used 𝑦 first. From the picture, we see that 𝑦 ranges
from 0 all the way up to 4. (So in what follows I’ll write 𝑦 ≥ 0 to make notation better.)

But 𝑥 is gnarly. The issue is that when you solve for 𝑥 you get three inequalities:

• 𝑦 ≤ 𝑥2 solves to −√𝑦 ≤ 𝑥 ≤ √𝑦
• 𝑦 − 𝑥 ≤ 2 solves to 𝑦 − 2 ≤ 𝑥.

See Figure 44.

Figure 44: Dissecting Figure 42 horizontally, which is less nice: there are
cases. Above the line 𝑦 = 1, you have a blue wall to the left and a curved
purple arc to the right. But below 𝑦 = 1, you instead have a red arc of the
parabola to the left, and a purple arc of the parabola to the right.

If you know how the max function works, you could even write this as

max(𝑦 − 2, −√𝑦) ≤ 𝑥 ≤ √𝑦.

The main issue is that the lower endpoint for 𝑥 behaves differently with cases. For 𝑦 ≤ 1, the
bound of −√𝑦 triumphs over the bound of 𝑦 − 2. But for 𝑦 ≥ 1, the bound of 𝑦 − 2 is the more
informative inequality. So if we wanted to write this as a double integral, we would actually have
to split into two:

∫
1

𝑦=0
∫

√𝑦

𝑥=−√𝑦
𝑓(𝑥, 𝑦) d𝑥 d𝑦 + ∫

4

𝑦=1
∫

√𝑦

𝑥=𝑦−2
𝑓(𝑥, 𝑦) d𝑥 d𝑦.

□
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§22.3 [TEXT] Example with a concrete function 𝑓
In the previous example we showed how one would integrate a random function 𝑓  over the region
between the line 𝑦 − 𝑥 = 2 and the parabola 𝑦 = 𝑥2. Again, this process is only based on the region
— it doesn’t depend on 𝑓 .

To flesh things out, let’s pick an example function

𝑓(𝑥, 𝑦) = 2𝑥 + 4𝑦

as Poonen did, and show how we would find the integral.

Sample Question

Consider the region ℛ we just described, the set of points between bounded between 𝑦 − 𝑥 = 2
and 𝑦 = 𝑥2. Integrate ∬

ℛ
(2𝑥 + 4𝑦) d𝑥 d𝑦 over this region.

Solution.  As we saw, there are two different ways to set it up. We’ll do the one that’s nice (and show
the worse one afterwards for comparison), where we have 𝑥 on the outside.

We are given the integral

∫
2

𝑥=−1
∫

𝑥+2

𝑦=𝑥2

(2𝑥 + 4𝑦) d𝑦 d𝑥.

1. The first step is to compute the inner integral with respect to 𝑦, treating 𝑥 as a constant.

The inner integral is:

∫
𝑥+2

𝑦=𝑥2

(2𝑥 + 4𝑦) d𝑦.

We can split this integral into two parts:

∫
𝑥+2

𝑦=𝑥2

2𝑥 d𝑦 + ∫
𝑥+2

𝑦=𝑥2

4𝑦 d𝑦.

• The first term is:

2𝑥 ∫
𝑥+2

𝑦=𝑥2

1 d𝑦 = 2𝑥[𝑦]𝑦=𝑥+2
𝑦=𝑥2 = 2𝑥((𝑥 + 2) − 𝑥2).

• The second term is:

4 ∫
𝑥+2

𝑦=𝑥2

𝑦 d𝑦 = 4[𝑦2

2
]

𝑦=𝑥+2

𝑦=𝑥2

= 4((𝑥 + 2)2

2
−

(𝑥2)2

2
) = 2(𝑥2 + 4𝑥 + 4 − 𝑥4).

Thus, the inner integral is:

2𝑥(𝑥 + 2 − 𝑥2) + 2(𝑥2 + 4𝑥 + 4 − 𝑥4) = −2𝑥4 − 2𝑥3 + 4𝑥2 + 12𝑥 + 8.

2. Now, we compute the outer integral:
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∫
2

𝑥=−1
(−2𝑥4 − 2𝑥3 + 4𝑥2 + 12𝑥 + 8) d𝑥

= [−2𝑥5

5
− 2 ⋅ 𝑥4

4
+ 4𝑥3

3
+ 12 ⋅ 𝑥2

2
+ 8𝑥]

2

𝑥=−1

.

This is a lot of arithmetic, sorry. One way is to work term by term:

−2[𝑥5

5
]

𝑥=2

𝑥=−1

= −2(32
5

− (−1)5

5
) = −2 ⋅ 33

5
= −66

5

−2[𝑥4

4
]

𝑥=2

𝑥=−1

= −2(16
4

− 1
4
) = −2 ⋅ 15

4
= −15

2

4[𝑥3

3
]

𝑥=2

𝑥=−1

= 4(8
3

− (−1)3

3
) = 4 ⋅ 9

3
= 12

12[𝑥2

2
]

𝑥=2

𝑥=−1

= 12 ⋅ 3
2

= 18

8 ⋅ (2 − (−1)) = 8 ⋅ 3 = 24.

Add these to get the answer:

−66
5

− 15
2

+ 12 + 18 + 24 = 333
10

.

□

§22.4 [SIDENOTE] What it looks like if you integrate the hard way
In the previous sample question, we picked 𝑥 to be the outer integral so that we didn’t have to do cases
or deal with square roots. This was pretty clearly a good choice.

For contrast, I’ll show you what happens if you have 𝑦 in the outer integral instead — just to make a
point that things can get ugly. (You can read it if you want the practice with iterated integrals, or skip
it if you believe me.) To reiterate, we will directly calculate

∫
1

𝑦=0
∫

√𝑦

𝑥=−√𝑦
(2𝑥 + 4𝑦) d𝑥 d𝑦 + ∫

4

𝑦=1
∫

√𝑦

𝑥=𝑦−2
(2𝑥 + 4𝑦) d𝑥 d𝑦.

• We calculate the first hunk

∫
1

𝑦=0
∫

√𝑦

𝑥=−√𝑦
(2𝑥 + 4𝑦) d𝑥 d𝑦.

1. The first step is to compute the inner integral with respect to 𝑥, treating 𝑦 as a constant. The
inner integral is:

∫
√𝑦

𝑥=−√𝑦
(2𝑥 + 4𝑦) d𝑥.
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We can split this into two integrals:

∫
√𝑦

𝑥=−√𝑦
2𝑥 d𝑥 + ∫

√𝑦

𝑥=−√𝑦
4𝑦 d𝑥.

‣ The first term is:

2 ∫
√𝑦

𝑥=−√𝑦
𝑥 d𝑥 = 2[𝑥2

2
]

𝑥=√𝑦

𝑥=−√𝑦

= 2 ⋅ (
(√𝑦)2

2
−

(−√𝑦)2

2
).

‣ The second term is:

4𝑦 ∫
√𝑦

𝑥=−√𝑦
1 d𝑥 = 4𝑦[𝑥]𝑥=√𝑦

𝑥=−√𝑦 = 4𝑦(√𝑦 − (−√𝑦)) = 4𝑦 ⋅ 2√𝑦 = 8𝑦3
2 .

Thus, the inner integral is:

0 + 8𝑦3
2 = 8𝑦3

2 .

2. Now, we compute the outer integral:

∫
1

𝑦=0
8𝑦3/2 d𝑦.

We use the power rule for integration:

∫ 𝑦3/2 d𝑦 =
𝑦5/2

5
2

= 2
5
𝑦5/2.

Thus, the outer integral becomes:

8 ∫
1

𝑦=0
𝑦3

2 d𝑦 = 8 ⋅ 2
5
[𝑦5

2 ]
𝑦=1

𝑦=0
= 8 ⋅ 2

5
⋅ (15

2 − 05
2 ) = 8 ⋅ 2

5
= 16

5
.

Hence the first hunk is

∫
1

𝑦=0
∫

√𝑦

𝑥=−√𝑦
(2𝑥 + 4𝑦) d𝑥 d𝑦 = 16

5
= 3.2.

• We calculate the second hunk

∫
1

𝑦=0
∫

√𝑦

𝑥=𝑦−2
(2𝑥 + 4𝑦) d𝑥 d𝑦.

1. The first step is to compute the inner integral with respect to 𝑥, treating 𝑦 as a constant. The
inner integral is:

∫
√𝑦

𝑥=𝑦−2
(2𝑥 + 4𝑦) d𝑥.

We can split this into two integrals:
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∫
√𝑦

𝑥=𝑦−2
2𝑥 d𝑥 + ∫

√𝑦

𝑥=𝑦−2
4𝑦 d𝑥.

‣ The first term is:

∫
√𝑦

𝑥=𝑦−2
2𝑥 d𝑥 = 2[𝑥2

2
]

𝑥=√𝑦

𝑥=𝑦−2

= ((√𝑦)2 − (𝑦 − 2)2).

Simplifying:

(𝑦 − (𝑦2 − 4𝑦 + 4)) = 𝑦 − (𝑦2 − 4𝑦 + 4) = 𝑦 − 𝑦2 + 4𝑦 − 4 = −𝑦2 + 5𝑦 − 4.

‣ The second term is:

4𝑦 ∫
√𝑦

𝑥=𝑦−2
1 d𝑥 = 4𝑦(√𝑦 − (𝑦 − 2)) = 4𝑦(√𝑦 − 𝑦 + 2) = 4𝑦(√𝑦 − 𝑦 + 2).

Thus, the inner integral is:

(−𝑦2 + 5𝑦 − 4) + 4𝑦(√𝑦 − 𝑦 + 2) = −𝑦2 + 5𝑦 − 4 + 4𝑦√𝑦 − 4𝑦2 + 8𝑦.

Simplifying we get the inner integral to be

−5𝑦2 + 13𝑦 + 4𝑦√𝑦 − 4.

2. Now, we compute the outer integral:

∫
4

𝑦=1
(−5𝑦2 + 13𝑦 + 4𝑦√𝑦 − 4) d𝑦.

To keep things organized, we integrate each term individually:

∫
4

𝑦=1
−5𝑦2 d𝑦 = −5[𝑦3

3
]

𝑦=4

𝑦=1

= −5 ⋅ (64
3

− 1
3
) = −5 ⋅ 63

3
= −105

∫
4

𝑦=1
13𝑦 d𝑦 = 13[𝑦2

2
]

𝑦=4

𝑦=1

= 13 ⋅ (16
2

− 1
2
) = 13 ⋅ 15

2
= 97.5

∫
4

𝑦=1
4𝑦√𝑦 d𝑦 = 4 ∫

4

𝑦=1
𝑦3/2 d𝑦 = 4 ⋅ [2

5
𝑦5/2]

𝑦=4

𝑦=1
= 4 ⋅ 2

5
(32 − 1) = 248

5
= 49.6

∫
4

𝑦=1
−4 d𝑦 = −4[𝑦]𝑦=4

𝑦=1 = −4(4 − 1) = −12.

Now, add up the integrals:

−105 + 97.5 + 49.6 − 12 = 30.1.

• The final answer is 3.2 + 30.1 = 33.3 as expected.

So we got the same answer, no surprise, but it took a lot more work to get it.
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§22.5 [TEXT] A few physical interpretations of integrals
Depending on what function 𝑓  is chosen, the integral may have some physical meaning. We give a
few examples here:

§22.5.1 Area

If you choose 𝑓 = 1 you get area.

Recipe for area

To find the area of a region ℛ, use

Area(ℛ) = ∬
ℛ

1 d𝑥 d𝑦.

Digression: This is the definition of area

Sometimes people ask me why we choose to integrate 1 as opposed to some other function. The
answer might be a bit surprising: you can actually take the above integral as the definition of area.
(If you think back carefully to what you learned in high school, you might realize that nobody
actually ever gave you a precise definition of the word “area”, and that was for good reason.)

Tip

You can and will use the recipe the other way too: suppose you’re doing some problem and you
end up with ∬

ℛ
d𝑥 d𝑦 where ℛ is the circle 𝑥2 + 𝑦2 ≤ 1. Don’t go through the trouble of actually

calculating the integral: it’s the area of a circle with radius 1, which is just 𝜋!

Sample Question

Consider the region ℛ we just described, the set of points between bounded between 𝑦 − 𝑥 = 2
and 𝑦 = 𝑥2. Compute its area.

Solution.  We’ll write this as

∫
2

𝑥=−1
∫

𝑥+2

𝑦=𝑥2

1 d𝑦 d𝑥.

The inner integral is easy ∫𝑥+2
𝑦=𝑥2 d𝑦 = (𝑥 + 2) − 𝑥2. So the answer is

∫
2

𝑥=−1
(𝑥 + 2 − 𝑥2) d𝑥 = [𝑥2

2
+ 2𝑥 − 𝑥3

3
]

𝑥=2

𝑥=−1

= (2 + 4 − 8
3
) − (1

2
− 2 + 1

3
) = 9

2
. □

Sample Question

Compute the area of the region ℛ where 0 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑦 ≤ 𝑥2.

Solution.  Write
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∫
10

𝑥=0
∫

𝑥2

𝑦=0
1 d𝑦 d𝑥 = ∫

10

𝑥=0
𝑥2 d𝑥 = [𝑥3

3
]

10

𝑥=0

= 1000
3

. □

Actually this is just a rephrasing of the “area under the curve” you learned in 18.01, when you would
write ∫10

𝑥=0
𝑥2 d𝑥 = [𝑥3

3 ]
10

𝑥=0
= 1000

3  and were told “this is the area under the curve 𝑦 = 𝑥2”, as in
Figure 45. But the 18.02 definition is more versatile, because it lets us give a definition of area for any
integrable region in the 𝑥𝑦-plane, not just those under a curve of the form 𝑦 = 𝑓(𝑥).

Figure 45:  The area ∫10
𝑥=0

∫𝑥2

𝑦=0
1 d𝑦 d𝑥 in 18.02 language matches what you expect

from the 18.01 integral ∫10
𝑥=0

𝑥2 d𝑥.

§22.5.2 Mass and center of mass

If you imagine your region ℛ as a blob of some substance (concrete, wood, water, etc.), then you could
also imagine it has a density at each point in the region (say, in kilograms per square meter). In 18.02 we
usually denote the density by 𝜌, which is a function taking each point 𝑃  in the region ℛ and outputting
its density.

In that case, the total mass of ℛ is the integral of the densities:

mass(ℛ) = ∬
ℛ

𝜌(𝑥, 𝑦) d𝑥 d𝑦.

Given a region you can also consider the center of mass. The idea/definition is that the 𝑥-coordinate
of the center of mass should be the weighted average of the 𝑥-coordinates of the points in the region,
and is usually denoted ̅𝑥:

̅𝑥 ≔ 𝑥-coord of the center of mass = 1
mass(ℛ)

∬
ℛ

𝑥 ⋅ 𝜌(𝑥, 𝑦) d𝑥 d𝑦.

And the same for the others. Let’s repeat this in recipe form.²¹

²¹It took considerable self-restraint to not title the recipe “Mass Tech”.
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Recipe for total mass and center of mass

Suppose ℛ is a region and 𝜌 is a density function for the region.

1. The total mass is given by mass(ℛ) = ∬
ℛ

𝜌(𝑥, 𝑦) d𝑥 d𝑦.
2. The center of mass is the point ( ̅𝑥, ̅𝑦) defined by

( ̅𝑥, ̅𝑦) ≔ (
∬

ℛ
𝑥 ⋅ 𝜌(𝑥, 𝑦) d𝑥 d𝑦
mass(ℛ)

,
∬

ℛ
𝑦 ⋅ 𝜌(𝑥, 𝑦) d𝑥 d𝑦
mass(ℛ)

).

Type signature

If ℛ is a region in ℝ2,
• Then a density function 𝜌 : ℛ → ℝ≥0 should take on nonnegative values. (For physicists: in

SI units, you might imagine it as kilograms per square meter.)
• The mass is a nonnegative real number (kilograms).
• The center of mass is also a point inside ℛ. (Draw this as a dot, not an arrow.)

Sample Question

Compute the center of mass of the square with vertices (5, 5), (5, 9), (9, 9) and (9, 5), assuming
a constant density 𝜌 = 1.

Solution.  Of course, by symmetry we expect the answer to be (7, 7) . Let’s see this in full. The mass
of ℛ is given by

mass(ℛ) = ∬
ℛ

1 d𝑥 d𝑦 = ∫
9

𝑥=5
∫

9

𝑦=5
1 d𝑦 d𝑥 = (9 − 5) ⋅ (9 − 5) = 16.

The 𝑥-coordinate of the center of mass is

̅𝑥 = 1
mass(ℛ)

∬
ℛ

𝑥 ⋅ 1 d𝑥 d𝑦 = 1
16

∫
9

𝑥=5
∫

9

𝑦=5
𝑥 d𝑦 d𝑥

= 1
16

∫
9

𝑦=5
[𝑥 ⋅ (9 − 5)] d𝑥 = 1

16
⋅ 4 ∫

9

𝑥=5
𝑥 d𝑥 = 1

4
[𝑥2

2
]

9

𝑥=5

= 1
4
(81

2
− 25

2
) = 7.

The calculation for ̅𝑦 is exactly the same, and we get (7, 7) as we hoped. □

Remark

Unsurprisingly if 𝜌 = 1 is constant (imagine 1 kilogram per square meter), then the mass of the
region ℛ is just ∬

ℛ
d𝑥 d𝑦, i.e. the area. (So a region whose area is 16 square meters and where

the density is 1 kilogram per square meter in the whole substance should be 16 kilograms.)
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Sample Question

Compute the center of mass of the square with vertices (5, 5), (5, 9), (9, 9) and (9, 5), assuming
a density function of 𝜌(𝑥, 𝑦) = 𝑥 + 𝑦.

Solution.  First compute the mass:

mass(ℛ) = ∬
ℛ

(𝑥 + 𝑦) d𝑥 d𝑦 = ∫
9

𝑥=5
∫

9

𝑦=5
(𝑥 + 𝑦) d𝑦 d𝑥

= ∫
9

𝑥=5
[𝑥𝑦 + 𝑦2

2
]

9

𝑦=5

d𝑥 = ∫
9

𝑥=5
(𝑥(9 − 5) + 81

2
− 25

2
) d𝑥 = ∫

9

𝑥=5
(4𝑥 + 28) d𝑥

= 4[𝑥2

2
]

9

𝑥=5

+ 28[𝑥]9𝑥=5 = 2(81 − 25) + 28 ⋅ 4 = 224.

Then the 𝑥-coordinate of the center of mass is

̅𝑥 = 1
mass(ℛ)

∬
ℛ

𝑥(𝑥 + 𝑦) d𝑥 d𝑦 = 1
224

∫
9

𝑥=5
∫

9

𝑦=5
(𝑥2 + 𝑥𝑦) d𝑦 d𝑥

= 1
224

∫
9

𝑥=5
[𝑥2𝑦 + 𝑥𝑦2

2
]

9

𝑦=5

d𝑥 = 1
224

∫
9

𝑥=5
(𝑥2(9 − 5) + 𝑥(81 − 25)

2
) d𝑥

= 1
224

∫
9

𝑥=5
(4𝑥2 + 28𝑥) d𝑥 = 1

224
[4𝑥3

3
+ 14𝑥2]

9

𝑥=5

= 1
224

(4(729) − 4(125)
3

+ 14(81 − 25)) = 149
21

.

And ̅𝑦 = 149
21  in exactly the same way. Hence the answer (149

21
, 149

21
) ≈ (7.095, 7.095) .

(This passes a sanity check: our new square is a bit denser near (9, 9) than (5, 5). So we expect the
center of mass to move in that direction slightly. We still have symmetry across the line 𝑦 = 𝑥.) □

§22.6 [SIDENOTE] What’s the analogy to “area under the curve” from 18.01?
In 18.01, you were told that the integral ∫𝑏

𝑥=𝑎
𝑓(𝑥) d𝑥 denotes the area under the curve 𝑦 = 𝑓(𝑥) from

𝑥 = 𝑎 to 𝑥 = 𝑏.

In 18.02, if you have ∬
ℛ

𝑓(𝑥, 𝑦) d𝑥 d𝑦, and you want to interpret it analogously, what you would do
is look at the surface 𝑧 = 𝑓(𝑥, 𝑦) in an 𝑥𝑦𝑧-plane, where you imagine the 𝑥𝑦-plane and the region
ℛ at the bottom, and 𝑧 being a height. Then the double integral analogously calculates the volume
underneath the surface.

However, we won’t actually use this interpretation much in 18.02. As I said before, in 18.02 we usually
prefer to draw pictures where all the axis variables are treated with equal respect. (Whereas the 18.01
picture I just mentioned uses 𝑥 as input and 𝑦 as output; the two axes don’t play the same role.) So
picturing the double integral with things like mass or center of mass is more in line with the 18.02
spirit, even though there is no 18.01 analog.
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§22.7 [RECIPE] Swapping the order of integration
If you’re an instructor teaching multivariable calculus, one trope for generating exam questions is to
take some region ℛ that can be sliced both horizontally and vertically, but for which one way is much
easier to integrate than the other. For the problem statement, you give the student the integral written
in the “bad” order. The solution is to convert back into a region ℛ, and then use this to recover the
“good” order. Put in recipe form:

Recipe for swapping the order of integration

If you are given ∫?
𝑥=?

∫?
𝑦=?

𝑓(𝑥, 𝑦) d𝑦 d𝑥 and you wish to switch the order of integration the
other way:

1. Convert the limits of integration back into inequality/region format, getting some region
ℛ.

2. Re-apply the recipe from Section 22.2 using the other variable as the outer one now.

Sample Question

Evaluate the double integral:

∫
2

𝑥=0
∫

1

𝑦=𝑥
2

𝑒𝑦2 d𝑦 d𝑥.

Solution.  To evaluate this integral, note that integrating 𝑒𝑦2  directly with respect to 𝑦 is not feasible
using standard methods from 18.01. Thus, we need to swap the order of integration.

First convert this back into region format:

ℛ = {0 ≤ 𝑥 ≤ 2
𝑥
2 ≤ 𝑦 ≤ 1.

We see that 𝑦 goes in the range 0 ≤ 𝑦 ≤ 1. The region being integrated is drawn in Figure 46.

Figure 46: The region 0 ≤ 𝑥 ≤ 2 and 𝑥2 ≤ 𝑦 ≤ 1. Note that the function you are
integrating, in this case 𝑒𝑦2 , is irrelevant to the region being integrated over!

Solving for 𝑥 in terms of 𝑦 gives three conditions: in addition to 0 ≤ 𝑥 ≤ 2 we need 𝑥 ≤ 2𝑦. Since 𝑦 ≤
1, we can ignore the condition 𝑥 ≤ 2, and the region can be rewritten to
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ℛ = {0 ≤ 𝑦 ≤ 1
0 ≤ 𝑥 ≤ 2𝑦.

Turning this back into a double integral gives

∫
1

𝑦=0
∫

2𝑦

𝑥=0
𝑒𝑦2 d𝑦 d𝑥.

The inner integral is with respect to 𝑥, but the integrand 𝑒𝑦2  is independent of 𝑥. Therefore, the inner
integral becomes:

∫
2𝑦

𝑥=0
𝑒𝑦2 d𝑥 = 2𝑦 ⋅ 𝑒𝑦2 .

Thus, it remains to calculate

∫
1

𝑦=0
(2𝑦 ⋅ 𝑒𝑦2) d𝑦 d𝑥.

And now things are different: 2𝑦 ⋅ 𝑒𝑦2  does have a valid anti-derivative. If you use the 18.01 method or
even just are good at guessing, you can find the indefinite 18.01 integral

∫ 2𝑦𝑒𝑦2 d𝑦 = 𝑒𝑦2 + 𝐶.

So the final answer to the problem is

∫
1

𝑦=0
2𝑦𝑒𝑦2 d𝑦 d𝑥 = [𝑒𝑦2]

𝑦=1

𝑦=0
= 𝑒 − 1 . □

Sample Question

Let

𝑘 = 5√37
3

𝜋 ≈ 2.078.

Evaluate the double integral:

∫
𝑘2

𝑦=0
∫

𝑘

𝑥=√𝑦
𝑦 sin(𝑥5) d𝑥 d𝑦

Solution.  Integrating sin(𝑥5) is not reasonable, so we swap the order of integration and pray. The
region being integrated is

ℛ = {0 ≤ 𝑦 ≤ 𝑘2
√𝑦 ≤ 𝑥 ≤ 𝑘.

The values of 𝑥 range all the way from 0 to 𝑘. We draw the region in Figure 47.
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Figure 47: The region 0 ≤ 𝑦 ≤ 𝑘2 and √𝑦 ≤ 𝑥 ≤ 𝑘.

Solving for 𝑦, we see that we have three constraints, 0 ≤ 𝑦, 𝑦 ≤ 𝑥2 and 𝑦 ≤ 𝑘2. But since 𝑥 ≤ 𝑘, the
condition 𝑦 ≤ 𝑘2 is redundant. The region can be rewritten as simply

ℛ = {0 ≤ 𝑥 ≤ 𝑘
0 ≤ 𝑦 ≤ 𝑥2.

Convert back into a double integral:

∫
𝑘

𝑥=0
∫

𝑥2

𝑦=0
𝑦 sin(𝑥5) d𝑦 d𝑥.

We now compute the inner integral with respect to 𝑦:

∫
𝑥2

𝑦=0
𝑦 sin(𝑥5) d𝑦.

Since sin(𝑥5) is independent of 𝑦, we can factor it out of the integral:

sin(𝑥5) ∫
𝑥2

𝑦=0
𝑦 d𝑦 = sin(𝑥5)[𝑦2

2
]

𝑦=𝑥2

𝑦=0

.

Substituting the limits of integration:

sin(𝑥5) ⋅ 𝑥4

2
.

Now substitute this result into the outer integral:

∫
𝑘

𝑥=0

𝑥4

2
sin(𝑥5) d𝑥.
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Let’s perform the 18.01 𝑢-substitution 𝑢 = 𝑥5, so d𝑢 = 5𝑥4 d𝑥, or d𝑥 = d𝑢
5𝑥4 . The limits of integration

change as follows:
• When 𝑥 = 0, 𝑢 = 0.
• When 𝑥 = 𝑘, 𝑢 = 37

3 𝜋.

Thus, knowing that ∫ sin(𝑢) = − cos(𝑢) + 𝐶 , the integral becomes:

1
2

∫
37
3 𝜋

𝑢=0

sin(𝑢)
5

d𝑢 = 1
10

∫
37
3 𝜋

𝑢=0
sin(𝑢) d𝑢

= 1
10

(− cos(37
3

𝜋) + cos(0)).

Using cos(37
3 𝜋) = 1

2  and cos(0) = 1, we get:

1
10

(−1
2

+ 1) = 1
10

⋅ 1
2

= 1
20

. □

§22.8 [EXER] Exercises

Exercise 22.1.  Let ℛ be the region between the curves 𝑦 =
√

𝑥 and 𝑦 = 𝑥3. Compute
∬

ℛ
𝑥100𝑦200 d𝑥 d𝑦 using both horizontal and vertical slicing.

Exercise 22.2.  Let ℛ be the region between the curves 𝑦 =
√

𝑥 and 𝑦 = 𝑥2. Assume ℛ has constant
density. Calculate its center of mass.

Exercise 22.3.  Evaluate the double integral:

∫
1

𝑦=0
∫

5√𝑦

𝑥=𝑦

𝑥𝑦2

1 − 𝑥12 d𝑥 d𝑦.

Exercise 22.4 (*).  Prove that

∫
9995

𝑥=0

3√ 5
√

𝑥 + 1

is a rational number.
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Chapter 23. Change of variables
We’ll do just two variables for now; the 3D situation is exactly the same and we cover it later.

§23.1 [TEXT] Interval notation
One quick notational thing if you haven’t seen this before:

Definition: Interval notation

Suppose [𝑎, 𝑏] and [𝑐, 𝑑] are closed intervals in ℝ (so 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑). By [𝑎, 𝑏] × [𝑐, 𝑑] we mean
the rectangle consisting of points (𝑥, 𝑦) such that 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑐 ≤ 𝑦 ≤ 𝑑. (So the four corners
of the rectangle are (𝑎, 𝑐), (𝑎, 𝑑), (𝑏, 𝑐), (𝑏, 𝑑).)

Example

For example [0, 1] × [0, 1] would be a unit square whose southwest corner is at the origin.
Similarly, [0, 5] × [0, 3] would be a rectangle of width 5 and height 3.

Figure 48: A picture of [0, 5] × [0, 3]. This is just the set of points where 𝑥 is in the
interval [0, 5] and 𝑦 is in the closed interval [0, 3].

§23.2 [TEXT] Transition maps
As it turns out 𝑥𝑦-integration (or 𝑥𝑦𝑧-integration in 3D) isn’t always going to be nice, even if you try
both horizontal and vertical slicing.

The standard example that’s given looks something like this: suppose you want to integrate the region
bounded by the four lines

𝑥𝑦 = 16
9

, 𝑥𝑦 = 16
25

, 𝑥 = 4𝑦, 𝑦 = 4𝑥.

This region is sketched in Figure 49. As I promised you, I think it’s better for your thinking if you write
these as inequalities:

16
25

≤ 𝑥𝑦 ≤ 16
9

1
4

≤ 𝑦
𝑥

≤ 4.
(11)
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Figure 49: A cursed region bounded by four curves. Trying to do 𝑥𝑦-integration
in either direction will be annoying as heck.

This chapter introduces a technique called “change of variables” that will allow us to handle this
annoying-looking yellow region for when we don’t want to do 𝑥𝑦-integration. The idea is to make
a new map of the yellow region with a different coordinate system. To do this, I need to tell you a
new term:

Definition of transition map

Suppose ℛ is a region. Let ℛnew be another region, often a rectangle. A transition map for ℛ is
a function 𝐓 : ℛnew → ℛ that transforms ℛnew to ℛ.

In 18.02 we always require that all the points except possibly the boundaries of ℛnew get mapped
to different points in ℛ. Thus, writing the inverse 𝐓−1 usually also makes sense.

If ℛnew is a rectangle — and again, that’s quite common — then sometimes 𝐓 is also called a cell (e.g.
my Napkin does this when discussing differential forms).
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Remark: An analogy to the world map

Cartography or geography enthusiasts will find that the word “map” gives them the right
instincts. If you print a world map on an 8.5 × 11 or A4 sheet of paper, it gives you a coordinate
system for the world with longitude and latitude. So ℛ can be thought of as the surface of the
Earth, while ℛnew is the rectangular sheet of paper. (I’m lying a little bit because the Earth lives
in 3D space but not 2D space, but bear with me.)

The map is always distorted in some places, because the Earth is bent: the north and south pole
will often get stretched a ton, for example. But that’s okay — as long as each longitude and
latitude gives you a different point on Earth, we’re satisfied. Technically there are excep-
tions at the north and south poles, but those are on the boundary and we let it slide.

This corresponds to the idea that a cell can capture a complicated area with two coordinates. See
Figure 50.

Figure 50: One of the map projections from XKCD 977, a chart titled What your
favorite map projection says about you. There’s several more if you’re curious.

Now how does a transition map help us? Well, first, let’s show how we can do cartography on the
region we just saw, and then worry about the integration later.

The key idea is that we need to rig our transition function such that

𝑢 = 𝑦
𝑥

, 𝑣 = 𝑥𝑦

so that our two inequalities we saw earlier are just

1
4

≤ 𝑣 ≤ 4, 16
25

≤ 𝑣 ≤ 16
9

.

This lets us make a portrayal of the yellow region as a sheet of paper. See Figure 51, which is really
important to us!
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Figure 51: We use a rectangle with (𝑢, 𝑣) as our new region ℛnew. The transition
map lets us do cartography on the region ℛ.

How do we actually express the transition map of 𝐓? It’s actually easier to write the inverse; in this
context it’s actually more natural to write

𝐓−1(𝑥, 𝑦) = (𝑦
𝑥

, 𝑥𝑦).

If you really need 𝐓 itself, you would solve for 𝑢 and 𝑣 in terms of 𝑥 and 𝑦 to get

𝑥 = √𝑣
𝑢

𝑦 =
√

𝑢𝑣

so that our transition map is given exactly by

203



Linear Algebra and Multivariable Calculus — Evan Chen

𝐓(𝑢, 𝑣) = (√𝑣
𝑢

,
√

𝑢𝑣).

However, actually for integration purposes (we’ll see this next section) you can actually get away with
only the formula for 𝐓−1 instead.

§23.3 [TEXT] Integration once you have a transition map
If you remember change-of-variables from 18.01, the 18.02 is the grown-up version where you have a
transition map instead.

Definition: Jacobian determinant

Let 𝐓 be a transition map defined from a region in ℝ𝑛 to ℝ𝑛. The Jacobian matrix is the
matrix whose rows are the gradients of each component written as row vectors; the Jacobian
determinant is its determinant. In these notes we denote the matrix by 𝐽𝐓 (and the determinant
by det 𝐽𝐓).

For example in a 2 × 2 case, if the transition map 𝐓(𝑢, 𝑣) is written as 𝐓(𝑢, 𝑣) = (𝑝(𝑢, 𝑣), 𝑞(𝑢, 𝑣)), then

𝐽𝐓 =
(
((

𝜕𝑝
𝜕𝑢
𝜕𝑞
𝜕𝑢

𝜕𝑝
𝜕𝑣
𝜕𝑞
𝜕𝑣)

)).

Example

Let’s consider the transition map 𝐓(𝑢, 𝑣) we saw earlier, that is

𝐓(𝑢, 𝑣) = (√𝑣
𝑢

,
√

𝑢𝑣).

We compute the gradient of (𝑢, 𝑣) ↦ √ 𝑣
𝑢  by taking the two partials:

𝜕
𝜕𝑢

√𝑣
𝑢

= −1
2
𝑢−3

2 𝑣1
2

𝜕
𝜕𝑣

√𝑣
𝑢

= 1
2
𝑢−1

2 𝑣−1
2 .

The other component (𝑢, 𝑣) ↦
√

𝑢𝑣 has the following gradient:

𝜕
𝜕𝑢

√
𝑢𝑣 = 1

2
𝑢−1

2 𝑣1
2

𝜕
𝜕𝑣

√
𝑢𝑣 = 1

2
𝑢1

2 𝑣−1
2 .

So the Jacobian matrix for 𝐓 is

𝐽𝐓 = (
1
2𝑢−3

2 𝑣1
2

1
2𝑢−1

2 𝑣1
2

1
2𝑢−1

2 𝑣−1
2

1
2𝑢1

2 𝑣−1
2

).
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Example

We can also find the Jacobian matrix of the inverse map too, that is, the transition map 𝐓−1 :
ℛ → ℛnew defined by

𝐓−1(𝑥, 𝑦) = (𝑦
𝑥

, 𝑥𝑦).

In other words, this is the map that transforms (𝑥, 𝑦) into (𝑢, 𝑣). This is actually less painful
because you don’t have to deal with the square roots everywhere.

𝜕
𝜕𝑥

(𝑦
𝑥

) = − 𝑦
𝑥2 , 𝜕

𝜕𝑦
(𝑦

𝑥
) = 1

𝑥
𝜕
𝜕𝑥

(𝑥𝑦) = 𝑦, 𝜕
𝜕𝑦

(𝑥𝑦) = 𝑥.

So the Jacobian matrix for 𝐓−1 is

𝐽𝐓−1 = (− 𝑦
𝑥2

𝑦
1
𝑥
𝑥
).

Okay, now for the result. We’ll postpone giving a justification for this theorem until Section 24.6, since
I want to have done a few concrete examples before drawing the right picture.

Memorize: Change of variables

Suppose you need to integrate ∬
ℛ

𝑓(𝑥, 𝑦) d𝑥 d𝑦 and you have a transition map 𝐓(𝑢, 𝑣) : ℛnew →
ℛ. Then the transition map lets you change the integral as follows:

∬
ℛ

𝑓(𝑥, 𝑦) d𝑥 d𝑦 = ∬
ℛnew

𝑓(𝑢, 𝑣)|det 𝐽𝐓| d𝑢 d𝑣

Alternatively, if it’s easier to compute 𝐽𝐓−1 , the following formula also works:

∬
ℛ

𝑓(𝑥, 𝑦) d𝑥 d𝑦 = ∬
ℛnew

𝑓(𝑢, 𝑣)
|det 𝐽𝐓−1 |

d𝑢 d𝑣

However, in the latter case your Jacobian determinant will have 𝑥 and 𝑦 in it that you need to
translate back into 𝑢 and 𝑣.

Here | det 𝐽𝐓| is called the area scaling factor: it’s the absolute value of the determinant of the
Jacobian matrix. It’s indeed true that

det 𝐽𝐓−1 = 1
det(𝐽𝐓)

which means that if your transition map has a nicer inverse than the original, you might prefer to use
that instead.
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Type signature

The area scaling factor is always a nonnegative real number.

Tip

You might find it easier to remember both formulas if you write

d𝑢 d𝑣 = | det 𝐽𝐓| d𝑥 d𝑦

so it looks more like d𝑢 = 𝜕𝑢
𝜕𝑥 d𝑥 from 18.01. (Indeed the 18.01 formula is the special case of a 1 ×

1 matrix!)

Digression on what d𝑢d𝑣 means

For 18.02, the equation d𝑢 d𝑣 = | det 𝐽𝐓| d𝑥 d𝑦 is more of a mnemonic right now than an actual
equation; that’s because in 18.02 we don’t give a definition of what d𝑥 or d𝑦 mean. It can be made
into a precise statement using something called a differential form. This is out of scope for 18.02,
which has the unfortunate consequence that I can’t give a formal explanation why the change-
of-variable formula works. That said, see Section 24.6 later for an informal explanation.

This is the analog in 18.01 when you did change of variables from 𝑥 to 𝑢 (called 𝑢-substitution some-
times), and you changed d𝑥 to d𝑥

d𝑢 d𝑢. In 18.02, the derivative from 18.01 is replaced by the enormous
Jacobian determinant.

Let’s see an example of how to carry out this integration.

Sample Question

Compute the area of the region ℛ bounded by the curves

𝑥𝑦 = 16
9

, 𝑥𝑦 = 16
25

, 𝑥 = 4𝑦, 𝑦 = 4𝑥.

Solution.  In the previous sections we introduced variables 𝑢 = 𝑦
𝑥  and 𝑣 = 𝑥𝑦, and considered the

region

ℛnew = [1
4
, 4] × [16

25
, 16

9
]

which were the pairs of points (𝑢, 𝑣) in that rectangle we described earlier. We made a transition map
𝐓 : ℛnew → ℛ written as either

𝐓(𝑢, 𝑣) = (√𝑣
𝑢

,
√

𝑢𝑣)

𝐓−1(𝑥, 𝑦) = (𝑦
𝑥

, 𝑥𝑦).

We don’t like square roots, so we’ll use the determinant of the Jacobian matrix for 𝐓−1, which is
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det(𝐽𝐓−1) = |−
𝑦
𝑥2

𝑦
1
𝑥
𝑥
| = (− 𝑦

𝑥2 ) ⋅ 𝑥 − 1
𝑥

⋅ 𝑦 = −𝑦
𝑥

− 𝑦
𝑥

= −2𝑦
𝑥

.

Since we used the upside-down version of the formula, we need to translate this back into 𝑢 and 𝑣
through the given formula. In this case since 𝑢 = 𝑦

𝑥 , you can do it just by looking:

det(𝐽𝐓−1) = −2𝑢.

Area(ℛ) = ∫
4

𝑢=1
4

∫
16
9

𝑣=16
25

1
|det(𝐽𝐓−1)|

d𝑣 d𝑢

= ∫
4

𝑢=1
4

∫
16
9

𝑣=16
25

1
2𝑢

d𝑣 d𝑢

= ∫
4

𝑢=1
4

1
2𝑢

⋅ (16
9

− 16
25

) d𝑢

= 128
225

∫
4

𝑢=1
4

1
𝑢

d𝑢

= 128
225

(log 4 − log(1
4
)) = 512 log 2

225
. □

§23.4 [TEXT] Another example: the area of a unit disk

Sample Question

Show that the area of the unit disk 𝑥2 + 𝑦2 ≤ 1 is 𝜋.

Solution.  For reasons that will soon be obvious, we use the letters 𝑟 and 𝜃 rather than 𝑢 and 𝑣 for this
problem. This time our cartographer’s transition map is going to be given by

𝐓 : [0, 1] × [0, 2𝜋] → ℝ2

𝐓(𝑟, 𝜃) ≔ (𝑟 cos 𝜃, 𝑟 sin 𝜃).

You might recognize this as polar coordinates. This gives us a way to plot the unit disk as a rectangular
map; see the figure.

Figure 52: The map 𝐓 : [0, 1] × [0, 2𝜋] → ℝ2 whose image is the unit disk.
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(Careful students might notice that the points on the line segment from (0, 0) to (1, 0) are repeated
more than once under the transition map; again, in 18.02 we allow this repetition on the boundary.)

We calculate the Jacobian of 𝐓:

𝐽𝐓 = (
𝜕
𝜕𝑟(𝑟 cos 𝜃)
𝜕
𝜕𝑟(𝑟 sin 𝜃)

𝜕
𝜕𝜃(𝑟 cos 𝜃)
𝜕
𝜕𝜃(𝑟 sin 𝜃)

) = (cos 𝜃
sin 𝜃

−𝑟 sin 𝜃
𝑟 cos 𝜃 ).

The area scaling factor is then

| det 𝐽𝐓| = |cos 𝜃
sin 𝜃

−𝑟 sin 𝜃
𝑟 cos 𝜃 | = 𝑟 cos2 𝜃 − (−𝑟 sin2 𝜃) = 𝑟(cos2 𝜃 + sin2 𝜃) = 𝑟.

Hence, the transition map gives us the following change of variables:

∬
𝑥2+𝑦2=1

1 d𝑥 d𝑦 = ∫
1

𝑟=0
∫

2𝜋

𝜃=0
𝑟 d𝜃 d𝑟.

This is easy to integrate:

∫
1

𝑟=0
(∫

2𝜋

𝜃=0
𝑟 d𝜃) d𝑟 = ∫

1

𝑟=0
(2𝜋𝑟) d𝑟

= 2𝜋 ∫
1

𝑟=0
(𝑟) d𝑟

= 2𝜋[𝑟2

2
]

𝑟=1

𝑟=0

= 𝜋 . □

Tip: remembering forwards vs backwards

If you have trouble remembering which way is “forwards” (meaning you use | det 𝐽|) versus
which way is “backwards” (meaning you use 1

| det 𝐽| ), it might help to look at Table 12 to see these
side by side. Just remember: the polar one is forwards, so we get d𝑥 d𝑦 = 𝑟 d𝑟 d𝜃.

Example Forwards Backwards
Example setup 𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃
𝑢 = 𝑦/𝑥
𝑣 = 𝑥𝑦

Example Jacobian matrix
( cos 𝜃

−𝑟 sin 𝜃
sin 𝜃

𝑟 cos 𝜃) (−𝑦/𝑥2

𝑦
1/𝑥
𝑥 )

Example Jacobian determinant 𝑟 −2𝑦/𝑥 = −2𝑢

Example change of variables d𝑥 d𝑦 = 𝑟 d𝑟 d𝜃 d𝑢 d𝑣 = 2𝑢 d𝑥 d𝑦

d𝑥 d𝑦 = 1
2𝑢

d𝑢 d𝑣

Table 12:  Side-by-side comparison of forwards and backwards changes of vari-
ables for the two examples we just did.
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§23.5 [TEXT] Example: the area of an ellipse
Once we know the area of a circle, we can also compute the area of an ellipse by reducing to the area
of a circle, as follows.

Sample Question

Let 𝑎, 𝑏 > 0 be positive real numbers Compute that the area inside the ellipse

𝑥2

𝑎2 + 𝑦2

𝑏2 = 1.

Solution.  Let ℛ be the interior of the ellipse. Consider the transformation 𝐓 defined by
𝑥 = 𝑎𝑢
𝑦 = 𝑏𝑣.

That is, 𝐓(𝑢, 𝑣) = (𝑎𝑢, 𝑏𝑣). The Jacobian of this matrix is easy to calculate:

𝐽𝐓 = (
𝜕

𝜕𝑢(𝑎𝑢)
𝜕

𝜕𝑢(𝑏𝑢)

𝜕
𝜕𝑣(𝑎𝑢)
𝜕
𝜕𝑣(𝑏𝑢)

) = (𝑎
0

0
𝑏)

which has determinant 𝑎𝑏.

This transformation provides a mapping between the regions

𝐓 : {𝑢2 + 𝑣2 ≤ 1} → ℛ = {𝑥2

𝑎2 + 𝑦2

𝑏2 ≤ 1}.

Hence, via change of variables the area of ℛ is related by

Area(ℛ) = ∬
ℛ

1 d𝑥 d𝑦

= ∬
𝑢2+𝑣2≤1

det 𝐽𝐓 d𝑢 d𝑣

= 𝑎𝑏 ∬
𝑢2+𝑣2≤1

d𝑢 d𝑣.

= 𝑎𝑏 Area({𝑢2 + 𝑣2 ≤ 1}) = 𝑎𝑏𝜋. □

To put this example into a picture, the idea is that we use a change of variables to map the ellipse into
a circle, where the Jacobian determinant is the constant function 𝑎𝑏. That determinant factors out, and
we get the result above.

§23.6 [SIDENOTE] Tip: Factoring integrals over rectangles
Especially with polar coordinates, you will often find you get an integral of the shape

∫
number

𝑢=number
∫

number

𝑣=number
𝑓(𝑢)𝑔(𝑣) d𝑣 d𝑢

that is, the part inside splits cleanly as the product of stuff involving 𝑢 and stuff involving 𝑣. In that
case, if you imagine actually doing the integration, you’ll find that this actually just equals
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(∫
number

𝑢=number
𝑓(𝑢)𝑣 d𝑢)(∫

number

𝑣=number
𝑔(𝑣) d𝑣).

For example, consider the following easy question and solution.

Sample Question

Evaluate

∫
1

𝑥=0
∫

𝜋

𝑦=0
𝑒𝑥 sin(𝑦) d𝑦 d𝑥.

Solution.  The integral can be written as:

∫
1

𝑥=0
𝑒𝑥(∫

𝜋

𝑦=0
sin(𝑦) d𝑦) d𝑥.

The inner integral is

∫
𝜋

𝑦=0
sin(𝑦) d𝑦 = [− cos(𝑦)]𝜋𝑦=0 = (− cos(𝜋)) − (− cos(0)) = (−(−1)) − (−1) = 1 + 1 = 2.

Substitute the result back into the integral:

∫
1

𝑥=0
𝑒𝑥 ⋅ 2 d𝑥 = 2 ∫

1

𝑥=0
𝑒𝑥 d𝑥 = 2[𝑒𝑥]1𝑥=0 = 2(𝑒1 − 𝑒0) = 2𝑒 − 2 . □

If you pay attention to the solution above, you’ll notice that in fact ∫𝜋
𝑦=0

sin(𝑦) d𝑦 = 2 is just a number,
and it gets pulled out of the integral right away. So in effect, we actually have

∫
1

𝑥=0
∫

𝜋

𝑦=0
𝑒𝑥 sin(𝑦) d𝑦 d𝑥 = (∫

1

𝑥=0
𝑒𝑥 d𝑥)(∫

𝜋

𝑦=0
sin(𝑦) d𝑦).

This is a bit of a convenience feature that might save a bit of headspace. It’s a tiny optimization, but
it’s worth pointing out.

Tip

Look for the common pattern

∫
number

𝑢=number
∫

number

𝑣=number
𝑓(𝑢)𝑔(𝑣) d𝑣 d𝑢 = (∫

number

𝑢=number
𝑓(𝑢)𝑣 d𝑢)(∫

number

𝑣=number
𝑔(𝑣) d𝑣).

Remember, this doesn’t work if either the integrand doesn’t factor, or the limits of integration aren’t
just numbers (i.e. the limit of 𝑣 depends on 𝑢).

As another example of a use case, in the polar integration we just did, we have

∫
1

𝑟=0
∫

2𝜋

𝜃=0
𝑟 d𝜃 d𝑟 = (∫

1

𝑟=0
𝑟 d𝑟)(∫

2𝜋

𝜃=0
𝜃 d𝜃) = [𝑟2

2
]

𝑟=1

𝑟=0

⋅ (2𝜋) = 𝜋.
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(Polar coordinates, covered next chapter, have this particular pattern a lot. Often the thing you’re
integrating has no 𝜃 dependence at all.)

§23.7 [EXER] Exercises

Exercise 23.1.  Let ℛ be all the points on or inside the triangle with vertices (0, 0), (1, 2) and (2, 1).
Compute

∬
ℛ

(𝑥 + 𝑦)2

𝑥𝑦
d𝑥 d𝑦.

(Recommended approach: use change of variables with 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥
𝑦 .)
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Chapter 24. Polar coordinates

§24.1 [TEXT] Polar coordinates are a special case of change of variables
Last chapter one of the transition maps we used was

𝐓polar(𝑟, 𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃).

This particular change is so common that you should actually memorize its Jacobian determinant and
area scaling factor. Remember from last chapter we computed

𝐽𝐓 = (
𝜕
𝜕𝑟(𝑟 cos 𝜃)
𝜕
𝜕𝑟(𝑟 sin 𝜃)

𝜕
𝜕𝜃(𝑟 cos 𝜃)
𝜕
𝜕𝜃(𝑟 sin 𝜃)

) = (cos 𝜃
sin 𝜃

−𝑟 sin 𝜃
𝑟 cos 𝜃 ).

| det 𝐽𝐓| = |cos 𝜃
sin 𝜃

−𝑟 sin 𝜃
𝑟 cos 𝜃 | = 𝑟 cos2 𝜃 − (−𝑟 sin2 𝜃) = 𝑟(cos2 𝜃 + sin2 𝜃) = 𝑟.

You should actually just remember the final result of this calculation so you don’t have to work it out
again. Colloquially, it can be written like so:

Memorize: The Jacobian for polar coordinates

When converting from Cartesian coordinates (𝑥, 𝑦) to polar coordinates (𝑟, 𝜃) you should replace
d𝑥 d𝑦 to 𝑟 d𝑟 d𝜃. Colloquially, we write

d𝑥 d𝑦 = 𝑟 d𝑟 d𝜃.

Many other sources will write d𝐴 as a shorthand for both: so if you have (𝑥, 𝑦) coordinates then d𝐴 =
d𝑥 d𝑦, while if you have polar coordinates then d𝐴 = 𝑟 d𝑟 d𝜃. (They’re equal, after all.) Again, this
can be made more precise later on in life once you have access to a new object called a differential
form, but for now just treat it as a mnemonic for one really common change of variables, rather than
a formal statement.

As training wheels, I’m still going to avoid writing d𝐴 for one more chapter, so that when you see
d𝑥 d𝑦 or d𝑦 d𝑥 you know you’re supposed to make a change of variables (and won’t accidentally write
d𝑟 d𝜃 with the factor of 𝑟 missing).

§24.2 [TEXT] Polar coordinates can be thought of as a coordinate system
In what follows, true to the name “polar coordinates”, I’ll write just

(𝑟, 𝜃)pol ≔ (𝑟 cos 𝜃, 𝑟 sin 𝜃)

so I don’t have to keep dragging the 𝐓polar everywhere. (However, other places will just write (𝑟, 𝜃)
everywhere, since it’s unlikely to be confused with 𝑥𝑦-coordinates due to the letter change.)

The upshot is that in practice:

Idea

Once you remember that d𝑥 d𝑦 turns into 𝑟 d𝑟 d𝜃, you can jump into problems directly in polar
coordinates, skipping the 𝑥 and 𝑦 altogether.
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For example, if you want to find the area of the unit disk, you know in polar coordinates the unit disk
is 0 ≤ 𝑟 ≤ 1 and 0 ≤ 𝜃 ≤ 2𝜋, so you can just directly think via the integral

∫
1

𝑟=0
∫

2𝜋

𝜃=0
𝑟 d𝜃 d𝑟

and not even bother writing the 𝑥𝑦-version ∬
𝑥2+𝑦2≤1

d𝑥 d𝑦. Compared to back in Section 23.4, it’s
the same thing; it’s just a shift in mindset where you go from “take an 𝑥𝑦-picture and translate into
polar coordinates” to “take a picture and write it directly in polar coordinates”.

§24.3 [TEXT] Famous example: the offset circle
There’s one particularly famous exercise that’s often used when teaching this stuff. I’m actually going
to split it into two parts.

Sample Question

Let ℛ denote the disk of radius 1 centered at (1, 0). Express the region ℛ in polar coordinates.

Figure 53: A sketch of (𝑥 − 1)2 + 𝑦2 ≤ 1. One might expect this to be nasty when
converted to polar, but it turns out to be 𝑟 ≤ 2 cos 𝜃 for −𝜋

2 ≤ 𝜃 ≤ 𝜋
2 , which is much

better than expected.

Solution.  Here are two ways to proceed.

Geometric approach See Figure 53. It’s clear from the figure we want −𝜋
2 ≤ 𝜃 ≤ 𝜋

2 . If one lets 𝑂 =
(0, 0), 𝑃  be a point on the boundary of the circle, and then let 𝐴 = (2, 0) (so segment 𝐴𝑂 is a
diameter of the circle). Then we in fact get a right triangle △ 𝑂𝑃𝐴 with

∠𝑃 = 90°, 𝑂𝐴 = 2, and ∠𝐴𝑂𝑃 = 𝜃.

Hence, the boundary of our offset circle is given by 𝑟 = 2 cos 𝜃. The disk (i.e. the part inside the
boundary) is then

0 ≤ 𝑟 ≤ 2 cos 𝜃.

Algebra approach Initially we have (𝑥, 𝑦) such that
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(𝑥 − 1)2 + 𝑦2 ≤ 1.

Expanding this equation gives

𝑥2 − 2𝑥 + 1 + 𝑦2 ≤ 1 ⟹ 𝑥2 + 𝑦2 ≤ 2𝑥.

In polar coordinates, 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, so we substitute to get

𝑟2 ≤ 2𝑟 cos 𝜃.

We need cos 𝜃 ≥ 0 to be nonnegative for this to be feasible, and we take −𝜋
2 ≤ 𝜃 ≤ 𝜋

2  as a result.
In that case the condition ends up becoming

0 ≤ 𝑟 ≤ 2 cos 𝜃.

In conclusion, the answer is ℛ in polar coordinates is exactly

−𝜋
2

≤ 𝜃 ≤ 𝜋
2

 and 𝑟 ≤ 2 cos 𝜃 . □

In other words, the graph of 𝑟 = 2 cos 𝜃 is actually just an offset circle. This is a bit of a surprise to
people who are seeing it for the first time, and even a bit to me now, but the geometry argument should
justify why.

Okay, here’s the famous exercise I promised you.

Sample Question

Let ℛ denote the disk of radius 1 centered at (1, 0). Calculate ∬
ℛ

√𝑥2 + 𝑦2 d𝑥 d𝑦.

Solution.  If you try to use 𝑥𝑦 integration, it’s a disaster. But we just saw the polar coordinates for ℛ
are surprisingly good. So of course let

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃.

In these coordinates, √𝑥2 + 𝑦2 = 𝑟, so the integrand becomes 𝑟.

As we just saw, the region ℛ consists of −𝜋
2 ≤ 𝜃 ≤ 𝜋

2  and 0 ≤ 𝑟 ≤ 2 cos 𝜃, so

∬
ℛ

√𝑥2 + 𝑦2 d𝑥 d𝑦 = ∫
𝜋
2

𝜃=−𝜋
2

∫
2 cos 𝜃

𝑟=0
𝑟 ⋅ 𝑟 d𝑟 d𝜃⏟

= d𝑥 d𝑦

= ∫
𝜋
2

𝜃=−𝜋
2

∫
2 cos 𝜃

𝑟=0
𝑟2 d𝑟 d𝜃.

First, integrate with respect to 𝑟:

∫
2 cos 𝜃

𝑟=0
𝑟2 d𝑟 = [𝑟3

3
]

2 cos 𝜃

𝑟=0

= (2 cos 𝜃)3

3
= 8 cos3 𝜃

3
.

Now, substitute this result into the outer integral:

∫
𝜋
2

𝜃=−𝜋
2

8 cos3 𝜃
3

d𝜃 = 8
3

∫
𝜋
2

𝜃=−𝜋
2

cos3 𝜃 d𝜃.

To evaluate ∫
𝜋
2

𝜃=−𝜋
2

cos3 𝜃 d𝜃, we need to find an antiderivative of cos3 𝜃. That will require a bit of
trigonometry acrobatics: the idea is to use
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cos3 𝜃 = cos 𝜃(1 − sin2 𝜃).

Then, set 𝑢 = sin 𝜃, so d𝑢 = cos 𝜃 d𝜃:

∫
𝜋
2

𝜃=−𝜋
2

cos3 𝜃 d𝜃 = ∫
1

𝑢=−1
(1 − 𝑢2) d𝑢 = [𝑢 − 𝑢3

3
]

1

−1

= (1 − 1
3
) − (−1 + 1

3
) = 4

3
.

Substitute this result back into the integral:

8
3

∫
𝜋
2

𝜃=−𝜋
2

cos3 𝜃 d𝜃 = 8
3

⋅ 4
3

= 32
9

. □

§24.4 [TEXT] Example: ugly square roots or 𝑥2 + 𝑦2 everywhere
One other way to generate exam questions to force students to use polar coordinates is to dump a
bunch of square roots everywhere that make 𝑥𝑦-integration infeasible, thus requiring the use of polar
coordinates instead. Here’s an example of what that could look like.

Sample Question

Compute the double integral

∫
3

𝑦=0
∫

𝑥=√9−𝑦2

𝑥=−√9−𝑦2

(𝑥2 + 𝑦2)
5
2 d𝑥 d𝑦.

Solution.  Because of the presence of √9 − 𝑦2 and the (𝑥2 + 𝑦2)
5
2 , we’re practically forced to use polar

coordinates. Indeed, the right way to think of the region we’re integrating over is that it consists of

0 ≤ 𝑦 ≤ 3  and 𝑥2 + 𝑦2 ≤ 9

which is just the upper half a circle of radius 3. So using polar coordinates is just obviously the right
thing to do, because the limits of integration are amazing:

• The region is defined by 0 ≤ 𝑟 ≤ 3 and 0 ≤ 𝜃 ≤ 𝜋.
• The integrand 𝑥2 + 𝑦2 = 𝑟2, so (𝑥2 + 𝑦2)5/2 = 𝑟5.

Thus, the integral in polar coordinates becomes:

∫
𝜋

𝜃=0
∫

3

𝑟=0
𝑟5 ⋅ 𝑟 d𝑟 d𝜃⏟

= d𝑥 d𝑦

= ∫
𝜋

𝜃=0
∫

3

𝑟=0
𝑟6 d𝑟 d𝜃.

Now, integrate with respect to 𝑟:

∫
3

𝑟=0
𝑟6 d𝑟 = [𝑟7

7
]

3

𝑟=0

= 37

7
= 2187

7
.

Now, integrate with respect to 𝜃:

∫
𝜋

𝜃=0

2187
7

d𝜃 = 2187
7

⋅ 𝜋 = 2187𝜋
7

. □

You could easily imagine doing something similar with some different artificial function involving
𝑥2 + 𝑦2 in some other way:
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Sample Question

Compute the double integral

∫
3

𝑦=0
∫

𝑥=√9−𝑦2

𝑥=−√9−𝑦2

1
𝑥2 + 𝑦2 + 17

d𝑥 d𝑦.

Solution.  The region is the same, the only change is what to do with the thing inside:

1
𝑥2 + 𝑦2 + 17

= 1
𝑟2 + 17

.

So, the overall integral becomes

∫
𝜋

𝜃=0
∫

3

𝑟=0

1
𝑟2 + 17

⋅ 𝑟 d𝑟 d𝜃⏟
= d𝑥 d𝑦

.

Now, we evaluate the inner integral:

∫
3

𝑟=0

𝑟
𝑟2 + 17

d𝑟.

To integrate this, use the substitution 𝑢 = 𝑟2 + 17, so d𝑢 = 2𝑟 d𝑟 or 𝑑𝑢
2 = 𝑟 d𝑟. When 𝑟 = 0, 𝑢 = 17;

when 𝑟 = 3, 𝑢 = 26. The integral becomes:

∫
3

𝑟=0

𝑟
𝑟2 + 17

d𝑟 = ∫
26

𝑢=17

1
𝑢

⋅ 𝑑𝑢
2

= 1
2

∫
26

𝑢=17

1
𝑢

d𝑢.

Integrating with respect to 𝑢:

1
2

∫
26

𝑢=17

1
𝑢

d𝑢 = 1
2
[log 𝑢]26

𝑢=17 = 1
2
(log 26 − log 17) = 1

2
log 26

17
.

Now, integrate with respect to 𝜃:

∫
𝜋

𝜃=0

1
2

log 26
17

d𝜃 = 𝜋
2

log 26
17

. □

§24.5 [TEXT] Example: region described in circular terms
Another way you can force students to use polar coordinates is to give a region which is described as
a circle to begin with. Again 𝑥𝑦-coordinates are either infeasible or at least annoying.

Sample Question

The unit circle centered at (0, 0) is divided into four quarters by the 𝑥 and 𝑦 axes. Compute the
center of mass of the quarter-circle in the first quadrant, assuming a uniform density distribution.

Solution.  To find the center of mass of the quarter-circle in the first quadrant, we consider the region
bounded by 0 ≤ 𝑟 ≤ 1 and 0 ≤ 𝜃 ≤ 𝜋

2  in polar coordinates. Since the density is uniform, we can use
symmetry and polar coordinates to find the coordinates ( ̅𝑥, ̅𝑦) of the center of mass.
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Call the quarter-circle ℛ. The area of the quarter-circle is one-fourth of the area of the unit circle:

Area(ℛ) = 1
4
𝜋.

In polar coordinates, the coordinates 𝑥 and 𝑦 are given by:

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃.

The center of mass coordinates ( ̅𝑥, ̅𝑦) are given by

̅𝑥 = 1
Area(ℛ)

∬
ℛ

𝑥 d𝑥 d𝑦, ̅𝑦 = 1
Area(ℛ)

∬
ℛ

𝑦 d𝑥 d𝑦.

Since d𝑥 d𝑦 = 𝑟 d𝑟 d𝜃, we can express ∬
ℛ

𝑥 d𝑥 d𝑦 and ∬
ℛ

𝑦 d𝑥 d𝑦 as follows:

For ̅𝑥, we have:

∬
ℛ

𝑥 d𝑥 d𝑦 = ∫
𝜋
2

𝜃=0
∫

1

𝑟=0
𝑟 cos 𝜃 ⋅ 𝑟 d𝑟 d𝜃 = ∫

𝜋
2

𝜃=0
cos 𝜃 ∫

1

𝑟=0
𝑟2 d𝑟 d𝜃.

First, integrate with respect to 𝑟:

∫
1

𝑟=0
𝑟2 d𝑟 = [𝑟3

3
]

1

𝑟=0

= 1
3
.

Thus,

∬
ℛ

𝑥 d𝑥 d𝑦 = ∫
𝜋
2

𝜃=0
cos 𝜃 ⋅ 1

3
d𝜃 = 1

3
∫

𝜋
2

𝜃=0
cos 𝜃 d𝜃.

Now, integrate with respect to 𝜃:

∫
𝜋
2

𝜃=0
cos 𝜃 d𝜃 = [sin 𝜃]

𝜋
2
𝜃=0 = sin(𝜋

2
) − sin(0) = 1.

So,

∬
ℛ

𝑥 d𝑥 d𝑦 = 1
3
.

Therefore,

̅𝑥 = 1
Area(ℛ)

∬
ℛ

𝑥 d𝑥 d𝑦 = 1
𝜋
4

⋅ 1
3

= 4
3𝜋

.

By symmetry, the calculation for ̅𝑦 will be identical, since the quarter-circle region is symmetric about
the line 𝑦 = 𝑥:

̅𝑦 = 1
Area(ℛ)

∬
ℛ

𝑦 d𝑥 d𝑦 = 4
3𝜋

.

Hence, the final answer is

( ̅𝑥, ̅𝑦) = ( 4
3𝜋

, 4
3𝜋

) . □
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§24.6 [SIDENOTE] A picture of 𝑟 d𝑟 d𝜃 = (𝑟 d𝜃) d𝑟
Here’s a bit of a pictorial explanation of why the result (𝑟 d𝜃) d𝑟 makes sense. None of this is considered
for exam, nor is it actually precise. But it should help with some convince you that 𝑟 d𝑟 d𝜃 is correct,
and more generally that the Jacobian determinant is the right scaling factor.

The way that people typically draw a picture of d𝑥 d𝑦 is to take some point 𝑃 = (𝑥, 𝑦) in the plane
and imagining looking at the arrow pointing from 𝑃  to (𝑥 + d𝑥, 𝑦) and (𝑥, 𝑦 + d𝑦), where d𝑥 and
d𝑦 are, loosely, “tiny displacements”. Then d𝐴 is drawn as the area of the little rectangle you get. See
Figure 54, where the two little arrows are drawn in red, and one gets the shaded blue region shown.

Figure 54: d𝐴 = d𝑥 d𝑦, drawn as a picture with small red arrows.

In the 𝑥𝑦 picture, the point 𝑃  itself plays little role; the area of the little rectangle is always just d𝑥 d𝑦,
no matter what point 𝑃  you pick.

However, when you change to polar coordinates, d𝐴 does actually depend on 𝑃 : or rather, it doesn’t
care about 𝜃, but it cares about 𝑟. If you have polar coordinates 𝑃 = (𝑟, 𝜃)pol for the starting point and
draw two red arrows to (𝑟 + d𝑟, 𝜃)pol and (𝑟, 𝜃 + d𝜃)pol, then the first red arrow still always has length
d𝑟, but the second red arrow really has length 𝑟 d𝜃 — it’s close to d𝜃 arc of a circle of radius 𝑟. You
can see this in Figure 55 for two points 𝑃1 = (𝑟1, 𝜃1)pol, and 𝑃2 = (𝑟2, 𝜃2pol

). The point 𝑃1 is close to
the origin, so both red arrows are small. But the point 𝑃2 farther has a longer red arrow, because the
small change d𝜃 is magnified by the radius of the circle. (Some students asked me whether I should be
drawing the red arrow curved or straight. The answer is that I don’t care — because we’re thinking of
all the displacements as “tiny”, the difference between slightly curling the arrow and having it straight
is considered negligible.)

Figure 55: Illustration of d𝐴 = d𝑟(𝑟 d𝜃). Note that the 𝑟 d𝜃 red arrow gets larger
the farther from the origin you are.

The two arrows are almost perpendicular, so the area of the “rectangle”

d𝐴 ≈ d𝑟 ⋅ (𝑟 d𝜃)

which is what we expected.

So where does the Jacobian come in? Let’s zoom in a lot on another random point 𝑃  in polar coordi-
nates, in Figure 56. This is similar to the last figure, but we’ve chosen a point 𝑃  for which 𝜃 > 0, so
neither red arrow is parallel to the 𝑥-axis. The new feature is that the two red arrows now have their
𝑥 and 𝑦 coordinates written out:

• The first red arrow from 𝑃  to (𝑟 + d𝑟, 𝜃)pol can be written with 𝑥𝑦-components as

𝐯1 ≔ (cos 𝜃 d𝑟
sin 𝜃 d𝑟).
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• The second red arrow from 𝑃  to (𝑟, 𝜃 + d𝜃)pol can be written with 𝑥𝑦-components as

𝐯2 ≔ (−𝑟 sin 𝜃 d𝜃
𝑟 cos 𝜃 d𝜃 ).

Figure 56: Showing where the polar Jacobian comes from in the change of variables
formula. This picture has been exaggerated with a really large d𝜃 to make it legible,
but in reality you should imagine d𝜃 is really tiny instead, so that the shaded region
is basically a rectangle.

Now, if we are willing to approximate d𝐴 with the parallelogram spanned by 𝐯1 and 𝐯2 — and we are
willing to when d𝜃 and d𝑟 are really tiny (in contrast to this cartoon where d𝜃 has been drawn pretty
big to make the picture legible) — then the approximation is given by the determinant from all the way
back in Section 3.4:

d𝐴 ≈ |det(cos 𝜃 d𝑟
sin 𝜃 d𝑟

−𝑟 sin 𝜃 d𝜃
𝑟 cos 𝜃 d𝜃 )|

= |det(cos 𝜃
sin 𝜃

−𝑟 sin 𝜃
𝑟 cos 𝜃 )| d𝑟 d𝜃

and there’s the Jacobian determinant we were waiting for! Ta-da.

Any change of variables can be drawn with a similar cartoon to Figure 56 to explain where the Jacobian
comes from with precisely the same reasoning. To spell it out in the 2D case, suppose

𝐓(𝑢, 𝑣) = (𝑝(𝑢, 𝑣), 𝑞(𝑢, 𝑣))

is any general transition map (so the example we just did was 𝐓(𝑟, 𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃)). One draws
red arrows 𝐓(𝑢, 𝑣) to 𝐓(𝑢 + d𝑢, 𝑣) and 𝐓(𝑢, 𝑣 + d𝑣) for “small” changes d𝑢 and d𝑣. These vectors
will correspond approximately to the two vectors
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𝐯1 = 𝐓(𝑢 + d𝑢, 𝑣) − 𝐓(𝑢, 𝑣) ≈ 𝜕
𝜕𝑢

𝐓 = 𝜕𝑝
𝜕𝑢

𝐞1 + 𝜕𝑞
𝜕𝑢

𝐞2

and

𝐯2 = 𝐓(𝑢, 𝑣 + d𝑣) − 𝐓(𝑢, 𝑣) ≈ 𝜕
𝜕𝑣

𝐓 = 𝜕𝑝
𝜕𝑣

𝐞1 + 𝜕𝑞
𝜕𝑣

𝐞2.

which each give a row of the Jacobian matrix; then the determinant gives the area of the parallelogram
spanned by 𝐯1 and 𝐯2; that coincides exactly with the (absolute value of the) Jacobian determinant.

The argument in 3D (and 𝑛 dimensions in general) is the same, where the parallelogram is replaced
by a parallelepiped, etc.

§24.7 [EXER] Exercises

Exercise 24.1.  Compute

∫
1

𝑥=0
∫

√
1−𝑥2

𝑦=0
𝑥𝑦 d𝑦 d𝑥.

Exercise 24.2.  Compute

∬
(𝑥−1)2+𝑦2≤1

1
√𝑥2 + 𝑦2

d𝑥 d𝑦.

Exercise 24.3 (*).  Compute

∬
𝑥2+𝑦2≤1

√(𝑥 + 3
5
)

2
+ (𝑦 + 4

5
)

2

d𝑥 d𝑦.
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Chapter 25. All the gazillion weird d shorthands

§25.1 [TEXT] The shorthand d𝐴 ≔ d𝑥 d𝑦 for area
Up to here I’ve been pretty careful to always write ∬

ℛ
𝑓(𝑥, 𝑦) d𝑥 d𝑦 to make it obvious what the

integration variables are.

However, some of you are probably already starting to get tired of writing d𝑥 d𝑦 and d𝑦 d𝑥. In
particular, I advised you earlier that you should prefer to write

∫
5

𝑥=0
∫

3

𝑦=0
𝑓(𝑥, 𝑦) d𝑦 d𝑥

rather than the harder-to-read ∫5
0

∫3
0

𝑓(𝑥, 𝑦) d𝑦 d𝑥. Those of you who took my advice may not want
to waste the time of remembering whether it’s d𝑦 d𝑥 or d𝑥 d𝑦 at the end, since it doesn’t matter for
you anymore. For that reason, at this point I hereby bestow on you the following definition:

Definition of d𝐴

We let d𝐴 be a shorthand for either d𝑥 d𝑦 or d𝑦 d𝑥, whichever one is appropriate for the given
context.

So now you can just write:

∫
5

𝑥=0
∫

3

𝑦=0
𝑓(𝑥, 𝑦) d𝐴.

I guess that saves two characters.

Tip: Variable names are often omitted too

In fact, when you use shorthand, you may even leave out 𝑥 and 𝑦 from 𝑓  and just write

∫
5

𝑥=0
∫

3

𝑦=0
𝑓 d𝐴.

So any time shorthand is being used, don’t be surprised if the variable names are missing
altogether.

Be careful about overdoing this shorthand! For example, if you are working with polar coordinates,
then in fact

d𝐴 = d𝑥 d𝑦 = 𝑟 d𝑟 d𝜃

as we just saw. Note the extra factor of 𝑟! Seriously, d𝐴 ≠ d𝑟 d𝜃!

If you trust yourself to not forget about the factor of 𝑟, or if you’re doing a calculation for which the
actual variables don’t matter, you can also use d𝐴 here. For example, you might write

∬
unit disk

d𝐴 = 𝜋

to say the area integral of the unit disk is 𝜋. (Pure mathematicians might appreciate how this does not
commit to any choice of coordinates.)
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But if you do this, be honest with yourself about whether you trust yourself with the shorthand:

A bad workman blames his tools.

§25.2 [TEXT] … and six more shorthands
When we talk about vector fields or even just arc length, there are more new types of integrals. And
people have all sorts of analogous shorthands. If you read enough different books, you’ll probably
eventually see all of d𝐫, d𝐴, d𝑉 , d𝑠, d𝑆, d𝐒, in various online books. I can’t imagine how annoying
this is to someone learning the subject for the first time.

Symbol Name Used in Abbreviation for
d𝐴 Area Double/area integrals d𝑥 d𝑦 (in polar, replaced immediately

with 𝑟 d𝑟 d𝜃)
d𝑠 Arc length Scalar-field line integrals

(in Chapter 29)
|𝐫′(𝑡)| d𝑡
where 𝐫(𝑡) parametrizes a path

d𝐫 Line element Vector-field line integrals
(in Chapter 33)

𝐫′(𝑡) d𝑡
where 𝐫(𝑡) parametrizes a path

d𝑆 Surface area Scalar-field surface integrals
(in Chapter 29)

| 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 | d𝑢 d𝑣
where 𝐫(𝑢, 𝑣) parametrizes a surface

𝐧 d𝑆
or d𝐒

Surface normal Vector-field surface integrals
(in Chapter 38)

𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 d𝑢 d𝑣
where 𝐫(𝑢, 𝑣) parametrizes a surface

d𝑉 Volume Triple/volume integrals
(in Chapter 26)

d𝑥 d𝑦 d𝑧

𝐧 d𝑠 Outward normal Only 2D flux (in Chapter 35) (90° clockwise rotation of 𝐫′(𝑡)) d𝑡

Table 13: A bunch of shorthands you’ll meet later. Note that pretty much there
is one shorthand for each kind of integral in Figure 41. In Part India when the
upgraded poster Figure 75 is introduced, each of the new kinds of integrals (the
purple pictures) also has a new shorthand.

So here’s the deal.

• First, I’m going to make the following table of what all these shorthands mean. The result is
Table 13. Feel free to print it and have it with you. Note that you haven’t met most of these yet,
so only the first row will make sense for now.

• Second, I’m going to avoid the shorthand when I first introduce things — for example, I deliberately
avoided any shorthand on Figure 41 and the later Figure 75 — but later on I’ll start to use it as you
get more practice.

• Third, in each place where the shorthand could be used for the first time, I’ll mention it. That is,
I’ll let you know every time a new row of the table is introduced.

But again, I think the thing to take away is that each of these is a shorthand. So if you don’t like
shorthands, you can just always replace it with the thing it stands for.

Digression on differential forms

Calling these a shorthand is a bit of a white lie, in that there is actually a rhyme and reason to
all these d symbols. Most of them are what are called differential forms or densities, and you can
make a precise definition of what these are. But this is so far beyond the scope of 18.02 I won’t
spend any more space on it.
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Part Hotel: 3D integrals of scalar functions
For comparison, Part Hotel corresponds to §13.6-13.9 and §17.1-§17.6 of Poonen’s notes.

Chapter 26. Triple integrals
We’re going to now consider integrals with three variables, rather than two. If you understood double
integrals, then triple integrals is more of the same:

Idea

All the two-variable stuff ports over to three-variable stuff in the obvious way.

§26.1 [RECAP] Recap of triple integrals
I’m cheekily calling this section a “recap” to emphasize that there’s nothing new to learn here. Every-
thing in the below list corresponds to a double integral thing you learned except with three variables
rather than two.

One notational change: for 3D solids, I’ll prefer to use the letter 𝒯 instead of ℛ for a 3D region moving
forward. The reason is that much later on when we discuss the divergence theorem, we’ll sometimes
have both a 2D region and 3D region at the same time, so one needs different letters.

• Over a rectangular prism, we still integrate ∫𝑏1

𝑥=𝑎1
∫𝑏2

𝑦=𝑎2
∫𝑏3

𝑧=𝑎3
𝑓(𝑥, 𝑦, 𝑧) d𝑧 d𝑦 d𝑥 one variable at

a time.
• You can use

d𝑉 ≔ d𝑥 d𝑦 d𝑧

as a shorthand if you want; this is the last row of Table 13.
• Instead of 𝑥𝑦 integration we have 𝑥𝑦𝑧-integration. Whereas for double integrations you had two

choices (𝑥 outer and 𝑦 inner vs. 𝑦 outer and 𝑥 inner), now you have 3! = 6 choices for the order
to do things in:

‣ 𝑥 outermost, 𝑦 middle, 𝑧 inner
‣ 𝑥 outermost, 𝑧 middle, 𝑦 inner
‣ 𝑦 outermost, 𝑥 middle, 𝑧 inner
‣ 𝑦 outermost, 𝑧 middle, 𝑥 inner
‣ 𝑧 outermost, 𝑥 middle, 𝑦 inner
‣ 𝑧 outermost, 𝑦 middle, 𝑥 inner.

The idea is the same if you have a region that isn’t a rectangular prism: write your region as
inequalities.

• The change of variables formula is exactly the same, where the Jacobian is now a 3 × 3 matrix: if
𝐓 : 𝒯new → 𝒯 is a transition map of 3D regions, sending (𝑢, 𝑣, 𝑤) to (𝑥, 𝑦, 𝑧), then the Jacobian is

𝐽𝐓 =

(
((
((
(

𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑧
𝜕𝑢

𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑣
𝜕𝑧
𝜕𝑣

𝜕𝑥
𝜕𝑤
𝜕𝑦
𝜕𝑤
𝜕𝑧
𝜕𝑤)

))
))
)

.

• Volume is

Vol(𝒯) ≔ ∭
𝒯

d𝑥 d𝑦 d𝑧.
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You can take this as a definition of volume for this class.
• If 𝛿 : 𝒯 → ℝ is a density function for a 3D space, then

Mass(𝒯) ≔ ∭
𝒯

𝛿(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

is the total mass. The center of mass is given by three coordinates now:

(
∭

𝒯
𝑥 ⋅ 𝛿(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

Mass(𝒯)
,
∭

𝒯
𝑦 ⋅ 𝛿(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

Mass(𝒯)
,
∭

𝒯
𝑧 ⋅ 𝛿(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

Mass(𝒯)
).

(We use 𝛿 instead of 𝜌 for 3D typically, because 𝜌 gets used in spherical coordinates.)

§26.2 [TEXT] Examples of triple integrals

Sample Question

Compute the volume of the region bounded by 𝑥2 + 𝑦2 ≤ 1 and 𝑥2 + 𝑧2 ≤ 1.

Solution.  Both inequalities must be satisfied simultaneously. Notice that for a fixed 𝑥, both 𝑦 and 𝑧 are
bounded by:

𝑦2 ≤ 1 − 𝑥2 ⟹ −
√

1 − 𝑥2 ≤ 𝑦 ≤
√

1 − 𝑥2,

𝑧2 ≤ 1 − 𝑥2 ⟹ −
√

1 − 𝑥2 ≤ 𝑧 ≤
√

1 − 𝑥2.

The variable 𝑥 ranges from −1 to 1.

Hence, we will write this as a triple integral

Vol(𝒯) = ∫
1

𝑥=−1
∫

√
1−𝑥2

𝑦=−
√

1−𝑥2

∫

√
1−𝑥2

𝑧=−
√

1−𝑥2

1 d𝑧 d𝑦 d𝑥

= ∫
1

𝑥=−1
∫

√
1−𝑥2

𝑦=−
√

1−𝑥2

2
√

1 − 𝑥2 d𝑦 d𝑥

= ∫
1

𝑥=−1
2
√

1 − 𝑥2 ∫

√
1−𝑥2

𝑦=−
√

1−𝑥2

1 d𝑦 d𝑥

= ∫
1

𝑥=−1
2
√

1 − 𝑥2 ⋅ 2
√

1 − 𝑥2 d𝑥

= ∫
1

𝑥=−1
4(1 − 𝑥2) d𝑥

= 4[𝑥 − 𝑥3

3
]

1

𝑥=−1

= 4[(1 − 1
3
) − (−1 + 1

3
)] = 16

3
. □
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Digression on picture

If you draw a picture of the region, you get the intersection of these two cylinders which forms
something apparently called a Steinmetz solid. (I say “apparently” because ChatGPT told me this
name; I didn’t know this had a name before either.)

Surprisingly, you actually don’t want to use polar (or cylindrical) coordinates on this example.
If you try to do so, I think you’ll actually get stuck. Straight 𝑥𝑦𝑧-integration turns out to work
because of the unexpectedly convenient fact that you get two square roots that miraculously
cancel.

Sample Question

Compute the volume of the region bounded by the surfaces 𝑧 = 3(𝑥2 + 𝑦2) and 𝑧 = 72 − 5(𝑥2 +
𝑦2).

Solution.  The given surfaces are both paraboloids:

1. 𝑧 = 3(𝑥2 + 𝑦2) is an upward-opening paraboloid.
2. 𝑧 = 72 − 5(𝑥2 + 𝑦2) is a downward-opening paraboloid.

Before diving in, let’s figure out where these two intersect. If we set these equal we get

3(𝑥2 + 𝑦2) = 72 − 5(𝑥2 + 𝑦2) ⟹ 𝑥2 + 𝑦2 = 9.

With that in mind, we can convert the region 𝒯 to an inequality format: we write

3(𝑥2 + 𝑦2) ≤ 𝑧 ≤ 72 − 5(𝑥2 + 𝑦2)

for the constraint on 𝑧 and then

𝑥2 + 𝑦2 ≤ 9

for the constraint on 𝑥 and 𝑦.

Hence, the volume can be written as

Vol(𝒯) = ∭ 𝑥2+𝑦2≤9
3(𝑥2+𝑦2)≤𝑧≤72−5(𝑥2+𝑦2)

d𝑥 d𝑦 d𝑧.

We’ll separate the integral into an integral over the circle 𝑥2 + 𝑦2 ≤ 9 and then a single integral over
the resulting 𝑧:

Vol(𝒯) = ∬
𝑥2+𝑦2≤9

(∫
72−5(𝑥2+𝑦2)

𝑧=3(𝑥2+𝑦2)
d𝑧) d𝑥 d𝑦

= ∬
𝑥2+𝑦2≤9

(72 − 8(𝑥2 + 𝑦2)) d𝑥 d𝑦.

At this point we’ll use polar coordinates: writing 𝑥 = 𝑟 cos 𝜃, and 𝑦 = 𝑟 sin 𝜃 as always, we have
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Vol(𝒯) = ∬
𝑥2+𝑦2≤9

(72 − 8(𝑥2 + 𝑦2)) d𝑥 d𝑦

= ∫
2𝜋

𝜃=0
∫

3

𝑟=0
(72 − 8𝑟2) ⋅ (𝑟 d𝑟 d𝜃)

= (∫
2𝜋

𝜃=0
1 d𝜃)(∫

3

𝑟=0
(72𝑟 − 8𝑟3) d𝑟)

= 2𝜋 ⋅ [36𝑟2 − 2𝑟4]3
𝑟=0

= 324𝜋 . □

This previous example shows how, because of the way the problem was set, it was natural to do the
integral for 𝑧 separately but do 𝑥 and 𝑦 with polar coordinates. This technique is called cylindrical
coordinates, a name that doesn’t need to exist because it’s just polar coordinates with 𝑧 tacked on.

(Actually, I think the most surprising thing is the example we need with the Steinmetz solid earlier is
not good to do with cylindrical coordinates, despite appearances.)

§26.3 [TEXT] Cylindrical coordinates (i.e. polar with 𝑧 tacked on)
There’s actually nothing new happening here — it’s just polar coordinates with 𝑧 tacked on.²² If you
were able to do the earlier example with 𝑧 = 3(𝑥2 + 𝑦2) and 𝑧 = 72 − 5(𝑥2 + 𝑦2) by yourself without
reading the solution, then you can safely skip this entire section!

The transition map (𝑟, 𝜃, 𝑧) ↦ (𝑥, 𝑦, 𝑧) is given by

𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃
𝑧 = 𝑧.

This is illustrated in Figure 57.

Figure 57: Picture of cylindrical coordinates. The 𝑥𝑦-plane (now drawn as “flat”
is just polar coordinates, as suggested by the blue circle. And then we tack on a
height 𝑧.

²²Technically, we maybe should use a different letter for the new 𝑧, but since they’re equal we just use the same letter
in both places. Also, in principle, I could also introduce a notation (𝑟, 𝜃, 𝑧)cyl analogous to (𝑟, 𝜃)pol, but I don’t think I’ll
have a need to do so.
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The volume scaling factor is unsurprisingly the same as the one for 2D polar coordinates, and you may
have used it implicitly on some previous problem sets already:

Memorize: Scaling factor for cylindrical coordinates

d𝑉 ≔ d𝑥 d𝑦 d𝑧 = 𝑟 d𝑟 d𝜃 d𝑧.

If you want to see this fully explicitly, you could compute the Jacobian

det 𝐽polar =

|
|
|
|𝜕𝑥

𝜕𝑟
𝜕𝑦
𝜕𝑟
𝜕𝑧
𝜕𝑟

𝜕𝑥
𝜕𝜃
𝜕𝑦
𝜕𝜃
𝜕𝑧
𝜕𝜃

𝜕𝑥
𝜕𝑧
𝜕𝑦
𝜕𝑧
𝜕𝑧
𝜕𝑧 |

|
|
|

=
|
||
|cos 𝜃
sin 𝜃

0

−𝑟 sin 𝜃
𝑟 cos 𝜃

0

0
0
1|
||
|
= |cos 𝜃

sin 𝜃
−𝑟 sin 𝜃
𝑟 cos 𝜃 |

= 𝑟.

OK, let’s run the example. Note that, as I said, we could have given this example before this section.

Sample Question

Compute the volume and center of mass of the cone defined by 9(𝑥2 + 𝑦2) ≤ 𝑧2 and 0 ≤ 𝑧 ≤ 5,
assuming uniform density distribution 𝛿 = 1.

Solution.  The given inequalities describe a single cone with its apex at the origin, extending upwards
to 𝑧 = 5. To solve for both the volume and the center of mass, we’ll employ cylindrical coordinates
due to the symmetry of the cone. As always, 𝒯 denotes the region (cone).

The values of 𝑧 that appear at all are 𝑧 = 0 to 5, and within them we have only the requirement that

9(𝑥2 + 𝑦2) ≤ 𝑧2 ⟹ √𝑥2 + 𝑦2 ≤ 𝑧
3
.

In other words, we can write

Vol(𝒯) = ∫
5

𝑧=0
∬

√𝑥2+𝑦2≤𝑧
3

1 d𝑥 d𝑦 d𝑧.

However, of course we should just change to cylindrical coordinates right away:

Vol(𝒯) = ∫
5

𝑧=0
∫

𝑧
3

𝑟=0
∫

2𝜋

𝜃=0
𝑟 d𝜃 d𝑟 d𝑧

= 2𝜋 ∫
5

𝑧=0
∫

𝑧
3

𝑟=0
𝑟 d𝑟 d𝑧

= 2𝜋 ∫
5

𝑧=0
[𝑟2

2
]

𝑧
3

𝑟=0

d𝑧

= 2𝜋 ∫
5

𝑧=0

𝑧2

18
d𝑧 = 𝜋

9
∫

5

𝑧=0
𝑧2 d𝑧 = 𝜋

9
[𝑧3

3
]

5

𝑧=0

= 125𝜋
27

.
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This gives us the volume of the cone. And since the density was constant, we also have Mass(𝒯) =
Vol(𝒯) = 125𝜋

27 .

As for the center of mass, nominally there are three integrals, but again we can shortcut the calculation
by noting that by symmetry the center of mass ( ̅𝑥, ̅𝑦, ̅𝑧) should lie on the 𝑧-axis, meaning ̅𝑥 = ̅𝑦 = 0.
Hence the only one we need to bother with is

̅𝑧 = 1
Mass(𝒯)

∫
5

𝑧=0
∬

√𝑥2+𝑦2≤𝑧
3

𝑧 d𝑥 d𝑦 d𝑧

= 1
Mass(𝒯)

∫
5

𝑧=0
∫

𝑧
3

𝑟=0
∫

2𝜋

𝜃=0
𝑟𝑧 d𝜃 d𝑟 d𝑧

= 1
Mass(𝒯)

∫
5

𝑧=0
𝑧 ∫

𝑧
3

𝑟=0
∫

2𝜋

𝜃=0
𝑟 d𝜃 d𝑟 d𝑧

= 2𝜋
Mass(𝒯)

∫
5

𝑧=0
𝑧 ⋅ 𝑧2

18
d𝑧 (repeating from earlier)

= 2𝜋
Mass(𝒯)

[𝑧4

72
]

5

𝑧=0

=
54 ⋅ 𝜋

36
Mass(𝒯)

=
54 ⋅ 𝜋

36
53 ⋅ 𝜋

27
= 15

4
.

Hence the center of mass is (0, 0, 15
4

) . □

§26.4 [TEXT] Gravity

Type signature

Gravitational force is a vector.

Suppose a point of mass 𝑚 is located at the origin 𝑂 = (0, 0, 0), In general, given a mass 𝑚 at a point
𝑂 and a point of mass 𝑀  at a point 𝑃 , Newton’s law says the gravitational force exerted by 𝑃  on 𝑂 is

𝐅gravity = 𝐺 ⋅ 𝑚 ⋅ 𝑀
|𝑂𝑃 |2

⋅
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝑃
|𝑂𝑃 |⏟

unit vector from 𝑂 to 𝑃

where 𝐺 ≈ 6.67408 ⋅ 10−11 ⋅ N ⋅ m2 ⋅ kg−2 is the gravitational constant.

But in real life, we usually want our mass 𝑀  to take up a whole region 𝒯, with some density 𝛿. (Point
masses don’t occur in real life unless you count black holes.) So let’s suppose we have a solid mass
occupying region 𝒯. In that case, each individual point 𝑃 = (𝑥, 𝑦, 𝑧) in 𝒯 can be thought of a vector

Gravity exerted by (𝑥, 𝑦, 𝑧) on (0, 0, 0) = 𝐺𝑚 ⋅ (𝛿(𝑥, 𝑦, 𝑧) d𝑉 )
𝑥2 + 𝑦2 + 𝑧2 ⋅ ⟨𝑥, 𝑦, 𝑧⟩

√𝑥2 + 𝑦2 + 𝑧2
⏟⏟⏟⏟⏟⏟⏟

unit vector from 𝑂 to 𝑃

.

The total gravitational force is then the integral of this over the entire mass 𝒯.
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Figure 58:  The force of gravity exerted by a large mass 𝒯 such as the sun on a
point mass of mass 𝑚. Each individual point like 𝑃  or 𝑄 in the region 𝒯 exerts
a tiny force on the point mass of mass 𝑚. The total gravitational force is the sum
(integral) across the whole region 𝒯.

So the total gravitational force is nominally

𝐆 = ∫
𝒯

𝐺𝑚 ⋅ (𝛿(𝑥, 𝑦, 𝑧) d𝑉 )
𝑥2 + 𝑦2 + 𝑧2 ⋅ ⟨𝑥, 𝑦, 𝑧⟩

√𝑥2 + 𝑦2 + 𝑧2
. (12)

Now, if you have been following my advice to always audit type safety, then you should stop me right
here. This is the first time in the entire notes that I’ve had an integral where the integrand is a vector
rather than the number. What’s going on?

The general answer is that you should just do everything component wise. But to keep things simple
for the course, I will never use Equation 12 in that form, so that our integrands always have type
number rather than type vector. To do this, I’ll rewrite Equation 12 as follows:

Memorize: Gravitational attraction of a region on the origin

Suppose 𝒯 is a region with density function 𝛿. The gravitational vector 𝐆 = ⟨𝐺1, 𝐺2, 𝐺3⟩ on the
origin is defined by

𝐺1 ≔ 𝐺𝑚 ∭
𝒯

𝑥𝛿(𝑥, 𝑦, 𝑧)
(𝑥2 + 𝑦2 + 𝑧2)

3
2

d𝑥 d𝑦 d𝑧

𝐺2 ≔ 𝐺𝑚 ∭
𝒯

𝑦𝛿(𝑥, 𝑦, 𝑧)
(𝑥2 + 𝑦2 + 𝑧2)

3
2

d𝑥 d𝑦 d𝑧

𝐺3 ≔ 𝐺𝑚 ∭
𝒯

𝑧𝛿(𝑥, 𝑦, 𝑧)
(𝑥2 + 𝑦2 + 𝑧2)

3
2

d𝑥 d𝑦 d𝑧.

That is, 𝐆 = 𝐺1𝐞1 + 𝐺2𝐞2 + 𝐺3𝐞3.

Now 𝐺1, 𝐺2, 𝐺3 are integrals of numbers again, so we’re fine.

Because the (𝑥2 + 𝑦2 + 𝑧2)
3
2  is so awkward to work with, you will commonly do a certain change-of-

variables called spherical coordinates. So we’ll punt all the examples to next chapter, Chapter 27.
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§26.5 [EXER] Exercises

Exercise 26.1 (Napkin-ring problem).  Let 𝑅 > 𝑎 > 0 be given real numbers, and let ℎ ≔
2
√

𝑅2 − 𝑎2. A cylindrical hole of radius 𝑎 is drilled through the center of a wooden ball of radius
𝑅 to get a bead of height ℎ, as shown in Figure 59. Compute the volume of the resulting bead as a
function of ℎ.

Figure 59: The napkin-ring problem. A bead is shown in blue, drilled out of
a sphere of radius 𝑅, and with height ℎ = 2

√
𝑅2 − 𝑎2. One must determine the

volume of the bead in terms of ℎ.
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Chapter 27. Spherical coordinates
In addition to cylindrical coordinates, there’s one more system we’ll use, called spherical coordinates.
This chapter defines them and shows how to use them.

Warning: There are eight competing standards, check your book

Note that there are competing conventions! For us, the letter names are going to mean

𝜌 ≔ distance to (0, 0, 0) (spelled rho, pronounced like row)
𝜑 ≔ angle down 𝑧 axis (spelled phi, pronounced like fee)
𝜃 ≔ same as in polar coordinates (spelled theta, prounced like thay-tah)

and we write them in that order. However, depending on your book:
• The names of 𝜃 and 𝜑 might be swapped. (Also note that the Greek letter 𝜑 may be written

as 𝜙 in different fonts. If you use LaTeX, these are \varphi and \phi.)
• The order of 𝜃 and 𝜑 might be swapped (regardless of whether the names change too).
• 𝜌 might be replaced by 𝑟 instead.

§27.1 [TEXT] The definition of spherical coordinates
The idea behind spherical coordinates is that the projection of your point 𝑃  onto the 𝑥𝑦-plane will
have polar coordinates (𝑟 cos 𝜃, 𝑟 sin 𝜃, 0) for some 𝑟. But then rather than using 𝑧 to lift the point
straight up, you rotate via some angle 𝜑, getting a new distance 𝜌 such that 𝑟 = 𝜌 sin 𝜑 which we’ll
use to replace 𝑟 everywhere in what follows. See Figure 60 below.

Figure 60: The diagram for spherical coordinates.
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Because of the right triangle with angle 𝜑, hypotenuse 𝜌, and legs 𝑟 and 𝑧, we have

𝑟 = 𝜌 sin 𝜑
𝑧 = 𝜌 cos 𝜑.

Unwinding everything to kill all the 𝑟’s, the transition map (𝜌, 𝜑, 𝜃) ↦ (𝑥, 𝑦, 𝑧) is given by

𝑥 = 𝜌 sin 𝜑⏟
=𝑟

cos 𝜃

𝑦 = 𝜌 sin 𝜑⏟
=𝑟

sin 𝜃

𝑧 = 𝜌 cos 𝜑.

Just like how I wrote (𝑟, 𝜃)pol for polar if I needed to be more concise, we’ll have the analogous
shorthand here:

Definition of spherical coordinates

We define spherical coordinates by

(𝜌, 𝜑, 𝜃)sph ≔ (𝜌 sin 𝜑 cos 𝜃, 𝜌 sin 𝜑 sin 𝜃, 𝜌 cos 𝜑).

Now, in order to integrate over this, there’s supposed to be a change of variables with some Jacobian.
To get the area scaling factor, we would compute the Jacobian

det 𝐽spherical =

|
|
|
|
|𝜕𝑥
𝜕𝜌
𝜕𝑦
𝜕𝜌
𝜕𝑧
𝜕𝜌

𝜕𝑥
𝜕𝜑
𝜕𝑦
𝜕𝜑
𝜕𝑧
𝜕𝜑

𝜕𝑥
𝜕𝜃
𝜕𝑦
𝜕𝜃
𝜕𝑧
𝜕𝜃 |

|
|
|
|
.

This takes some effort, so you probably should only do this once in your life and then remember the
result. It works out to

det 𝐽spherical =
|
||
|sin 𝜑 cos 𝜃
sin 𝜑 sin 𝜃

cos 𝜑

𝜌 cos 𝜑 cos 𝜃
𝜌 cos 𝜑 sin 𝜃

−𝜌 sin 𝜑

−𝜌 sin 𝜑 sin 𝜃
𝜌 sin 𝜑 cos 𝜃

0 |
||
|

= cos 𝜑 |𝜌 cos 𝜑 cos 𝜃
𝜌 cos 𝜑 sin 𝜃

−𝜌 sin 𝜑 sin 𝜃
𝜌 sin 𝜑 cos 𝜃 | + 𝜌 sin 𝜑 |sin 𝜑 cos 𝜃

sin 𝜑 sin 𝜃
−𝜌 sin 𝜑 sin 𝜃
𝜌 sin 𝜑 cos 𝜃 |

= cos 𝜑(𝜌2 cos 𝜑 sin 𝜑)(cos2 𝜃 + sin2 𝜃) + 𝜌2 sin 𝜑(sin2 𝜑)(cos2 𝜃 + sin2 𝜃)

= 𝜌2 sin 𝜑(cos2 𝜑 + sin2 𝜑)

= 𝜌2 sin 𝜑.

I tried to do this calculation during recitation and got stuck at the board; not the kind of thing I’m
good at. You really don’t want to redo this calculation on an exam, so just remember the result.

Memorize: Scaling factor for spherical coordinates

d𝑉 ≔ d𝑥 d𝑦 d𝑧 = 𝜌2 sin 𝜑 d𝜌 d𝜑 d𝜃.

232



Linear Algebra and Multivariable Calculus — Evan Chen

§27.2 [TEXT] The bounds of 𝜑
Before talking about bounds for spherical coordinates, let me revisit polar coordinates for comparison.

§27.2.1 The bounds for polar coordinates

In polar (or cylindrical) coordinates, when we considered

(𝑟, 𝜃)pol = (𝑟 cos 𝜃, 𝑟 sin 𝜃),

we usually choose the convention

𝑟 ≥ 0 and 0 ≤ 𝜃 < 2𝜋. (13)

The thing I want to stress that some thought was put into choosing the interval for 𝜃: the reason we
use an interval of length 2𝜋 is because if you choose a value of 𝜃 bigger than 2𝜋, then the point just
“wraps around” to one you already knew; e.g.

(𝑟, 2.7𝜋)pol = (𝑟, 0.7𝜋)pol

denote the same point. More generally,

(𝑟, 𝜃 + 2𝜋)pol = (𝑟, 𝜃)pol.

That’s why we adopt the convention Equation 13. When we define a coordinate system (𝑟, 𝜃)pol, we
want to make sure that every (𝑥, 𝑦) point is given by exactly one pair. That is, every point should have
a coordinate, but different coordinates should occupy different points.

Hence, to avoid repeating the same point with the same coordinates, the usual convention is to choose
0 ≤ 𝜃 < 2𝜋, although the convention −𝜋 < 𝜃 ≤ 𝜋 works fine too, as does any interval of length 2𝜋.

Digression on 𝑟 = 0

The claim that Equation 13 lines up perfectly is a white lie: the origin (0, 0) in 𝑥𝑦-coordinates
can be represented by (0, 𝜃)pol for every value of 𝜃. So Equation 13 is almost right, except for the
one special case 𝑟 = 0 where 𝜃 is indeterminate. We will sweep this under the rug and not think
about it.

§27.2.2 The bounds for spherical coordinates

Let’s go back to spherical coordinates

(𝜌, 𝜑, 𝜃)sph ≔ (𝜌 sin 𝜑 cos 𝜃, 𝜌 sin 𝜑 sin 𝜃, 𝜌 cos 𝜑).

We want to choose a convention for values of (𝜌, 𝜑, 𝜃) such that (except for a few degenerate cases
that we’ll ignore) every point has exactly one set of coordinates. The choice that we’re going to use is:

Memorize: The convention for spherical coordinate values

When we want to impose a range of values for spherical coordinates to avoid repeating points,
we will choose the following convention:

𝜌 ≥ 0
0 ≤ 𝜑 ≤ 𝜋
0 ≤ 𝜃 < 2𝜋

(14)
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That is, I claim that this choice of values Equation 14 will ensure every point is represented exactly
once by (𝜌, 𝜑, 𝜃)sph, with a small number of exceptions²³ we ignore.

The 𝜃 going from 0 to 2𝜋 is the same as in polar coordinates. However, the angle for 𝜑 might be a
surprise to you; a common question asked on various forms is:

Question

Why does 𝜑 only range from 0 to 𝜋? What happens if −𝜋 < 𝜑 < 0 or 𝜋 < 𝜑 < 2𝜋?

Well, if my claim about Equation 14 is true, that means if I plug in an “illegal” value of 𝜑, into the
formula then I should get a point that’s already represented. This is a bit like how (𝑟, 𝜃 + 2𝜋)pol =
(𝑟, 𝜃)pol, but the formula is a bit more complicated. So we’ll illustrate two cases in full to show how to
convert the illegal value into a legal one.

§27.2.3 First case: Illegal angle greater than 𝜋

In this case, I assert the following equation is true:

(𝜌, 𝜑 + 𝜋, 𝜃)sph = (𝜌, 𝜋 − 𝜑, 𝜃 ± 𝜋)sph. (15)

Here the sign for 𝜃 ± 𝜋 is arbitrary, and it’s chosen so that 0 ≤ 𝜃 ± 𝜋 < 2𝜋 is a legal value.

Figure 61:  Illustrating Equation 15 in picture format.

Here are two ways to verify Equation 15 is true.

Algebraic proof (easier) We need to verify that the 𝑥, 𝑦, 𝑧 coordinates on both sides are the same:

²³If you want to know, the exceptions are exactly the 𝑧-axis, where 𝜃 can be arbitrary. Every other point should only
appear once.
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𝜌 sin(𝜑 + 𝜋) cos 𝜃 = 𝜌 sin(𝜋 − 𝜑) cos(𝜃 ± 𝜋)
𝜌 sin(𝜑 + 𝜋) sin 𝜃 = 𝜌 sin(𝜋 − 𝜑) sin(𝜃 ± 𝜋)

𝜌 cos(𝜑 + 𝜋) = 𝜌 cos(𝜋 − 𝜑).

But sin(𝜑 + 𝜋) = − sin(𝜋 − 𝜑), cos(𝜃 ± 𝜋) = − cos 𝜃, sin(𝜃 ± 𝜋) = − sin(𝜃), and cos(𝜑 + 𝜋) =
cos(𝜋 − 𝜑), so all the equations are true.

Geometric proof (more informative) Look at Figure 61. When the “illegal” value 𝜑 + 𝜋 is picked
for the angle, the red arrow ends up going all the way through 𝑂. Hence, the projection of the new
point onto the polar circle in blue ends up being the antipode (𝑟, 𝜃 ± 𝜋)pol rather than (𝑟, 𝜃)pol.
If we then think about the angle from the +𝑧 axis to the brown radius 𝜌, it has changed to the
angle 𝜋 − 𝜑 instead. This picture gives a geometric way of seeing why Equation 15 is true.

§27.2.4 Second case: Illegal angle less than zero

This time, I assert the following equation instead:

(𝜌, −𝜑, 𝜃)sph = (𝜌, 𝜑, 𝜃 ± 𝜋)sph. (16)

This is actually a bit easier to see than the last case.

Figure 62:  Illustrating Equation 16 in picture format.

Algebraic proof (easier) We need to verify that the 𝑥, 𝑦, 𝑧 coordinates on both sides are the same:

𝜌 sin(−𝜑) cos 𝜃 = 𝜌 sin 𝜑 cos(𝜃 ± 𝜑)
𝜌 sin(−𝜑) sin 𝜃 = 𝜌 sin 𝜑 sin(𝜃 ± 𝜑)

𝜌 cos(−𝜑) = 𝜌 cos 𝜑.

But sin(−𝜑) = − sin(𝜑), cos(𝜃 ± 𝜋) = − cos 𝜃, sin(𝜃 ± 𝜋) = − sin(𝜃), and cos(−𝜑) = cos 𝜑, so
all the equations are true.
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Geometric proof (more informative) Look at Figure 62. This time, all that happens is we take the
mirror image through the plane formed by the 𝑧-axis and the line 𝑂𝑃 .

§27.3 [TEXT] Examples of using spherical coordinates
Here are two cookie-cutter uses where we have a sphere centered at the origin and we just integrate
over the entire sphere (so taking 0 ≤ 𝜌 ≤ 𝑅, 0 ≤ 𝜑 ≤ 𝜋 and 0 ≤ 𝜃 ≤ 2𝜋).

Sample Question

Consider a solid ball of radius 𝑅. Compute its volume.

Solution.  Placing the ball 𝒯 with its center at the origin:

Vol(𝒯) = ∭
𝒯

1 d𝑉 = ∭
𝒯

𝜌2 sin 𝜑 d𝜌 d𝜑 d𝜃

= ∫
𝑅

𝜌=0
∫

𝜋

𝜑=0
∫

2𝜋

𝜃=0
𝜌2 sin 𝜑 d𝜃 d𝜑 d𝜌

= (∫
𝑅

𝜌=0
𝜌2 d𝜌)(∫

𝜋

𝜑=0
sin 𝜑 d𝜑)(∫

2𝜋

𝜃=0
d𝜃)

= 𝑅3

3
⋅ 2 ⋅ (2𝜋) = 4

3
𝜋𝑅3 . □

Sample Question

Consider a solid ball of radius 1. Across all points 𝑃  inside the ball, compute the average value
of the distance from 𝑃  to the center.

Here, the “average” value of a function 𝑓  over a solid region 𝒯 is defined as 1
Vol(𝒯) ∭

𝒯
𝑓 d𝑉 .

Solution.  The sphere has volume 4
3𝜋 as we just saw. The only change to what we did before is that

rather than integrating 1 d𝑉 , we replace 1 with the distance:

∭
𝒯
(distance to (0, 0, 0)) d𝑉 = ∭

𝒯
𝜌 d𝑉 = ∭

𝒯
𝜌 ⋅ (𝜌2 sin 𝜑 d𝜌 d𝜑 d𝜃)

= ∫
1

𝜌=0
∫

𝜋

𝜑=0
∫

2𝜋

𝜃=0
𝜌3 sin 𝜑 d𝜃 d𝜑 d𝜌

= (∫
1

𝜌=0
𝜌3 d𝜌)(∫

𝜋

𝜑=0
sin 𝜑 d𝜑)(∫

2𝜋

𝜃=0
d𝜃)

= 1
4

⋅ 2 ⋅ (2𝜋) = 𝜋.

So the average value is

∭
𝒯
(distance to (0, 0, 0)) d𝑉

Vol(𝒯)
= 𝜋

4
3𝜋

= 3
4

. □
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§27.4 [TEXT] Famous example: offset sphere
Recall the famous example in Section 24.3 where we showed that in polar coordinates, we could draw
a circle passing through the origin; we called it an “offset circle”. There’s a 3D analog of this with an
offset sphere where you have a sphere that’s sitting on the 𝑥𝑦-plane. It’s actually pretty much exactly
the same.

Sample Question

Let 𝒯 denote the solid ball of radius 1 centered at (0, 0, 1). Express the region 𝒯 in spherical
coordinates.

Figure 63:  The sketch of (𝑥 − 1)2 + 𝑦2 ≤ 1 from Figure 53 is drawn along with a
3D version: the solid ball 𝑥2 + 𝑦2 + (𝑧 − 1)2 ≤ 1, which is a unit ball centered at
(0, 0, 1) and lying above and tangent to the 𝑥𝑦-plane at (0, 0, 0). It corresponds to
𝜌 ≤ 2 cos 𝜑.

Solution.  Like in Section 24.3, we can do either an algebra approach or a geometric one.
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Geometric approach See Figure 63. All the points of the sphere lie in the half-space 𝑧 ≥ 0 which is
described as requiring 0 ≤ 𝜑 ≤ 𝜋

2 . The value of 𝜃 is irrelevant by rotational symmetry, and can
be anything from 0 to 2𝜋. So we need to figure out how 𝜌 relates to 𝜑.

Let 𝑂 = (0, 0, 0) and 𝐴 = (0, 0, 2). Let 𝑃  be a point on the surface of the sphere. Like before,
we have

∠𝑃 = 90°, 𝑂𝐴 = 2, and ∠𝐴𝑂𝑃 = 𝜑.

So the surface of the sphere are those points for which 𝜌 = 2 cos 𝜑. And the points inside the ball
are 0 ≤ 𝜌 ≤ 2 cos 𝜑, accordingly.

Algebraic approach The 𝑥𝑦𝑧 coordinates of the ball are

𝑥2 + 𝑦2 + (𝑧 − 1)2 ≤ 1.

Recall the spherical coordinates transformation:

𝑥 = 𝜌 sin 𝜑 cos 𝜃, 𝑦 = 𝜌 sin 𝜑 sin 𝜃, 𝑧 = 𝜌 cos 𝜑.

Substituting these into the sphere’s equation:

(𝜌 sin 𝜑 cos 𝜃)2 + (𝜌 sin 𝜑 sin 𝜃)2 + (𝜌 cos 𝜑 − 1)2 ≤ 1.

Expand and simplify:

1 ≥ 𝜌2 sin2 𝜑 cos2 𝜃 + 𝜌2 sin2 𝜑 sin2 𝜃 + (𝜌 cos 𝜑 − 1)2

= 𝜌2 sin2 𝜑(cos2 𝜃 + sin2 𝜃) + (𝜌 cos 𝜑 − 1)2

= 𝜌2 sin2 𝜑 + (𝜌 cos 𝜑 − 1)2

= 𝜌2 sin2 𝜑 + 𝜌2 cos2 𝜑 − 2𝜌 cos 𝜑 + 1
= 𝜌2(sin2 𝜑 + cos2 𝜑) − 2𝜌 cos 𝜑 + 1

= 𝜌2 − 2𝜌 cos 𝜑 + 1.

Rearranging, this gives

0 ≥ 𝜌2 − 2𝜌 cos 𝜑 = 𝜌(𝜌 − 2 cos 𝜑)
⟺ 0 ≤ 𝜌 ≤ 2 cos 𝜑.

In particular this requires cos 𝜑 ≥ 0 i.e. 𝜑 ≤ 𝜋
2 .

In conclusion, the answer is ℛ in polar coordinates is exactly

0 ≤ 𝜃 < 2𝜋  and 0 ≤ 𝜑 ≤ 𝜋
2

 and 𝜌 ≤ 2 cos 𝜑 . □

The analogous famous exercise in 3D:

Sample Question

Let 𝒯 denote the solid ball of radius 1 centered at (0, 0, 1). Calculate

∭
𝒯

√𝑥2 + 𝑦2 + 𝑧2 d𝑥 d𝑦 d𝑧.

238



Linear Algebra and Multivariable Calculus — Evan Chen

Solution.  As before, if we try to use 𝑥𝑦𝑧 integration it’s a disaster, but spherical coordinates are great
because

𝜌 = √𝑥2 + 𝑦2 + 𝑧2.

We just saw that 𝒯 is given in spherical coordinates according to 0 ≤ 𝜑 ≤ 𝜋
2 , 0 ≤ 𝜃 < 2𝜋, 0 ≤ 𝜌 ≤

2 cos 𝜑. Thus, the integral becomes:

∭
𝒯

𝜌 d𝑉 = ∭
𝒯

𝜌3 sin 𝜑 d𝜌 d𝜑 d𝜃

= ∫
2𝜋

𝜃=0
∫

𝜋
2

𝜑=0
∫

2 cos 𝜑

𝜌=0
𝜌3 sin 𝜑 d𝜌 d𝜑 d𝜃

= ∫
2𝜋

𝜃=0
∫

𝜋
2

𝜑=0
sin 𝜑[𝜌4

4
]

2 cos 𝜑

𝜌=0

d𝜑 d𝜃

= ∫
2𝜋

𝜃=0
∫

𝜋
2

𝜑=0
sin 𝜑 ⋅ (4 cos4 𝜑) d𝜑 d𝜃

= 4 ∫
2𝜋

𝜃=0
[−1

5
cos5 𝜑]

𝜋
2

𝜑=0
d𝜃

= 4 ∫
2𝜋

𝜃=0

1
5

d𝜃

= 8𝜋
5

. □

§27.5 [TEXT] Spherical coordinates for gravity
Let’s go back to the equation for gravity where the components were given by

𝐺1 ≔ 𝐺𝑚 ∭
𝒯

𝑥𝛿(𝑥, 𝑦, 𝑧)
(𝑥2 + 𝑦2 + 𝑧2)

3
2

d𝑥 d𝑦 d𝑧

𝐺2 ≔ 𝐺𝑚 ∭
𝒯

𝑦𝛿(𝑥, 𝑦, 𝑧)
(𝑥2 + 𝑦2 + 𝑧2)

3
2

d𝑥 d𝑦 d𝑧

𝐺3 ≔ 𝐺𝑚 ∭
𝒯

𝑧𝛿(𝑥, 𝑦, 𝑧)
(𝑥2 + 𝑦2 + 𝑧2)

3
2

d𝑥 d𝑦 d𝑧.

I didn’t do any examples last section because using 𝑥𝑦𝑧 coordinates when you have (𝑥2 + 𝑦2 + 𝑧2)
3
2

is just way too annoying. However, in spherical coordinates, the equations become much more
manageable. For example, the one for 𝐺3 reads:

𝐺3 = 𝐺𝑚 ∭
𝒯

𝑧𝛿(𝑥, 𝑦, 𝑧)
(𝑥2 + 𝑦2 + 𝑧2)

3
2

d𝑥 d𝑦 d𝑧

= 𝐺𝑚 ∭
𝒯

(𝜌 cos 𝜑)𝛿(𝑥, 𝑦, 𝑧)
𝜌3 (𝜌2 sin 𝜑 d𝜌 d𝜑 d𝜃)

= 𝐺𝑚 ∭
𝒯

𝛿(𝑥, 𝑦, 𝑧) sin 𝜑 cos 𝜑 d𝜌 d𝜑 d𝜃.

(17)
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Let’s see it in action with an offset sphere.

Sample Question

Suppose 𝒯 is a metal ball of radius 1 of constant unit density, and 𝑃  is a point of mass 𝑚 on its
surface. Calculate the magnitude of the force of gravity exerted on the point 𝑃 .

Solution.  We use the offset sphere again: we pick coordinates so that 𝑃 = (0, 0, 0) (so the origin is the
point 𝑃 , not the center of 𝒯). The center of 𝒯 will instead be at (0, 0, 1). Then by symmetry, we have
𝐺1 = 𝐺2 = 0, and Equation 17 just says

𝐺3 = 𝐺𝑚 ∭
𝒯

sin 𝜑 cos 𝜑 d𝜌 d𝜑 d𝜃

after setting the density to 1.

Then we can put in the bounds of integration for the offset sphere:

𝐺3 = 𝐺𝑚 ∫
2𝜋

𝜃=0
∫

𝜋
2

𝜑=0
∫

2 cos 𝜑

𝜌=0
sin 𝜑 cos 𝜑 d𝜌 d𝜑 d𝜃

= 𝐺𝑚 ∫
2𝜋

𝜃=0
∫

𝜋
2

𝜑=0
(2 cos 𝜑) ⋅ sin 𝜑 cos 𝜑 d𝜑 d𝜃

= 2𝐺𝑚 ∫
2𝜋

𝜃=0
∫

𝜋
2

𝜑=0
cos2 𝜑 sin 𝜑 d𝜑 d𝜃

= 2𝐺𝑚 ∫
2𝜋

𝜃=0
[−1

3
cos3 𝜑]

𝜋
2

𝜑=0
d𝜃

= 2𝐺𝑚 ∫
2𝜋

𝜃=0

1
3

d𝜃

= 4𝜋𝐺𝑚
3

.

In other words, in the coordinate system we chose, gravity is given by

𝐆 = ⟨0, 0, 4𝜋𝐺𝑚
3

⟩.

The magnitude is |𝐆| = 4𝜋𝐺𝑚
3

. □

§27.6 [EXER] Exercises

Exercise 27.1.  Consider a solid ball of radius 1 and a line ℓ through its center. Across all points 𝑃
inside the ball, compute the average value of the distance from 𝑃  to ℓ. (The average is defined as

1
Vol(𝒯) ∭

𝒯
𝑑(𝑃) d𝑉 , where 𝑑(𝑃) is the distance from 𝑃  to ℓ.)

Exercise 27.2.  Suppose 𝒯 is a solid metal hemisphere of radius 1 of constant unit density, and 𝑃  is
a point of mass 𝑚 at the center of the base of the hemisphere. Calculate the magnitude of the force
of gravity exerted on the point 𝑃 .
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Chapter 28. Parametrizing surfaces

§28.1 [TEXT] Parametrizing surfaces
We now move on to parametrizing surfaces. This will require a bit more to get used to compared to
parametrizing curves, because now there are two variables instead of one.

To draw a contrast, remember that back when we were parametrizing curves all the way back in
Chapter 12, you wrote the notation 𝐫(𝑡) and usually thought of the parameter 𝑡 as a “time”. So you
could imagine that a curve in ℝ2 or ℝ3 lets you carve out a 1D curve 𝐫 : ℝ → ℝ𝑛 by considering a
timeline as the input variable. See Figure 18 again.

In contrast, for 2D surfaces in ℝ3, we are going to need two variables:

Idea

We will describe surfaces as images of some function 𝐫(𝑢, 𝑣) : ℛ → ℝ3 where ℛ is some region
in ℝ2; see Figure 64.

The time analogy breaks down, so I’m going to use a different analogy: gridlines from a map, like
longitude and latitude. This is actually going to be the same analogy we used in Section 23.2, when
we presented transition maps from change of variables. The only difference is that in Section 23.2, we
used 2D paper to plot out a weird region that also lived in 2D space. But when parametrizing a surface,
we’re going to use 2D paper, represented as region ℛ, to draw a 2D surface that lives in 3D space,
which we denote by 𝒮.

Type signature

To emphasize the types going on here, suppose 𝒮 is a surface in 3D space. Then to parametrize a
2D surface you need to specify a 2D region ℛ in ℝ2 and then write down a function 𝐫 : ℛ → ℝ3

in two variables 𝐫(𝑢, 𝑣) for (𝑢, 𝑣) in the region ℛ which covers all the points in 𝒮.

Warning

Here ℛ is a region in ℝ2 used for the parametrization, often a rectangle. It is not the surface 𝒮
whose surface area is being calculated; (and for 2D surfaces in 3D space we’ll usually prefer the
letter 𝒮 so that it doesn’t look like a region).

A cartoon of the situation is shown in Figure 64. This picture is really important to understand, so take
a while to let it sink in.
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Figure 64:  Illustration of how to think of a parametrization conceptually, using
cartography. Imagine a piece of paper ℛ showing the surface 𝒮 as it lives in space.
(In this cartoon, 𝒮 might be described as a mountain range.) A pair (𝑢, 𝑣) on the
paper could be thought of like longitude and latitude; it should mark some point
𝐫(𝑢, 𝑣) on the surface 𝒮. Hence we write parametrizations as 𝐫 : ℛ → ℝ3 and
identify 𝒮 with 𝐫.

§28.2 [TEXT] Examples of parametrized surfaces
In fact, the Earth is another good example because spherical coordinates gives you a parametrization
that uses a rectangular sheet of paper.

Example of a parametrization: the spherical Earth

Consider the surface of the unit sphere, say 𝑥2 + 𝑦2 + 𝑧2 = 1. One parametrization 𝐫 is given
from the spherical coordinate system by

𝐫(𝜑, 𝜃) = (sin 𝜑 cos 𝜃, 𝜑 sin 𝜃, cos 𝜑)

across the range 0 ≤ 𝜑 ≤ 𝜋 and 0 ≤ 𝜃 < 2𝜋. That is, as 𝜃 and 𝜑 vary across these ranges, we get
every point on the sphere exactly once. See Figure 65.
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Figure 65:  Consider a unit sphere; then the parametrization 𝐫(𝜑, 𝜃) =
(sin 𝜑 cos 𝜃, 𝜑 sin 𝜃, cos 𝜑) corresponds to longitude and latitude. In this cartoon,
one should imagine the yellow sheet of paper being a map of the Earth, drawn in
green. The blue and red gridlines on the sheet of paper trace out longitude and
latitude lines on the Earth. (The piece of paper is rotated to have 𝜃 on the bottom
and 𝜑 on the left, to make it look a bit more natural.)

If this feels familiar, it’s because we used more or less the same analogy for change of variables —
cartography. The Earth is round, but you can still draw a rectangular world map. So what we call 𝐫(𝑢, 𝑣)
here is playing the same role that our transition map 𝐓 did back when we did change-of-variables.
The only difference is that in change of variables, we had 𝐓 : ℝ2 → ℝ2 in the 2D case and 𝐓 : ℝ3 →
ℝ3 in the 3D case. But for parametrizing a surface in ℝ3, we have 𝐫 : ℝ2 → ℝ3 instead. (That is, in
change-of-variables we make a 𝑛-dimensional map of an 𝑛-dimensional region, but here we make a 2
-dimensional map of a surface living in ℝ3.)
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Example: A hemisphere whose map is printed on circular paper

In both Figure  64 and Figure  65 we used rectangular paper. But we could easily use non-
rectangular paper as well. For example, suppose ℛ is the region 𝑥2 + 𝑦2 ≤ 1 and we consider the
surface

𝐫(𝑥, 𝑦) = (𝑥, 𝑦, √1 − (𝑥2 + 𝑦2)).

Then this would give us a parametrization of a hemisphere: the part of the sphere 𝑥2 + 𝑦2 + 𝑧2 =
1 with 𝑧 ≥ 0. Pictorially, this corresponds to drawing a circular map of the Northern hemisphere
by taking a birds-eye view from the North pole. See Figure 66.

x

y

Figure 66:  The northern hemisphere of the Earth, drawn on a 2D piece of paper.
Image adapted from the public domain.

244

https://w.wiki/CWcn


Linear Algebra and Multivariable Calculus — Evan Chen

Remark: Graphs of functions are a common kind of surface

Note in the example we just did in Figure 66, we chose the variable names 𝑥 and 𝑦 rather than 𝑢
and 𝑣 since they match the 𝑥-component and 𝑦-component of 𝐫(𝑥, 𝑦), giving us fewer different
letters to juggle. And we’ll do this in general: if our parametrization would a priori be written as

𝐫(𝑢, 𝑣) = ⟨𝑢, 𝑣, 𝑓(𝑢, 𝑣)⟩

for (𝑢, 𝑣) in some region ℛ, then we’ll usually prefer to use the variable names

𝐫(𝑥, 𝑦) = ⟨𝑥, 𝑦, 𝑓(𝑥, 𝑦)⟩

instead.

This happens quite often. Such surfaces are sometimes called graphs of the function 𝑓 , because
you think of them as the portions of the plots of 𝑧 = 𝑓(𝑥, 𝑦) for some function 𝑓 : ℛ → ℝ. We’ll
give two more examples in a moment.

Another example of a graph: the plane 𝑥+ 2𝑦 + 3𝑧 = 6 with 𝑥, 𝑦, 𝑧 ≥ 0

As another example, let’s consider the part of the plane 𝑥 + 2𝑦 + 3𝑧 = 6 that lies in the first
octant 𝑥, 𝑦, 𝑧 ≥ 0. It’s drawn in the right half of Figure 67.

To parametrize it, we’ll again use the “graph” idea again: we imagine projecting our surface
directly down to the 𝑥𝑦-plane (where 𝑧 = 0) and then our piece of paper is whatever points are
in the shadow. In this case, our region ℛ is the part of the 𝑥𝑦-plane cut out by 𝑥, 𝑦 ≥ 0 and 𝑥 +
2𝑦 ≤ 6, shown in the left half of Figure 67. The equation parametrization is then given exactly by

𝐫(𝑥, 𝑦) = (𝑥, 𝑦, 6 − 𝑥 − 2𝑦
3

).

Optionally, one can draw the region ℛ into the 3D sketch too; this is the shaded bottom triangle
in the right half of Figure 67.

Figure 67:  The part of the plane 𝑥 + 2𝑦 + 3𝑧 = 6 being parametrized by its
projection to the 𝑥𝑦-plane. Because we’re viewing the plane as a graph, we opt to
use the letters 𝐫(𝑥, 𝑦) rather than 𝐫(𝑢, 𝑣).
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Example: 𝑦𝑧-plane

Consider the entire 𝑦𝑧 plane in ℝ3 (that is, the points with 𝑥 = 0). Then one can parametrize it
by 𝐫 : ℝ2 → ℝ3 (so our paper ℛ = ℝ2 is infinite!) defined by the equation

𝐫(𝑢, 𝑣) = (0, 𝑢, 𝑣).

(I suppose it would’ve made sense to rename the variables to 𝐫(𝑦, 𝑧) = (0, 𝑦, 𝑧), but it doesn’t
matter.)

§28.3 [SIDENOTE] Parametrizations are still flexible
Like in Chapter 12, the parametrization of a surface is not unique, and you get flexibility in how you
parametrize it. For example, for the simple 𝑦𝑧-plane we just did, we give an example of an overly
complicated parametrization.

Our piece of paper will be ℛ = (−𝜋
2 , 𝜋

2 ) × (−𝜋
2 , 𝜋

2 ) (that is, a square of side length 𝜋) and our param-
etrization 𝐫 : ℛ → ℝ3 will be defined by

𝐫(𝑢, 𝑣) = (0, (tan 𝑢)3, log(𝑒𝑢 + 5) + tan 𝑣).

This is really a valid parametrization: you can verify every point in the 𝑦𝑧-plane appears exactly once
on our map. It even has a region ℛ with finite area. But it’s so ugly you would never want to use it.

§28.4 [EXER] Exercises

Exercise 28.1.  Consider a surface 𝒮 given by the parametrization 𝐫 : ℝ2 → ℝ3 defined by

𝐫(𝑢, 𝑣) = ⟨𝑢 − 𝑣, 𝑢 + 𝑣, 𝑢𝑣⟩

for all (𝑢, 𝑣) in ℝ2. Compute the real number 𝑘 for which the point 𝑃 = (2, 8, 𝑘) lies on 𝒮.

246



Linear Algebra and Multivariable Calculus — Evan Chen

Chapter 29. Scalar-field line and surface integrals
Think back to Figure 41. So far we’ve talked about everything except the three entries labeled “line
integral” and “surface integral”. This chapter will talk about them. For clarity, I will actually call these
scalar-field line integral and scalar-field surface integral.

The reason for this naming is that later we’ll meet vector-field variants of the line and surface integral
that play a much bigger role in 18.02. Indeed we mentioned in Section 21.2 that these scalar-field
integrals are only used for a few specific cases.

§29.1 [TEXT] Arc length, and its generalization to the scalar-field line integral
We’ve actually met arc length already back in Part Delta! I’ll restate it again here for convenience, but
this is a repeat:

Definition: Arc length

If the parametrization 𝐫(𝑡) : ℝ → ℝ𝑛 traces out a path in ℝ𝑛, the arc length is defined as

𝐿 = ∫
stop time

𝑡=start time
|𝐫′(𝑡)| d𝑡.

Warning: There are no red arrows for these integrals

We don’t like these scalar-field line and surface integrals as much; they just don’t behave
that well, in part because of the awkward absolute value. For example, Stokes’ theorem — the
biggest theorem in the 18.02 course — doesn’t work for arc length (or anything else in this
chapter).

In particular: you don’t get Fundamental Theorem of Calculus for arc length. To make that
warning explicit, note two common “wrong guesses”:

∫
𝑏

𝑡=𝑎
|𝐫′(𝑡)| d𝑡 ≠ |𝐫(𝑏)| − |𝐫(𝑎)|

∫
𝑏

𝑡=𝑎
|𝐫′(𝑡)| d𝑡 ≠ |𝐫(𝑏) − 𝐫(𝑎)|.

This is a tempting mistake to make and I’ve seen it happen; you might hope the fundamental
theorem of calculus works somehow for |𝐫′(𝑡)| in analogy to how ∫𝑏

𝑥=𝑎
𝑓 ′(𝑥) d𝑥 = 𝑓(𝑏) − 𝑓(𝑎)

for differentiable functions 𝑓 : ℝ → ℝ. But that’s simply not the case. There’s just no analog of
FTC for arc length. (Indeed, the arc length on the left-hand side depends on how you travel from
𝐫(𝑎) to 𝐫(𝑏) — a straight line will be shortest mileage, a windy meander with detours will be much
longer mileage. So you can’t possibly know just from the starting point and the destination point
how long of a route you took.)

More generally, if the parametrization 𝐫(𝑡) : ℝ → ℝ𝑛 traces out a path in ℝ𝑛, and 𝑓 : ℝ𝑛 → ℝ is a
function, then the scalar-field line integral of 𝑓  is defined by

∫
stop time

𝑡=start time
𝑓(𝐫(𝑡))|𝐫′(𝑡)| d𝑡.

However, we won’t use this definition in this class, except for the special case 𝑓 = 1 for arc length.
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Type signature

The surface area of a surface 𝒮 is a scalar (and doesn’t depend on how the surface is parametrized).
The scalar-field line integral is also a scalar.

As I mentioned in the shorthand table (Table 13), many other sources abbreviate

d𝑠 ≔ |𝐫′(𝑡)| d𝑡.

Whenever this shorthand is being used, one frequently cuts out the start and stop time too. The way
this is done is, you let 𝒞 denote the curve that 𝐫(𝑡) traces out. Then we can abbreviate

∫
stop time

𝑡=start time
𝑓(𝐫(𝑡))|𝐫′(𝑡)| d𝑡 = ∫

𝒞
𝑓 d𝑠.

In particular, taking 𝑓 = 1, the arc length formula gets abridged to 𝐿 = ∫
𝒞

d𝑠.

§29.2 [TEXT] Surface area
Okay, so in analogy are surface area and the scalar-field surface integral. We use what we learned
about parametrization from Chapter 28.

Definition: Surface area

If the parametrization 𝐫(𝑢, 𝑣) : ℛ → ℝ3 cuts out a surface 𝒮 in ℝ3, the surface area is given by

SurfArea(𝒮) ≔ ∬
ℛ

| 𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

| d𝑢 d𝑣.

Yes, there’s a cross product. Yes, it sucks (see Section 6.4). This is one case where you probably would
prefer to use the shorthand

d𝑆 ≔ |𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

| d𝑢 d𝑣

so that one can swallow surface area into just

SurfArea(𝒮) ≔ ∬
𝒮

d𝑆

where we also cut out the region ℛ on our cartographer’s map from the notation; instead we write 𝒮
directly.

Where does the | 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 | come from? The way to picture this is via Figure 68 (actually analogous to
the picture we drew in Section 24.6 when justifying the Jacobian). If you imagine our region ℛ as a
piece of paper having red and blue gridlines, then 𝜕𝐫

𝜕𝑢  and 𝜕𝐫
𝜕𝑣  correspond to little arrows on the surface

along the gridlines on 𝒮. But way back when we introduced the cross product, it had a geometric
definition that stated:

• The magnitude of the cross product corresponds to the area of the little “cell” on the surface in
the gridlines, shaded in Figure 68. So when we add all of them, we should get the surface area!
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• The direction of the cross product is perpendicular to both the horizontal and vertical gridlines,
so in fact the cross product should be thought of as normal to the surface. Right now we don’t
care about this yet, but it’ll matter later on in Chapter 38.

Figure 68: Consider surface 𝒮 parametrized by 𝐫 : ℛ → ℝ3. The cross product of
the two partial derivatives is drawn in green. The magnitude of the cross product
corresponds to the small shaded area.

More generally if we have a function 𝑓 : ℝ3 → ℝ we could define the scalar-field surface integral
of 𝑓  over 𝒮 as ∬

ℛ
𝑓(𝐫(𝑢, 𝑣))| 𝜕𝐫

𝜕𝑢 × 𝜕𝐫
𝜕𝑣 | d𝑢 d𝑣; however this definition will not be used in this class

except for the special case 𝑓 = 1 for surface area. But if we did use it, we could have an abbreviation
∬

𝒮
𝑓 d𝑆.

Type signature

The scalar-field surface integral (and hence surface area as well) outputs a scalar.

§29.3 [RECIPE] Surface area (done directly)
Here’s surface area in recipe format.
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Recipe for surface area, manually

1. Parametrize the surface by some 𝐫(𝑢, 𝑣) : ℛ → ℝ3 for some 2D region ℛ (ideally something
simple like a circle or rectangle).

2. Compute the partial derivatives 𝜕𝐫
𝜕𝑢  and 𝜕𝐫

𝜕𝑣  (both are three-dimensional vectors at each
point).

3. Compute the cross product 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 .
4. Compute the magnitude | 𝜕𝐫

𝜕𝑢 × 𝜕𝐫
𝜕𝑣 | of this cross product.

5. Integrate the entire thing over ℛ using any of the methods for double integrals (such as
horizontal/vertical slicing, polar coordinates, change of variables, etc.).

Tip: We’ll make a table of common cross products next chapter

For this chapter we’ll compute the cross product by hand in the recipe above. However, this will
get tedious really quickly. So in the next chapter, Chapter 30, we’re actually just going to calculate
all the cross products for most “common” cases all in one place, and refer to it later.

Here is a really ugly example to start, to give you some practice with spherical coordinates.

Example: Surface area of a sphere

Compute the surface area of the unit sphere 𝑥2 + 𝑦2 + 𝑧2 = 1.

Solution.  We will bludgeon our way through this task with sheer brute force using the formula above
via spherical coordinates. (We’ll show a more elegant solution later in Section 30.3.)

The parametrization 𝐫 is given from the spherical coordinate system by

𝐫(𝜑, 𝜃) = (sin 𝜑 cos 𝜃, sin 𝜑 sin 𝜃, cos 𝜑),

across the range

0 ≤ 𝜃 ≤ 2𝜋 and 0 ≤ 𝜑 ≤ 𝜋

for our region ℛ. The partial derivatives are thus

𝜕𝐫
𝜕𝜑

= ⟨cos 𝜑 cos 𝜃, cos 𝜑 sin 𝜃, − sin 𝜑⟩

𝜕𝐫
𝜕𝜃

= ⟨− sin 𝜑 sin 𝜃, sin 𝜑 cos 𝜃, 0⟩.

We brute force our way through the entire cross product. We have

250



Linear Algebra and Multivariable Calculus — Evan Chen

𝜕𝐫
𝜕𝜑

× 𝜕𝐫
𝜕𝜃

=
|
||
| 𝐞1

cos 𝜑 cos 𝜃
− sin 𝜑 sin 𝜃

𝐞2
cos 𝜑 sin 𝜃
sin 𝜑 cos 𝜃

𝐞3
− sin 𝜑

0 |
||
|

= (0 ⋅ cos 𝜑 sin 𝜃 − sin 𝜑 cos 𝜃 ⋅ (− sin 𝜑))𝐞𝟏

−(0 ⋅ cos 𝜑 cos 𝜃 − (− sin 𝜑 sin 𝜃) ⋅ (− sin 𝜑))𝐞2

+(sin 𝜑 cos 𝜃 ⋅ cos 𝜑 cos 𝜃 + sin 𝜑 sin 𝜃 ⋅ cos 𝜑 sin 𝜃)𝐞3

= (sin2 𝜑 cos 𝜃)𝐞1 + (sin2 𝜑 sin 𝜃)𝐞2 + (sin 𝜑 cos 𝜑 sin2 𝜃 + sin 𝜑 cos 𝜑 cos2 𝜃)𝐞3

= (sin2 𝜑 cos 𝜃)𝐞1 + (sin2 𝜑 sin 𝜃)𝐞2 + (sin 𝜑 cos 𝜑)𝐞3

since cos2 𝜃 + sin2 𝜃 = 1. If we take the magnitude ,we get

| 𝜕𝐫
𝜕𝜑

× 𝜕𝐫
𝜕𝜃

| = √(sin2 𝜑 cos 𝜃)2 + (sin2 𝜑 sin 𝜃)2 + (sin 𝜑 cos 𝜑)2

= √sin4 𝜑 cos2 𝜃 + sin4 𝜑 sin2 𝜃 + sin2 𝜑 cos2 𝜑

= √sin4 𝜑(cos2 𝜃 + sin2 𝜃) + sin2 𝜑 cos2 𝜑

= √sin4 𝜑 ⋅ 1 + sin2 𝜑 cos2 𝜑

= √sin2 𝜑(sin2 𝜑 + cos2 𝜑)

= √sin2 𝜑 ⋅ 1 = |sin 𝜑|.

Thank the lord it’s a simple answer. Great, now we can calculate the surface area of the sphere:

SurfArea(sphere) = ∫
2𝜋

𝜃=0
∫

𝜋

𝜑=0
|𝜕𝐫
𝜕𝜃

× 𝜕𝐫
𝜕𝜑

| d𝜑 d𝜃

= ∫
2𝜋

𝜃=0
∫

𝜋

𝜑=0
| sin 𝜑| d𝜑 d𝜃

= (∫
𝜋

𝜑=0
| sin 𝜑| d𝜑)(∫

2𝜋

𝜃=0
d𝜃)

= (∫
𝜋

𝜑=0
sin 𝜑 d𝜑)(∫

2𝜋

𝜃=0
d𝜃)

= [− cos 𝜑]𝜋𝜑=0 ⋅ 2𝜋

= 4𝜋 . □
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Digression on the direction of the cross product

As we said earlier when drawing Figure 68, in general if you parametrize a surface 𝒮 by 𝐫(𝑢, 𝑣),
then 𝜕𝐫

𝜕𝑢 × 𝜕𝐫
𝜕𝑣  is a vector which is normal to both 𝜕𝐫

𝜕𝑢  and 𝜕𝐫
𝜕𝑣 . That is, the direction of this cross

product is the normal vector to the tangent plane of the surface 𝒮 at 𝐫(𝑢, 𝑣).

Of course, since we took an absolute value, the direction gets discarded for surface area. But if
you are really observant you might have noticed that the computed cross product is

(sin2 𝜑 cos 𝜃)𝐞1 + (sin2 𝜑 sin 𝜃)𝐞2 + (sin 𝜑 cos 𝜑)𝐞3 = sin 𝜑 ⋅ 𝐫(𝜃, 𝜑)

which happens to be a multiple of the corresponding point on the sphere; and this is why, because
for a sphere, 𝐫(𝜃, 𝜑) happens to be perpendicular to the tangent plane.

And here is an example that is a little less computationally intensive.

Sample Question

Compute the surface area of the cone defined by 𝑧 = √𝑥2 + 𝑦2 ≤ 1.

Solution.  The given cone can be parametrized using Cartesian coordinates as:

𝐫(𝑥, 𝑦) = (𝑥, 𝑦, √𝑥2 + 𝑦2)

where (𝑥, 𝑦) lies within the disk 𝑥2 + 𝑦2 ≤ 1.

Compute the partial derivatives of 𝐫 with respect to 𝑥 and 𝑦:

𝜕𝐫
𝜕𝑥

= ⟨𝜕𝑥
𝜕𝑥

, 𝜕𝑦
𝜕𝑥

, 𝜕𝑧
𝜕𝑥

⟩ = ⟨1, 0, 𝑥
√𝑥2 + 𝑦2

⟩

𝜕𝐫
𝜕𝑦

= ⟨𝜕𝑥
𝜕𝑦

, 𝜕𝑦
𝜕𝑦

, 𝜕𝑧
𝜕𝑦

⟩ = ⟨0, 1, 𝑦
√𝑥2 + 𝑦2

⟩.

Hence the cross product is

𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

=

|
|
|
|
|𝐞1
1
0

𝐞2
0
1

𝐞3
𝑥

√𝑥2+𝑦2

𝑦
√𝑥2+𝑦2 |

|
|
|
|

= (0 ⋅ 𝑦
√𝑥2 + 𝑦2

− 1 ⋅ 𝑥
√𝑥2 + 𝑦2

)𝐞1 − (1 ⋅ 𝑦
√𝑥2 + 𝑦2

− 0 ⋅ 𝑥
√𝑥2 + 𝑦2

)𝐞2

+(1 ⋅ 1 − 0 ⋅ 0)𝐞3

= ⟨− 𝑥
√𝑥2 + 𝑦2

, − 𝑦
√𝑥2 + 𝑦2

, 1⟩

Now, compute the magnitude of this cross product:
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| 𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

| =
√

√√
√

(− 𝑥
√𝑥2 + 𝑦2

)
2

+ (− 𝑦
√𝑥2 + 𝑦2

)
2

+ 12

= √ 𝑥2

𝑥2 + 𝑦2 + 𝑦2

𝑥2 + 𝑦2 + 1 =
√

2.

That’s really convenient: we got a constant! Hence

SurfArea(cone) = ∬
𝑥2+𝑦2≤1

√
2 d𝐴 =

√
2 Area(𝑥2 + 𝑦2 ≤ 1) =

√
2𝜋 . □

§29.4 [EXER] Exercises

Exercise 29.1.  Consider a surface 𝒮 given by the parametrization 𝐫 : ℝ2 → ℝ3 defined by

𝐫(𝑢, 𝑣) = ⟨𝑢 − 𝑣, 𝑢 + 𝑣, 𝑢𝑣⟩

for all (𝑢, 𝑣) in ℝ2. Compute the tangent plane to 𝒮 at the point (3, 7, 10).
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Chapter 30. Pre-computed cross products for common surfaces
TL;DR: cross products are too annoying, so we pre-compute them all.

§30.1 [TEXT] Pre-computed formulas for the cross product
As the examples last chapter show, it’s actually really annoying to compute the cross product by hand.
Consequently, we can make our lives a lot easier if we pre-compute what the cross product works out
to for some common situations, so we don’t have to redo it by hand every time we need it.

In these notes we will pre-compute five different cross products:

• Any graph, i.e. a surface of the form 𝑧 = 𝑓(𝑥, 𝑦) (the cone we discussed is a good example).
• Any level surface 𝑔(𝑥, 𝑦, 𝑧) = 𝑐, over some 𝑥𝑦-region.
• A flat surface in the 𝑥𝑦-plane (which could also be 𝑦𝑧 or 𝑧𝑥 parallel).
• The curved part of a cylinder of radius 𝑅 centered along the 𝑧-axis, where the parameters are 𝜃

and 𝑧.
• The surface of a sphere of radius 𝑅 centered at the origin, where the parameters are 𝜑 and 𝜃.

As it turns out, in 18.02 it’s likely these are the only five situations you will see.

The table showing the results is Table 14. Note that for surface area, you only need the absolute value
of the cross product (fourth column). But I’m going to include the entire vector too, because we’ll
later need to reuse this table in Chapter 38 (where one reformats it as Table 23). At that point, we will
actually need to know the direction the vector points in too, not just the absolute value.

Surface Param’s
𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

| 𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

| d𝑢 d𝑣

𝑧 = 𝑓(𝑥, 𝑦) (𝑥, 𝑦) ⟨−𝜕𝑓
𝜕𝑥

, −𝜕𝑓
𝜕𝑦

, 1⟩ √1 + (𝜕𝑓
𝜕𝑥)

2
+ (𝜕𝑓

𝜕𝑦)
2
d𝑥 d𝑦

Level surface 𝑔(𝑥, 𝑦, 𝑧) = 𝑐
over an 𝑥𝑦-region

(𝑥, 𝑦)
∇𝑔

𝜕𝑔/𝜕𝑧
|∇𝑔|

|𝜕𝑔/𝜕𝑧|
d𝑥 d𝑦

Flat surface 𝑧 = 𝑐 (𝑥, 𝑦) ⟨0, 0, 1⟩ d𝑥 d𝑦

Cylindrical coords with fixed 𝑅
𝐫(𝜃, 𝑧) = (𝑅 cos 𝜃, 𝑅 sin 𝜃, 𝑧) (𝜃, 𝑧) ⟨𝑅 cos 𝜃, 𝑅 sin 𝜃, 0⟩ 𝑅 d𝜃 d𝑧

Spherical coords with fixed 𝑅
𝐫(𝜑, 𝜃) = (𝑅 sin 𝜑 cos 𝜃,

𝑅 sin 𝜑 sin 𝜃, 𝑅 cos 𝜑)
(𝜑, 𝜃) 𝑅 sin 𝜑 ⋅ 𝐫(𝜑, 𝜃) 𝑅2 sin 𝜑 d𝜑 d𝜃

(if 0 ≤ 𝜑 ≤ 𝜋)

Table 14: Pre-computed formulas for the cross product in five most common
situations, which are likely to be all you need.

Recall the following geometric idea from the earlier Figure 64, when we described where the cross
product was coming from:

Idea

The vector 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣  is normal to the tangent plane to the surface at each point.

This can help a lot with remembering the third column of Table 14. For example:
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• For the level surface 𝑔(𝑥, 𝑦, 𝑧) = 𝑐, you should remember from Chapter 15 that ∇𝑔 is normal to
the tangent plane of the level surface, hence the cross product is a multiple of ∇𝑔 as needed.

• The normal vector to (the curved part of) a cylinder points straight away from the 𝑧-axis away
from the origin, which ⟨𝑅 cos 𝜃, 𝑅 sin 𝜃, 0⟩ indeed does.

• For the sphere, the normal vector should point straight away from the center of the sphere, and
indeed sin(𝜑) ⋅ 𝐫(𝜑, 𝜃) is a multiple of the direction.

Again, to re-iterate: for surface area you actually only need the fourth column | 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 |, but

• I think 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣  is actually easier to remember than | 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 |, because of the geometric interpre-
tation above;

• starting from Chapter 38 you will need the full data of 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣  in the third column.

The first and second rows of Table 14 above are quite versatile, so in these notes I’ll call them “magic”
formulas because they save us so much work. In contrast, the other rows are for more specialized
situations.

§30.2 [TEXT] Table 14 row 1: For a graph (surface of the form 𝑧 = 𝑓(𝑥, 𝑦))
So imagine your surface is given by 𝑧 = 𝑓(𝑥, 𝑦) for some 𝑓  over some region ℛ in the 𝑥𝑦 plane (e.g.
the cone had ℛ = {𝑥2 + 𝑦2 ≤ 1}). (e.g. the cone we just did was 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2) What we’re
going to do is try to capture the boilerplate work of the cross product into a single formula that we
can just remember, so we don’t have to redo the cross product again.

The parametrization we expect to use is

𝐫(𝑥, 𝑦) =
(
((
( 𝑥

𝑦
𝑓(𝑥, 𝑦))

))
).

The partial derivatives are

𝜕𝐫
𝜕𝑥

=

(
((
((
(

𝜕𝑥
𝜕𝑥
𝜕𝑧
𝜕𝑥
𝜕𝑧
𝜕𝑥)

))
))
)

=

(
((
((

1
0
𝜕𝑧
𝜕𝑥)

))
))

𝜕𝐫
𝜕𝑦

=

(
((
((
((

𝜕𝑥
𝜕𝑦
𝜕𝑦
𝜕𝑦
𝜕𝑧
𝜕𝑦)

))
))
))

=

(
((
((

0
1
𝜕𝑧
𝜕𝑦)

))
)).

Hence, in this case we arrive at

𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

=

|
|
|
|𝐞1
1
0

𝐞2
0
1

𝐞3
𝜕𝑧
𝜕𝑥
𝜕𝑧
𝜕𝑦 |

|
|
|

= −𝜕𝑧
𝜕𝑥

𝐞1 − 𝜕𝑧
𝜕𝑦

𝐞2 + 𝐞3

= −𝜕𝑓
𝜕𝑥

𝐞1 − 𝜕𝑓
𝜕𝑦

𝐞2 + 𝐞3.

Let’s write this down now.
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Memorize: Magic cross product formula for graphs 𝑧 = 𝑓(𝑥, 𝑦)

Consider a surface given by 𝑧 = 𝑓(𝑥, 𝑦) with 𝑓  differentiable. Then for the obvious parametriza-
tion 𝐫(𝑥, 𝑦) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) we have

𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

= ⟨−𝜕𝑓
𝜕𝑥

, −𝜕𝑓
𝜕𝑦

, 1⟩.

In particular, the surface area becomes

SurfArea(𝒮) = ∬
ℛ

√1 + (𝜕𝑓
𝜕𝑥

)
2

+ (𝜕𝑓
𝜕𝑦

)
2

d𝑥 d𝑦.

You’ll find this formula written in a lot of other textbooks and it’s worth knowing (I would say you
should memorize the full magic cross product formula, since it’s trivial to get the magnitude from it.)
Let’s see how it can captures the boilerplate in the cone example.

Sample Question

Compute the surface area of the cone defined by 𝑧 = √𝑥2 + 𝑦2 ≤ 1.

Solution.  Letting 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2, this time we skip straight to

𝜕𝑓
𝜕𝑥

= 𝑥
√𝑥2 + 𝑦2

𝜕𝑓
𝜕𝑦

= 𝑦
√𝑥2 + 𝑦2

.

Hence we got a shortcut to the vector ⟨− 𝑥
√𝑥2+𝑦2 , − 𝑦

√𝑥2+𝑦2 , 1⟩ we found before. We find its magnitude
in the same way:

√1 + (𝜕𝑓
𝜕𝑥

)
2

+ (𝜕𝑓
𝜕𝑦

)
2

= √1 + 𝑥2

𝑥2 + 𝑦2 + 𝑦2

𝑥2 + 𝑦2 =
√

2.

Now

SurfArea(cone) = ∬
𝑥2+𝑦2≤1

√
2 d𝐴 =

√
2 Area(𝑥2 + 𝑦2 ≤ 1) =

√
2𝜋 . □

§30.3 [TEXT] Table 14 row 2: For a level surface 𝑔(𝑥, 𝑦, 𝑧) = 𝑐
However, we can get an even better formula in a lot of cases using implicit differentiation. The basic
idea is that we would prefer to think of the cone as 𝑥2 + 𝑦2 − 𝑧2 = 0, so that we don’t need to think
about square roots. And that’s exactly a level surface.

So imagining a level surface 𝑔(𝑥, 𝑦, 𝑧) = 𝑐 instead, where each (𝑥, 𝑦) in our region ℛ has exactly one
𝑧 = 𝑧(𝑥, 𝑦) value. On paper, you imagine solving for 𝑧 in terms of 𝑥 and 𝑦, and then using

𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

= −𝜕𝑧
𝜕𝑥

𝐞1 − 𝜕𝑧
𝜕𝑦

𝐞2 + 𝐞3

but we’d like to not have to solve for 𝑧 in such a brute way.
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The trick is to consider the gradient of 𝑔 and use the chain rule. You might remember that

∇𝑔 = ⟨𝜕𝑔
𝜕𝑥

, 𝜕𝑔
𝜕𝑦

, 𝜕𝑔
𝜕𝑧

⟩

is pretty easy to calculate, usually. However, if we take the partial derivative of

𝑔(𝑥, 𝑦, 𝑧) = 𝑐

with respect to 𝑥 and 𝑦, the derivative of 𝑐 vanishes while the chain rule gives

0 = 𝜕𝑔
𝜕𝑥

+ 𝜕𝑔
𝜕𝑧

⋅ 𝜕𝑧
𝜕𝑥

⟹ 𝜕𝑔
𝜕𝑥

= −𝜕𝑔
𝜕𝑧

⋅ 𝜕𝑧
𝜕𝑥

.

Similarly 𝜕𝑔
𝜕𝑦 = −𝜕𝑔

𝜕𝑧 ⋅ 𝜕𝑧
𝜕𝑦 . Hence

∇𝑔 = ⟨−𝜕𝑔
𝜕𝑧

⋅ 𝜕𝑧
𝜕𝑥

, −𝜕𝑔
𝜕𝑧

⋅ 𝜕𝑧
𝜕𝑦

, 𝜕𝑔
𝜕𝑧

⟩ = 𝜕𝑔
𝜕𝑧

⋅ ⟨−𝜕𝑧
𝜕𝑥

, −𝜕𝑧
𝜕𝑦

, 1⟩.

Digression on the chain rule

You might be spooked by the minus sign here, as I was, since if you just look at the fractions the
expression seems wrong. This is why I don’t like to remember the chain rule as just “cancel the
fractions”, because in some contexts you’ll get equations like this that don’t seem correct.

The context to remember here is that 𝑧 = 𝑧(𝑥, 𝑦) is itself a function of 𝑥 and 𝑦 that holds on to
the requirement 𝑔(𝑥, 𝑦, 𝑧(𝑥, 𝑦)) = 𝑐; that is, if 𝑥 changes a little, 𝑧 = 𝑧(𝑥, 𝑦) should change in an
“opposite” way to ensure 𝑔 = 𝑐 is still true.

How much should the change be? It might be easiest to reason through two applications of linear
approximation. If 𝜀 is some small displacement, then linear approximation is saying that

𝑔(𝑥 + 𝜀, 𝑦, 𝑧(𝑥 + 𝜀, 𝑦)) ≈ 𝑔(𝑥 + 𝜀, 𝑦, 𝑧(𝑥, 𝑦) + 𝜕𝑧
𝜕𝑥

⋅ 𝜀)

≈ 𝑔(𝑥, 𝑦, 𝑧(𝑥, 𝑦)) + ∇𝑔 ⋅

(
((
((

𝜀
0

𝜕𝑧
𝜕𝑥 ⋅ 𝜀)

))
))

= 𝑔(𝑥, 𝑦, 𝑧(𝑥, 𝑦)) + [𝜕𝑔
𝜕𝑥

+ 𝜕𝑔
𝜕𝑧

⋅ 𝜕𝑧
𝜕𝑥

]𝜀.

Hence we want the bracketed coefficient of 𝜀 to be zero, which is the equation we got before.

Something really good is happening here, because the cross product we wanted just sits on the right-
hand side! Because of this, we have managed to derive the following miraculous identity.
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Memorize: Magic cross product formula for a level surface

Let 𝑔 be differentiable and consider the level surface 𝑔(𝑥, 𝑦, 𝑧) = 𝑐. Let 𝒮 be a part of this level
surface described implicitly by some function 𝑧 = 𝑓(𝑥, 𝑦), and suppose also that 𝜕𝑔

𝜕𝑧 ≠ 0 over ℛ.
Then for the obvious parametrization 𝐫(𝑥, 𝑦) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) we have

𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

= ∇𝑔
𝜕𝑔/𝜕𝑧

.

The reason this magic identity is even better is that there is no need to differentiate 𝑓  or even to
determine it. Let’s see it in action by redoing our example with a cone.

Sample Question

Compute the surface area of the cone defined by 𝑧 = √𝑥2 + 𝑦2 ≤ 1.

Solution.  The cone is the part of the level surface of 𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 𝑧2 with 𝑧 ≥ 0. (We know
in fact 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2, but we won’t use this.) Now we can jump straight to

∇𝑔
𝜕𝑔
𝜕𝑧

= ⟨2𝑥, 2𝑦, −2𝑧⟩
−2𝑧

= ⟨−𝑥
𝑧
, −𝑦

𝑧
, 1⟩.

The magnitude of this vector is

√(−𝑥
𝑧
)

2
+ (−𝑦

𝑧
)

2
+ 1 = √𝑥2 + 𝑦2

𝑧2 + 1 =
√

2

so we get

SurfArea(cone) = ∬
𝑥2+𝑦2≤1

√
2 d𝐴 =

√
2 Area({𝑥2 + 𝑦2 ≤ 1}) =

√
2𝜋 . □

If you compare this carefully with 𝑧 = √𝑥2 + 𝑦2, you’ll see this is still the same solution as the first
magic formula, which is in turn still the same solution as when we really used bare hands. But the
shortcuts are nice because it means you don’t have to think about the cross product at all.

Now as we promised, let’s show how to find surface area for a sphere without having to slog through
the pain of spherical coordinates.

Sample Question

Compute the surface area of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1.

Solution.  We’ll find the surface area for the hemisphere with 𝑧 ≥ 0 and then double it. We could view
the hemisphere as 𝑧 = 𝑓(𝑥, 𝑦) = √1 − (𝑥2 + 𝑦2), but to avoid square roots we’re much happier by
letting

𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2

and considering the hemisphere as the chunk of the level surface with 𝑧 ≥ 0 and 𝑥2 + 𝑦2 ≤ 1. In
that case,
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∇𝑔
𝜕𝑔/𝜕𝑧

= ⟨2𝑥, 2𝑦, 2𝑧⟩
2𝑧

= ⟨𝑥
𝑧
, 𝑦
𝑧
, 1⟩.

This time the magnitude of the vector is

√(𝑥
𝑧
)

2
+ (𝑦

𝑧
)

2
+ 1 = √𝑥2 + 𝑦2 + 𝑧2

𝑧2 = 1
𝑧

= 1
√1 − (𝑥2 + 𝑦2)

.

Hence, we need to integrate

SurfArea(hemisphere) = ∬
𝑥2+𝑦2≤1

1
√1 − (𝑥2 + 𝑦2)

d𝑥 d𝑦.

To nobody’s surprise, we use polar coordinates to change this to

SurfArea(hemisphere) = ∫
2𝜋

𝜃=0
∫

1

𝑟=0

1√
1 − 𝑟2

(𝑟 d𝑟 d𝜃)

= (∫
2𝜋

𝜃=0
d𝜃)(∫

1

𝑟=0

𝑟√
1 − 𝑟2

d𝑟).

The left integral is 2𝜋. For the inner integral, use the 𝑢-substitution 𝑢 = 1 − 𝑟2 ⟹ d𝑢
d𝑟 = −2𝑟 to get

∫
1

𝑟=0

𝑟√
1 − 𝑟2

d𝑟 = ∫
0

𝑢=1
−1

2
𝑢−1

2 d𝑢 = ∫
1

𝑢=0

1
2
𝑢−1

2 d𝑢 = [𝑢1
2 ]

1

𝑢=0
= 1.

Hence

SurfArea(hemisphere) = 2𝜋 ⋅ 1 = 2𝜋

and the surface area of the sphere is thus 2𝜋 ⋅ 2 = 4𝜋 . □

§30.4 [TEXT] Table 14 row 3: For a flat surface
This is the really easy special case of 𝑧 = 𝑓(𝑥, 𝑦) when 𝑓(𝑥, 𝑦) = 𝑐 is constant. Your parametrization
is just

𝐫(𝑥, 𝑦) = ⟨𝑥, 𝑦, 𝑐⟩.

I hesitated to include this row because it’s so easy and is a special case of the first row, but it’s common
enough I decided I might as well toss it in. However, you should have no problem deriving this yourself
even in your sleep; it’s literally

𝜕𝐫
𝜕𝑥

= ⟨1, 0, 0⟩

𝜕𝐫
𝜕𝑦

= ⟨0, 1, 0⟩

and the cross product of these is ⟨0, 0, 1⟩, so there you go.

Note that you might encounter flat surfaces parallel to the 𝑥𝑧 or 𝑦𝑧 planes instead, in which case you
should just swap the roles of the variables.
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§30.5 [TEXT] Table 14 row 4: For the curved part of the cylinder in cylindrical
coordinates
If you have a cylinder aligned with the 𝑧-axis, then you don’t want to be using 𝑥𝑦-plane as parameters,
because most pairs (𝑥, 𝑦) do not get used at all. Thus, we’ll instead use cylindrical coordinates as

𝐫(𝜃, 𝑧) = (𝑅 cos 𝜃, 𝑅 sin 𝜃, 𝑧).

Compute the partial derivatives:

𝜕𝐫
𝜕𝜃

= ⟨−𝑅 sin 𝜃, 𝑅 cos 𝜃, 0⟩

𝜕𝐫
𝜕𝑧

= ⟨0, 0, 1⟩.

The cross product is pretty easy to evaluate in this case:

𝜕𝐫
𝜕𝜃

× 𝜕𝐫
𝜕𝑧

=
|
||
| 𝐞1
−𝑅 sin 𝜃

0

𝐞2
𝑅 cos 𝜃

0

𝐞3
0
1 |

||
|

= 𝑅 cos 𝜃𝐞1 + 𝑅 sin 𝜃𝐞2

= ⟨𝑅 cos 𝜃, 𝑅 sin 𝜃, 0⟩.

That’s not too bad! We can take the absolute value of this:

d𝑆 = 𝑅 d𝜃 d𝑧.

Tip: d𝑆 for the cylinder can be remembered geometrically

The way to remember this is that “d𝑆 d𝑟 ≈ d𝑉 ”: if you multiply a bit of surface by a bit of the
radial component, you get a chunk of volume of the sphere. And since we saw in Chapter 26 that
d𝑉 = 𝑟 d𝑟 d𝜃 d𝑧, the formula for d𝑆 is what you get when you divide out d𝑟 and set 𝑟 = 𝑅.

Alternatively, each patch on the cylinder can be thought of as a little rectangle of height d𝑧 and
width 𝑅 d𝜃.

§30.6 [TEXT] Table 14 row 5: For the curved part of the sphere, in spherical
coordinates
We already saw the sphere is actually handled by our magic formula for level surfaces, so if you’re fine
using 𝑥𝑦-coordinates you are good to go. Nonetheless, in the event you need spherical coordinates,
here is the result.

We actually computed this already while working out the sphere’s surface area by brute force: if we
take the parametrization

𝐫(𝜑, 𝜃) = (𝑅 sin 𝜑 cos 𝜃, 𝑅 sin 𝜑 sin 𝜃, 𝑅 cos 𝜑),

then if we repeat the brutal calculation from Section 29.3 with an extra 𝑅 tacked on, we get

𝜕𝐫
𝜕𝜑

× 𝜕𝐫
𝜕𝜃

= (𝑅2 sin2 𝜑 cos 𝜃)𝐞1 + (𝑅2 sin2 𝜑 sin 𝜃)𝐞2 + (𝑅2 sin 𝜑 cos 𝜑)𝐞3.

This formula might look ugly until you realize that it’s actually just

260



Linear Algebra and Multivariable Calculus — Evan Chen

𝜕𝐫
𝜕𝜑

× 𝜕𝐫
𝜕𝜃

= 𝑅 sin 𝜑 ⋅ 𝐫(𝜑, 𝜃).

Since |𝐫(𝜑, 𝜃)| = 𝑅, we get

d𝑆 ≔ | 𝜕𝐫
𝜕𝜑

× 𝜕𝐫
𝜕𝜃

|𝑑𝜑𝑑𝜃 = 𝑅2 sin 𝜑 d𝜑 d𝜃.

Here I’m dropping the absolute value bars around sin 𝜑 because our spherical coordinate convention
requires 0 ≤ 𝜑 ≤ 𝜋.

Tip: d𝑆 for the sphere can be remembered geometrically

The way to remember this is that “d𝑆 d𝜌 ≈ d𝑉 ”: if you multiply a bit of surface by a bit of the
radial component, you get a chunk of volume of the sphere. And since we saw in Chapter 27
that d𝑉 = 𝜌2 sin 𝜑 d𝜌 d𝜑 d𝜃, the formula for d𝑆 is what you get when you divide out d𝜌 and set
𝜌 = 𝑅.

§30.7 [RECIPE] Recap of surface area
Let’s write a new recipe for surface area now that we have Table 14.

Recipe for surface area upgraded with Table 14

To compute the surface area of a surface 𝒮:

1. Get the cross product 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣  for a parametrization 𝐫 using the following checklist.
• If you are using (𝑥, 𝑦)-coordinates to parametrize (meaning 𝒮 is a graph 𝑧 = 𝑓(𝑥, 𝑦) or

a level surface), use the magic formulas in rows 1 or 2 of Table 14.
• For a flat surface, it’s easy (row 3 of Table 14).
• If 𝒮 is specifically given by cylindrical/spherical coordinates with fixed radius, use rows

4 or 5 of Table 14.
• Otherwise, evaluate the cross product manually:

‣ Pick a parametrization 𝐫(𝑢, 𝑣) : ℛ → ℝ3 of the surface 𝒮. Sort of like in
Section 12.7, you have some freedom in how you set the parametrization.

‣ Compute 𝜕𝐫
𝜕𝑢  and 𝜕𝐫

𝜕𝑣  (both are three-dimensional vectors at each point).
‣ Compute the cross product 𝜕𝐫

𝜕𝑢 × 𝜕𝐫
𝜕𝑣  as in Chapter 6.

2. Take the magnitude of the cross product to get a number for each point on the surface.
3. Integrate it over ℛ using any of the methods for double integrals (such as horizontal/vertical

slicing, polar coordinates, change of variables, etc.).

§30.8 [EXER] Exercises

Exercise 30.1.  Compute the surface area of the surface defined by 𝑧 = 𝑥2 + 𝑦2 ≤ 1.

Exercise 30.2 (Archimedes hat-box theorem).  Let −1 < 𝑎 < 𝑏 < 1 be real numbers. Consider the
unit sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 and the cylinder 𝑥2 + 𝑦2 = 1. Show that the portions of their (lateral)
surface areas which lie between 𝑧 = 𝑎 and 𝑧 = 𝑏 have equal area. See Figure 69.
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Figure 69:  Figure for Exercise 30.2. Show that the two blue lateral surface areas
are equal.
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Part India: Line integrals of vector fields over
a curve
For comparison, Part India corresponds to §14, §15, §20, §21 of Poonen’s notes.

Chapter 31. Vector fields

§31.1 [TEXT] Vector fields
In Part Golf, we only considered integrals of scalar-valued functions. However, in Part India and Juliett
we will meet a vector field, which is another name for a function that inputs points and outputs
vectors.

Definition

A vector field for ℝ𝑛 is a function 𝐅 : ℝ𝑛 → ℝ𝑛 that assigns to each point 𝑃 ∈ ℝ𝑛 a vector
𝐅(𝑃) ∈ ℝ𝑛.

In contrast, we might use the word scalar field for the old kind of functions 𝑓 : ℝ𝑛 → ℝ that gave a
number at each input point rather than a vector.

You actually have met a lot of vector fields before:

Example

Every gradient is an example of a vector field! That is, if 𝑓 : ℝ𝑛 → ℝ, then ∇𝑓  is a vector field
for ℝ𝑛.

This case is so important that there’s a word for it:

Definition

A vector field for ℝ𝑛 is called conservative if it happens to equal ∇𝑓  for some function 𝑓 :
ℝ𝑛 → ℝ.

In Part India and Juliett we’ll meet vector fields that aren’t conservative too.

Type signature

For standalone vector fields, we’ll always use capital bold letters like 𝐅 to denote them. That said,
remember ∇𝑓  is also a vector field. So that’s why the operator ∇ itself is typeset a little bit bold.

Like the gradient, you should draw inputs to 𝐅 as points (dots) but the outputs as vectors (arrows).
Don’t mix them.

For 2D and 3D vector fields, we’ll often write

𝐅 = (𝑝(𝑥, 𝑦)
𝑞(𝑥, 𝑦)) 𝐅 =

(
((
(𝑝(𝑥, 𝑦, 𝑧)

𝑞(𝑥, 𝑦, 𝑧)
𝑟(𝑥, 𝑦, 𝑧))

))
).
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I think other sources often use 𝑃 , 𝑄, 𝑅 instead, but right now I’m using those for points too, so I’ll use
lowercase letters.

§31.2 [TEXT] How do we picture a vector field?
There’s a lot of ways to picture a vector field, especially in physics. For consistency, I’m going to pick
one such framework and write all my examples in terms of it. So in my book, all examples will
be aquatic in nature; but if you can’t swim²⁴, you should feel free to substitute your own. Imagine
an electric field. Or a black hole in outer space. Or air currents in the atmosphere. Whatever works
for you!

Anyway, for my book, we’ll use the following picture:

Idea

Imagine a flowing body of water (ocean, river, whirlpool, fountain, etc.) in ℝ2 or ℝ3. Then at any
point 𝑃 , we draw a tiny arrow 𝐅(𝑃) indicating the direction and speed of the water at the point
𝑃 . You could imagine if you put a little ball at the point 𝑃 , the current would move the ball along
that arrow.

Sounds a lot like the gradient, right? Indeed, conservative vector fields are a big family of vector fields,
and so we should expect they fit this picture pretty neatly. But the thing about conservative vector fields
is this: ∇𝑓 , as a vector field, is always rushing towards whatever makes the value of 𝑓  bigger. Whereas
generic vector fields might, for example, go in loops. Let’s put these examples into aquatic terms.

Example of a conservative vector field: going downstream a river

Let’s imagine we have a river with a strong current. We’ll make the important assumption that
the river only goes one way: that is, if you go along the current, you never end up back where
you started. In real life, this often occurs if the river goes down a mountain, so as you go down
the river you’re losing elevation.

If you do this, you can define a “downstream function” 𝑓 : ℝ3 → ℝ as follows: for every point 𝑃
in the river, 𝑓(𝑃 ) measures how far downstream you are. For example, if the river had a head,
maybe we could assign 𝑓  the value zero there, and then 𝑓  would increase as you get farther from
the bank, reaching the largest value at the mouth. (For mountainous rivers, 𝑓  might instead be
thought of as decreasing in elevation.)

Then the vector field corresponding to the river is the gradient ∇𝑓 . Remember, the gradient ∇𝑓
tells you what direction to move in to increase 𝑓 . And if you throw a ball into a river, its motion
could be described simply as: the ball moves downstream.

²⁴Doesn’t MIT make you pass a swim test, though?
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Figure 70: A river flowing from the base of a waterfall. Black arrows point along
the direction of the gradient.

Example of a non-conservative vector field: a whirlpool

Now imagine instead you have a whirlpool. If you throw a ball in it, it goes in circles around
vertex of the whirlpool. This doesn’t look anything like the river! If you have a river, you never
expect a ball to come back to the same point after a while, because it’s trying to go downstream.
But with a whirlpool, you keep going in circles over and over.

If you draw the vector field corresponding to a whirlpool, it looks like lots of concentric rings
made by tiny arrows. That’s an example of a non-conservative vector field.

Figure 71: A whirlpool. Round and round we go. Not a conservative vector field.
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§31.3 [TEXT] How to draw a vector fields
If you’re actually given a formula for 𝐅(𝑥, 𝑦), you can sketch the corresponding vector field by the
following procedure.

Recipe for sketching a vector field

To draw a cartoon of a vector field:
1. Pick a bunch of points 𝑃  that you want to draw the arrows at.
2. For each 𝑃 , draw a little arrow starting at 𝑃  in the same direction as 𝐅(𝑃). (To make the

cartoon readable, you usually scale down the magnitude of the arrow.)

In practice, to make the pictures not look absurd, people will typically draw the arrows a lot smaller
than they really are. For example, if you get that 𝐅(10, 10) = (2

3), then strictly speaking the arrow
starting at (10, 10) should reach all the way to (12, 13). But if you do this, your cartoon image looks
absurd. So people will typically adjust the arrow sizes in the cartoon to be a tiny arrow, still pointing the
right way, but with much smaller magnitude. For the cartoon it’s usually more important the relative
size of the arrows is correct; drawing the absolute values to scale is unnecessary.

The classic easy-to-draw example is 𝐅 = (𝑥
𝑦), in which for every point 𝑃 , one just points straight

away from the origin. See Figure 72 for that. For the record, in this figure (and the other figures in this
section), the length of all the little arrows is scaled exactly 30% compared to the true length.

Figure 72: A plot of the first vector field that’s drawn in every class, good old
𝐅(𝑥, 𝑦) = (𝑥

𝑦).

Okay, here are eight more pictures to train your instincts. For each one, try to pick a few points like
(2, 0) or (3, −1) and so on and verify that the arrow starting at that point points in the way you expect.
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Figure 73: Four more examples of vector fields in ℝ2. The example 𝐅(𝑥, 𝑦) = (𝑥
0)

has just horizontal arrows that get longer as |𝑥| grows. The example 𝐅(𝑥, 𝑦) = (0
𝑥)

has just vertical arrows, similar story. The example 𝐅(𝑥, 𝑦) = ( 𝑦
−𝑥) is swirly. The

example 𝐅(𝑥, 𝑦) = (𝑥
𝑦
3
) is slanted.
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Figure 74: Another four examples of vector fields in ℝ2. The vector field 𝐅(𝑥, 𝑦) =
(1

1) is just constant. The vector field 𝐅(𝑥, 𝑦) = (
𝑥+𝑦

2
𝑥−𝑦

2
) has some tilted arrows. The

vector field 𝐅(𝑥, 𝑦) = (𝑥
𝑥) has all arrows at 45° angles, growing in length with

larger |𝑥|. And the goofy 𝐅(𝑥, 𝑦) = (sin(𝜋
2 𝑥)

sin(𝜋
2 𝑦)) has an oscillating behavior.

§31.4 [TEXT] Preview of integration over vector fields
As we mentioned in Section 21.2, the line integral and surface integral we encountered in Part Golf
(which had a scalar-valued function) are actually the ugly ducklings that don’t get used. For most cases,
if you are doing a line integral or surface integral, you actually want vector-valued line and surface
integrals, where one takes a line or surface integral over the entire field.
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That’s when the type signatures go crazy.

In order for this to be even remotely memorable, what I’m going to do is augment the previous Figure 41
with pictures corresponding to the situations in which we might integrate a vector field. The new chart
can also be downloaded as a large PDF version.

Figure 75:  Upgraded Figure 41 with vector fields. Download at https://web.
evanchen.cc/textbooks/poster-stokes.pdf.

There are two new features of Figure 75 compared to the old version: the three purple pictures and the
six red arrows. We’ll define them all over the next few sections, so just a few words now.

§31.4.1 The three purple pictures

There are three new pictures in purple: they are work (covered in Part India) and flux (covered in
Part Juliett). Basically, these are the only two situations in which we’ll be integrating over a vector field:

• We have a path along a vector field and want to measure the work of the vector field along that
path (in the physics sense); this is the focus of Part India.

• We have a surface in a 3D vector field and want to measure the flux of the vector field through the
surface; this is the focus of Part Juliett.

These terms will be defined next chapter.
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Type signature

The new purple things are still all scalar quantities, i.e. work and flux are both numbers, not
vectors.

As we mentioned in Section 21.2, the purple pictures will basically replace the corresponding green
ones. Conversely, vector fields will usually only be integrated in the situations described in the purple
picture. This is summarized in Table 15.

For scalar fields 𝑓 : ℝ𝑛 → ℝ For vector fields 𝐅 : ℝ𝑛 → ℝ𝑛

18.01 integral ✅ Used all the time ❌ Never used in 18.02
Line integral 🔵 Only for arc length ✅ Used all the time (work)
Double/Area integral ✅ Used all the time ❌ Never used in 18.02
Surface integral 🔵 Only for surface area ✅ Used all the time (flux)
Triple/Volume integral ✅ Used all the time ❌ Never used (except in Equation 12)

Table 15: What the various kinds of integrals are used for. The integrals with ❌
markers never appear in 18.02, so they don’t appear in the chart Figure 75 either.
(In 18.02 it could happen that line and surface integrals are used for scalar fields if
you need mass of a wire or metal plate, but that’s quite rare I think.)

This bears repeating:

Idea

We’ll pretty much not use the scalar field integrals besides for arc length and surface area. In
other words, you can mostly ignore the green pictures in the poster Figure 75 that got replaced
by purple ones.

§31.4.2 The six red arrows

There are also six new red arrows. They indicate transformations on functions: a way to take one
type of function and use it to build another function.

For example, the gradient ∇ is the one we’ve discussed: if you start with a scalar-valued function 𝑓 :
ℝ𝑛 → ℝ, the gradient creates into a vector field ∇𝑓 : ℝ𝑛 → ℝ𝑛. (The d𝑓

d𝑥  in the 𝑓 : ℝ1 → ℝ case is
also just the gradient, though a bit more degenerate.)

We’ll soon meet three more transformations:

• 2D curl, which converts a vector field on ℝ2 back into a scalar-valued function;
• 3D curl, which converts a vector field on ℝ3 into another vector field;
• divergence, which converts a vector field on ℝ3 back into a scalar-valued function.

§31.5 [TEXT] Foreshadowing of Stokes’ theorem
All the red arrows have two important properties I will tell you right now. Because I haven’t talked
much about any of the red arrows yet, you won’t be able to understand what this means yet.
That’s okay. We’ll go over what this means for each individual red arrow means when we get to it.
However, I want tell you in advance that every time we meet a red arrow, there will be a case of Stokes’
theorem that applies to it.
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Memorize: Two red arrows gives zero

In Figure 75, if you follow two red arrows consecutively, you get zero.

Memorize: Generalized Stokes’ Theorem, for 18.02

In Figure 75, take any of the six red arrows 𝑋 → 𝑌 . Let ℛ be a compact region. Then the integral
of 𝑋 over the boundary of ℛ equals the integral of 𝑌  over ℛ:

∫
boundary(ℛ)

𝑋 = ∫
ℛ

𝑌 .

In fact let me tell you what generalized Stokes’ theorem says, in vague non-precise terms (we’ll make
precise later), for each of these six red arrows:

Evaluation → 18.01 integral For the d𝑓
d𝑥  arrow joining evaluation to the 18.01 integral, it’s the

fundamental theorem of calculus. The region ℛ is the line segment [𝑎, 𝑏], and the boundary is the
two endpoints 𝑎 and 𝑏. Then we have the fundamental theorem of calculus from 18.01:

𝑓(𝑏) − 𝑓(𝑎) = ∫
𝑏

𝑎

d𝑓
d𝑥

d𝑥.

Evaluation → line integral (× 2) There are two such red arrows, but the statement is the same for
both. Suppose 𝐫(𝑡) parametrizes a path joining point 𝑃  to 𝑄 (say, the line segment 𝑃𝑄, or some
more curvy path). The region ℛ is this path, and the endpoints are 𝑃  and 𝑄: Then we get the
fundamental theorem of calculus for line integrals:

𝑓(𝑄) − 𝑓(𝑃) = ∫
stop time

𝑡=start time
∇𝑓(𝐫(𝑡)) ⋅ 𝐫′(𝑡) d𝑡.

The right-hand side is the work done by ∇𝑓  on the path 𝐫.

If you use shorthand where 𝒞 is the curve formed by 𝐫, this could be rewritten as

𝑓(𝑄) − 𝑓(𝑃) = ∫
𝒞

∇𝑓 ⋅ d𝐫.

Line integral → double/area integral Suppose now 𝐅 : ℝ2 → ℝ2 is a vector field. Write 𝐅 =
(𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦)). Let ℛ be some two dimensional region, like a disk. Suppose further that the
boundary of ℛ is parametrized by a curve 𝐫(𝑡) (e.g. the circumference of the disk). Then Green’s
theorem says that

∫
stop time

𝑡=start time
𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡) d𝑡 = ∬

ℛ
(𝜕𝑞

𝜕𝑥
− 𝜕𝑝

𝜕𝑦
) d𝑥 d𝑦.

The weird expression 𝜕𝑞
𝜕𝑥 − 𝜕𝑝

𝜕𝑦  in the right-hand side is called the 2D scalar curl, but we haven’t
defined this term yet.

If you use shorthand as in Table 13, this can be simplified. Let 𝒞 be the curve formed by 𝐫, this
could be rewritten as
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∫
𝒞

𝐅 ⋅ d𝐫 = ∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴.

There’s a second form of Green’s theorem I’ll show you when I get to it.

Line integral → surface integral Suppose now 𝐅 : ℝ3 → ℝ3 is a vector field. Let 𝐫2(𝑢, 𝑣) parame-
trizes some two dimensional surface 𝒮 (like a metal sheet), and suppose further that the boundary
of this surface is parametrized by a curve 𝐫1(𝑡) (e.g. the edges of the sheet). Then the classical
version of Stokes’ theorem says that

∫
stop time

𝑡=start time
𝐅(𝐫1(𝑡)) ⋅ 𝐫′

1(𝑡) d𝑡 = ∬
𝒮
(∇ × 𝐅)(𝐫2(𝑢, 𝑣)) ⋅ (𝜕𝐫2

𝜕𝑢
× 𝜕𝐫2

𝜕𝑣
) d𝑢 d𝑣.

The nonsense expression ∇ × 𝐅 is called the curl, defined next chapter in Chapter 32.

The shorthand version following Table 13 is much easier to read, because the shorthand 𝐧 d𝑆
stands for the entire hunk (𝜕𝐫2

𝜕𝑢 × 𝜕𝐫2
𝜕𝑣 ) d𝑢 d𝑣. Suppose the curve for 𝐫1 is denoted 𝒞. Then the

above equation compresses all the way down to

∫
𝒞

𝐅 ⋅ d𝐫1 = ∬
𝒮
(∇ × 𝐅) ⋅ 𝐧 d𝑆.

so yes, that does save a lot of characters.

Surface integral → triple/volume integral Suppose now 𝐅 : ℝ3 → ℝ3 is a vector field. Let 𝒯 be
some three-dimensional solid (e.g. metal ball). Suppose further the boundary of ℛ is parametrized
by some two-dimensional surface 𝐫(𝑢, 𝑣) (e.g. metal sphere), which we call 𝒮. Then the divergence
theorem says that

∬
𝒮

𝐅(𝐫(𝑢, 𝑣)) ⋅ (𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

) d𝑢 d𝑣 = ∭
𝒯
(∇ ⋅ 𝐅)(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧.

If we adopt shorthand again, this reads just

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = ∭
𝒯

∇ ⋅ 𝐅 d𝑉 .

The nonsense expression ∇ ⋅ 𝐅 is called the divergence, defined next chapter in Chapter 32.

Again, these bullets will not make sense to you yet (except the first one, which is the 18.01 fundamental
theorem of calculus), because there are several undefined terms. Instead, treat this as a template for all
the theorem statements you are going to learn soon:

Idea

Every red arrow in the poster Figure 75 has an associated Stokes result.

Know this going in to each of the concepts to follow.
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Figure 76: It’s all Stokes’ theorem.

§31.6 [TEXT] Stay determined
This is probably super overwhelming right now, and Figure 75 might be frightening to look at because
there’s so much information in it. Don’t worry, we’ll take Figure 75 apart one piece at a time over the
rest of the semester.

• In Chapter 32, I’ll tell you how to compute each of grad, curl, div. This chapter has no integration
in it, so if you hate integration, you’ll like this chapter.

• I’ll start talking about work in Chapter 33. I’ll define it, and then I’ll show you how it ties in to the
fundamental theorem of calculus (which are some of the cases of generalized Stokes’ theorem).

• Then Chapter 38 will define flux. This will let us talk about the rest of the cases of generalized
Stokes’ theorem.

§31.7 [EXER] Exercises

Exercise 31.1.  Take a few deep breaths, touch some grass, and have a nice drink of water, so that
you can look at Figure 75 without feeling fear.

Exercise 31.2.  Print out a copy of the high-resolution version of Figure 75 (which can be down-
loaded at https://web.evanchen.cc/textbooks/poster-stokes.pdf) and hang it in your room.
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Chapter 32. Grad, curl, and div
The goal of this chapter is to define each individual red arrow in the poster. For each red arrow, we’ll
show you

• How to compute it, and
• How to visualize it in an aquatic setting.

There is no integration in this chapter, and so it’s actually pretty straightforward.

Red arrow Symbol Input type Output at
each point

Example input Example output

Gradient ∇𝑓 Scalar field Vector Measure of distance
from top of waterfall

Waterfall current
pointing to lower el-
evation

Curl ∇ × 𝑓 3D vec. field 3D vector Whirlpool current Arrow aligned with
rotation axis, mag-
nitude is rotation
speed

Divergence ∇ ⋅ 𝑓 3D vec. field Scalar Water flow Pump/drain speed
2D curl 𝜕𝑔

𝜕𝑦 − 𝜕𝑓
𝜕𝑥

where
𝐅 = (𝑓, 𝑔)

2D vec. field Scalar Whirlpool current Angular velocity

2D div ∇ ⋅ 𝑓 2D vec. field Scalar Water flow Pump/drain speed

Table 16: The red arrows, plus an extra 2D div that’s a modified version of 2D curl.

§32.1 [SIDENOTE] Aquatics are unlikely to improve your exam score
By the way, a quick word about aquatics. For each of these, I’m trying to tell you how to think of the
quantity in terms of real life. This may help you internalize and remember the results. However, on
the actual 18.02 exam, you will find that most of the functions you are taking curl’s or divergence’s
of are rather artificial functions. So your aquatic intuition is more or less useless for actually doing
calculation.

It’s kind of like how, you were told in 18.01 that derivatives measured rate of change. But then on the
calculus final exam you were asked things like “differentiate 𝑓(𝑥) = sin(𝑒𝑥)2”. It probably wasn’t much
help to know that 𝑓 ′(𝑥) was the rate of change of 𝑓 , because the function 𝑓  is completely artificial and
would never appear in real life. The question was really testing whether you can apply a recipe with
the chain rule to get 𝑓 ′(𝑥) = 2𝑒𝑥 sin(𝑒𝑥) cos(𝑒𝑥).

The same is true in this chapter. Exam questions about grad, curl, div tend to use artificial functions.
So the aquatic intuition is not going to be directly helpful and you just need to be good at following
the recipe.

For this reason, in these notes, I’m not even going to bother trying to explain where the curl and div
formulas come from. Many have tried and many have failed. If you want to see the grown-ups discuss
this, see https://mathoverflow.net/q/21881/70654, where the top comment is “My advice: at this
level, stick strictly to the textbook”.

§32.2 [TEXT] Gradient
You already know how to do this from Chapter 15. The function 𝑓  assigns some number to every point
in ℝ𝑛, and then ∇𝑓  points in the direction that 𝑓  increases most rapidly. In our aquatic examples, you
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could imagine you have a waterfall, 𝑓  measures the distance from the top of the waterfall, and ∇𝑓  just
points straight down.

§32.3 [TEXT] Curl
Here’s the definition of curl in 3D space.

Definition of curl

Suppose

𝐅(𝑥, 𝑦, 𝑧) =
(
((
(𝑝(𝑥, 𝑦, 𝑧)

𝑞(𝑥, 𝑦, 𝑧)
𝑟(𝑥, 𝑦, 𝑧))

))
)

is a 3D vector field. Then the curl of 𝐅 is the vector field defined by

curl 𝐅 ≔ ∇ × 𝐅 ≔

(
((
((
((

𝜕𝑟
𝜕𝑦 − 𝜕𝑞

𝜕𝑧
𝜕𝑝
𝜕𝑧 − 𝜕𝑟

𝜕𝑥
𝜕𝑞
𝜕𝑥 − 𝜕𝑝

𝜕𝑦)
))
))
))

.

Type signature

The curl takes in only a 3D vector field. The curl at each point is a 3D vector (i.e. the curl of a 3D
vector field is itself a 3D vector field).

Tip: How to memorize curl

In practice, everyone remembers this formula using the following mnemonic:

∇ × 𝐅 =

|
|
|
|𝐞1

𝜕
𝜕𝑥
𝑝

𝐞2
𝜕
𝜕𝑦
𝑞

𝐞3
𝜕
𝜕𝑧
𝑟 |

|
|
|
.

This equation does not pass type-safety, because it’s a “matrix” whose entries are some combi-
nation of functions, vectors, and partial derivative operators, so it absolutely does not make sense.
Nonetheless, if you ignore all the type safety warnings and try to “expand” this expression, you
will find that it basically gives you the formula for curl above. (Try it.)

This is why ∇ × 𝐅 is the notation chosen. You could almost imagine

∇ =

(
((
((
(

𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧)

))
))
)

in which case the determinant above is the old mnemonic for the cross product. Again, this makes
absolutely zero sense math-wise. It’s only a convenient way to remember the formula, but it
works really well because you only have to remember “∇ × 𝐅”.
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Sample Question

Compute the curl of the vector field

𝐅(𝑥, 𝑦, 𝑧) =
(
((
(𝑥𝑦

𝑦𝑧
𝑧𝑥)

))
).

Solution.  Let 𝑝(𝑥, 𝑦, 𝑧) = 𝑥𝑦, 𝑞(𝑥, 𝑦, 𝑧) = 𝑦𝑧, 𝑟(𝑥, 𝑦, 𝑧) = 𝑧𝑥. We can compute the first component of
the curl by calculating

𝜕𝑟
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑧𝑥) = 0

𝜕𝑞
𝜕𝑧

= 𝜕
𝜕𝑧

(𝑦𝑧) = 𝑦.

Hence:

𝜕𝑟
𝜕𝑦

− 𝜕𝑞
𝜕𝑧

= (0 − 𝑦) = −𝑦

is the first component of the curl.

The second and third components are done in the same way. The second component is

(𝜕𝑝
𝜕𝑧

− 𝜕𝑟
𝜕𝑥

) = (0 − 𝑧) = −𝑧

and the third component is

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) = (0 − 𝑥) = −𝑥.

Hence

∇ × 𝐅 =
(
((
(−𝑦

−𝑧
−𝑥)

))
) . □

Now let’s talk about aquatic intuition. Suppose as we do for most of our examples that our vector field
𝐅 represents the flow of water in an ocean or other body of water. We think of the curl as capturing
the local rotation or swirling motion of the water at each point.

Here’s how you can imagine curl:

1. Place a small paddle wheel (or imagine a small object that can rotate, like a stick with flags at
each end) in the water at a point where you want to measure the curl.

2. Observe how the wheel rotates due to the flow of water. If the water is flowing uniformly in
a straight line, the wheel will not rotate. In this case, the curl at that point is zero because there’s
no local rotation in the flow.

3. If the wheel spins, this indicates that there is local rotational motion in the water. The curl at
the point is a 3D vector, so there are two pieces of information:
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• The direction in which the wheel spins corresponds as follows to the direction of the curl.
The axis of rotation of the wheel will point in the direction of the curl vector at that point.
For example, if the water causes the wheel to rotate counterclockwise when viewed from
above, the curl vector points upward. If the wheel rotates clockwise, the curl vector points
downward.

• The magnitude of the curl is related to how fast the wheel spins. A faster rotation means a
stronger curl, indicating more intense local rotational motion in the flow of water.

Example of high and low curl:

• In a region where water is circulating in a whirlpool-like pattern, the curl is high because the
water is rapidly rotating around a central point.

• In a calm, straight-moving current, the curl is low or zero because the water doesn’t exhibit any
significant rotation.

In short, the curl of a vector field 𝐅 in our context of water flow measures the tendency of the water
to rotate around each point, rather than simply move in a straight line. Visualizing it with a paddle
wheel helps convey the idea of local rotational motion, with the curl vector indicating the direction
and strength of that rotation.

Now, I promised you earlier that any two red arrows put together give 0. So now we prove the
following.

Memorize: Curl of conservative field is zero

Let 𝑓 : ℝ3 → ℝ be a function (aka scalar field), and let ∇𝑓  be the corresponding conservative
vector field. Then (assuming ∇𝑓  is continuously differentiable), the curl of ∇𝑓  is 𝟎 at every
point i.e.

curl(∇𝑓) = ∇ × (∇𝑓) = 𝟎.

Figure 77: Cut-out of two red arrows from the poster Figure 75 that chain to give
zero.

You can actually verify this theorem pretty easily by definition:

Proof.  Since

∇𝑓 =

(
((
((
((

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
𝜕𝑓
𝜕𝑧)

))
))
))

we get
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curl(∇𝑓) =

(
(((
(𝑓𝑧𝑦 − 𝑓𝑦𝑧

𝑓𝑥𝑧 − 𝑓𝑧𝑥
𝑓𝑦𝑥 − 𝑓𝑥𝑦)

)))
)

=
(
((
(0

0
0)
))
)

because we saw in Section 16.6 that 𝑓𝑧𝑦 = 𝑓𝑦𝑧 = 0, etc. □

However, it’s more important to have a visual understanding of why this is true. Remember, in the
context of water flow, the fact that the curl of the gradient is zero means that if the flow is purely
driven by a gradient (such as water moving due to pressure differences or height differences), there
will be no rotational movement in the water. For example, if you have a waterfall, the water will flow
directly downhill or uphill, without any swirling or spinning motion.

Here’s an example showing this:

Sample Question

Compute the curl of the vector field

𝐅(𝑥, 𝑦, 𝑧) =
(
((
(𝑦2 − sin(𝑥)

2𝑥𝑦 + 4𝑦𝑧
𝑒𝑧 + 2𝑦2

)
))
).

Secretly, we happen to know the right-hand side is the gradient of the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑦2𝑥 +
cos 𝑥 + 2𝑦2𝑧 + 𝑒𝑧 + 𝐶 ; this was the last example in Section 16.3. So with this insider information we
expect the answer should come out to 𝟎. Indeed, it does:

Solution.  Let 𝑝(𝑥, 𝑦, 𝑧) = 𝑦2 − sin(𝑥), 𝑞(𝑥, 𝑦, 𝑧) = 2𝑥𝑦 + 4𝑦𝑧, 𝑟(𝑥, 𝑦, 𝑧) = 𝑒𝑧 + 2𝑦2. First compute 𝜕𝑟
𝜕𝑦

and 𝜕𝑞
𝜕𝑧 :

𝜕𝑟
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑒𝑧 + 2𝑦2) = 4𝑦

𝜕𝑞
𝜕𝑧

= 𝜕
𝜕𝑧

(2𝑥𝑦 + 4𝑦𝑧) = 4𝑦.

Compute the first component:

(𝜕𝑟
𝜕𝑦

− 𝜕𝑞
𝜕𝑧

) = 4𝑦 − 4𝑦 = 0.

For the second component, compute 𝜕𝑝
𝜕𝑧  and 𝜕𝑟

𝜕𝑥 :

𝜕𝑝
𝜕𝑧

= 𝜕
𝜕𝑧

(𝑦2 − sin 𝑥) = 0

𝜕𝑟
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑒𝑧 + 2𝑦2) = 0.

Hence

(𝜕𝑝
𝜕𝑧

− 𝜕𝑟
𝜕𝑥

) = 0 − 0 = 0.

Finally, compute 𝜕𝑞
𝜕𝑥  and 𝜕𝑝

𝜕𝑦 :
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𝜕𝑞
𝜕𝑥

= 𝜕
𝜕𝑥

(2𝑥𝑦 + 4𝑦𝑧) = 2𝑦

𝜕𝑝
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑦2 − sin 𝑥) = 2𝑦.

Compute the third component:

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) = 2𝑦 − 2𝑦 = 0.

So the curl of the vector field 𝐅(𝑥, 𝑦, 𝑧) is (
0
0
0
) = 𝟎 . □

Hence this is an example of a conservative vector field, which we’ll talk more about later.

§32.4 [TEXT] Divergence

Definition of divergence

Suppose

𝐅(𝑥, 𝑦, 𝑧) =
(
((
(𝑝(𝑥, 𝑦, 𝑧)

𝑞(𝑥, 𝑦, 𝑧)
𝑟(𝑥, 𝑦, 𝑧))

))
)

is a 3D vector field. Then the divergence of 𝐅 is the scalar field defined by

div(𝐅) ≔ ∇ ⋅ 𝐅 ≔ 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

+ 𝜕𝑟
𝜕𝑧

.

Type signature

Divergence takes vector fields as input. The divergence at each point is a number (i.e. is a scalar
field).

Tip: How to memorize divergence

The notation ∇ ⋅ 𝐅 is supposed to also be a mnemonic. If you continue the analogy where

∇ =

(
((
((
(

𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧)

))
))
)

then ∇ ⋅ 𝐅 looks like a dot product that does the right thing. Again, only for memory; this is
totally nonsense math-wise.
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Sample Question

Compute the divergence of the vector field

𝐅(𝑥, 𝑦, 𝑧) =
(
((
(𝑥𝑦

𝑦𝑧
𝑧𝑥)

))
).

Solution.  Let 𝑝(𝑥, 𝑦, 𝑧) = 𝑥𝑦, 𝑞(𝑥, 𝑦, 𝑧) = 𝑦𝑧, 𝑟(𝑥, 𝑦, 𝑧) = 𝑧𝑥. Then

𝜕𝑝
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑥𝑦) = 𝑦

𝜕𝑞
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑦𝑧) = 𝑧

𝜕𝑟
𝜕𝑧

= 𝜕
𝜕𝑧

(𝑧𝑥) = 𝑥.

Sum the partials to get the divergence:

∇ ⋅ 𝐅 = 𝜕𝐹1
𝜕𝑥

+ 𝜕𝐹2
𝜕𝑦

+ 𝜕𝐹3
𝜕𝑧

= 𝑦 + 𝑧 + 𝑥 = 𝑥 + 𝑦 + 𝑧 . □

Now let’s talk about aquatics. Again suppose 𝐅 represents the flow of water in an ocean or another
body of water. To visualize the divergence of a vector field 𝐅, think of the divergence as measuring
how much the water is spreading out or converging at each point.

Here’s how you can imagine it:

1. Place a small marker (such as a floating object) at a point in the water flow. The goal is to
observe how the flow of water behaves around that point.

2. If the water appears to be flowing outward, as if water is being emitted from that point, the
divergence is positive at that location. This suggests that more water is moving away from the
point than toward it, indicating a local source of water.

3. If the water appears to be flowing inward, as if the water is being sucked into that point, the
divergence is negative. This suggests that water is converging at the point, indicating a local
sink or depletion of water.

4. If there is no noticeable net flow inward or outward (the water moves but does not spread
out or converge), the divergence is zero. This indicates that there is no net change in how much
water is entering or leaving that point.

Example of high and low divergence:

• In a region where water is being pumped outward from a source, the divergence is high and
positive, indicating that the water is spreading out from that point.

• In a region where water is being drawn into a drain, the divergence is negative, indicating that
the water is converging toward that point.

• In a region where the water is flowing uniformly with no sources or sinks, the divergence is zero
because there is no net flow into or out of any point.

280



Linear Algebra and Multivariable Calculus — Evan Chen

In summary, the divergence of a vector field 𝐅 in the context of water flow measures the rate at which
water is spreading out (positive divergence) or converging (negative divergence) at each point. If there
is neither spreading nor converging, the divergence is zero.

Digression on divergence of curl

I told you any two red arrows give you zero in the poster Figure 75. So there is technically a
theorem that says the divergence of a curl is 0: that is,

div(curl(𝐅)) = ∇ ⋅ (∇ × 𝐅) = 0

assuming 𝐅 has continuous second partial derivatives. However, I don’t think we ever use this in
18.02. The problem is that our description of divergence assumes that our vector field is thought
of like a water current, but curl(𝐅) is a vector field that describes how fast something rotates,
and those arrows are emphatically not a water current (or anything resembling one).

§32.5 [TEXT] 2D scalar curl
The 2D scalar curl is a little more unnatural. The physical interpretation is the same, but if you have a
2D body of water, there’s only two ways to rotate: either clockwise or counterclockwise. (In contrast,
if you put a paddle wheel into the ocean, there are lots of ways it can rotate.)

So the 2D scalar curl, true to its name, only outputs a number at each point, which you think of as
an angular velocity of the spinning paddle wheel. Unlike with the usual 3D curl it’s no longer needed
to specify an entire vector so that you can talk about the direction of rotation. Instead we take the
convention that

• positive numbers mean counterclockwise spin,
• negative numbers mean clockwise spin.

Definition of 2D scalar curl

Suppose

𝐅(𝑥, 𝑦) = (𝑝(𝑥, 𝑦)
𝑞(𝑥, 𝑦))

is a 2D vector field. Then the 2D scalar curl of 𝐅 is the scalar field defined by

curl 𝐅 ≔ 𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

.
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Tip: 2D scalar curl is a special case of 3D scalar curl

The mnemonic ∇ × 𝐅 actually still works if you just pretend 𝐅 is a 3D vector field where the 𝑧-
coordinate is always zero. That is, given 𝐅 = (𝑝(𝑥,𝑦)

𝑞(𝑥,𝑦)), consider the mnemonic

∇ ×
(
((
(𝑝(𝑥, 𝑦)

𝑞(𝑥, 𝑦)
0 )

))
).

If you follow through, you will find you get

|
|
|
| 𝐞1

𝜕
𝜕𝑥

𝑝(𝑥, 𝑦)

𝐞2
𝜕
𝜕𝑦

𝑞(𝑥, 𝑦)

𝐞3
𝜕
𝜕𝑧
0 |

|
|
|
.

All the terms involving 𝜕
𝜕𝑧  disappear, because there’s no 𝑧 anywhere. So only the terms in front

of 𝐞3 survive, and you get

|
𝜕
𝜕𝑥

𝑝(𝑥, 𝑦)

𝜕
𝜕𝑦

𝑞(𝑥, 𝑦)
| 𝐞3 = (𝜕𝑞

𝜕𝑥
− 𝜕𝑝

𝜕𝑦
)𝐞3.

And there’s the 2D scalar curl, the coefficient of 𝐞3.

Sample Question

Compute the 2D scalar curl of

𝐅(𝑥, 𝑦) = ( 𝑥 cos 𝑦
𝑒𝑥 + sin 𝑦).

Solution.  The 2D scalar curl is given by

curl 𝐹 = 𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

.

Given 𝑞(𝑥, 𝑦) = 𝑒𝑥 + sin 𝑦, we have

𝜕𝑞
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑒𝑥 + sin 𝑦) = 𝑒𝑥 + 0 = 𝑒𝑥.

Given 𝑝(𝑥, 𝑦) = 𝑥 cos 𝑦 we have

𝜕𝑝
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑥 cos 𝑦) = 𝑥(− sin 𝑦) = −𝑥 sin 𝑦.

Hence

curl 𝐅(𝑥, 𝑦) = 𝑒𝑥 + 𝑥 sin 𝑦 . □

It’s still true (and indeed follows from the 3D version) that:
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Memorize

The 2D scalar curl of a conservative 2D vector field is zero at every point.

Figure 78: These two red arrows from the poster Figure 75 also chain to give zero.

Let’s see an example of that.

Sample Question

Compute the 2D scalar curl of

𝐅(𝑥, 𝑦) = ( 3𝑥2 + 4𝑥𝑦 + 𝑦2

2𝑥2 + 2𝑥𝑦 − 3𝑦2).

Secretly, we happen to know the right-hand side is the gradient of the function 𝑓(𝑥, 𝑦) = 𝑥3 + 2𝑥2𝑦 +
𝑥𝑦2 − 𝑦3, because we did this example Section 16.3. So the 2D scalar curl should be 0, and indeed it is.

Solution.  Given 𝑞(𝑥, 𝑦) = 2𝑥2 + 2𝑥𝑦 − 3𝑦2:

𝜕𝑞
𝜕𝑥

= 𝜕
𝜕𝑥

(2𝑥2 + 2𝑥𝑦 − 3𝑦2)

= 4𝑥 + 2𝑦

Given 𝑝(𝑥, 𝑦) = 3𝑥2 + 4𝑥𝑦 + 𝑦2:

𝜕𝑝
𝜕𝑦

= 𝜕
𝜕𝑦

(3𝑥2 + 4𝑥𝑦 + 𝑦2)

= 4𝑥 + 2𝑦.

Hence

curl 𝐅(𝑥, 𝑦) = 𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

= (4𝑥 + 2𝑦) − (4𝑥 + 2𝑦) = 0 . □

§32.6 [TEXT] 2D divergence
This is not a red arrow in the picture. But it comes up in one version of Green’s theorem, and it’s
actually exactly the same as 3D. So I’ll just mention it briefly.
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Definition of divergence

Suppose

𝐅(𝑥, 𝑦) = (𝑝(𝑥, 𝑦)
𝑞(𝑥, 𝑦))

is a 2D vector field. Then the divergence of 𝐅 is the scalar field defined by

div 𝐅 ≔ ∇ ⋅ 𝐅 ≔ 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

.

The aquatic interpretation is the same too, just in 2D bodies of water.

Sample Question

Compute the divergence of

𝐅(𝑥, 𝑦) = ( 𝑥 cos 𝑦
𝑒𝑥 + sin 𝑦).

Solution.  In two dimensions, the divergence is given by

∇ ⋅ 𝐅 = 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

.

Given 𝑝(𝑥, 𝑦) = 𝑥 cos 𝑦:

𝜕𝑝
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑥 cos 𝑦) = cos 𝑦.

Given 𝑞(𝑥, 𝑦) = 𝑒𝑥 + sin 𝑦:

𝜕𝑞
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑒𝑥 + sin 𝑦) = cos 𝑦.

Hence

∇ ⋅ 𝐅(𝑥, 𝑦) = 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

= cos 𝑦 + cos 𝑦 = 2 cos 𝑦 . □

Sample Question

Compute the divergence of

𝐅(𝑥, 𝑦) = ( 3𝑥2 + 4𝑥𝑦 + 𝑦2

2𝑥2 + 2𝑥𝑦 − 3𝑦2).

Solution.  Given 𝑝(𝑥, 𝑦) = 3𝑥2 + 4𝑥𝑦 + 𝑦2:

𝜕𝑝
𝜕𝑥

= 𝜕
𝜕𝑥

(3𝑥2 + 4𝑥𝑦 + 𝑦2) = 6𝑥 + 4𝑦
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Given 𝑞(𝑥, 𝑦) = 2𝑥2 + 2𝑥𝑦 − 3𝑦2:

𝜕𝑞
𝜕𝑦

= 𝜕
𝜕𝑦

(2𝑥2 + 2𝑥𝑦 − 3𝑦2) = 2𝑥 − 6𝑦.

Hence

∇ ⋅ 𝐅(𝑥, 𝑦) = 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

= (6𝑥 + 4𝑦) + (2𝑥 − 6𝑦) = 8𝑥 − 2𝑦 . □

§32.7 [EXER] Exercises

Exercise 32.1.  Consider the force of gravity 𝐆 exerted by a point mass of mass 𝑚 at a point 𝑂.
Show that

∇ ⋅ 𝐆 = 0

at every point except 𝑂.

285



Linear Algebra and Multivariable Calculus — Evan Chen

Chapter 33. Work (aka line integrals), and how to compute them
with bare hands
This chapter defines a so-called line integral, the first of the two purple pictures in our poster Figure 75.
For now, we’ll only view this cell in isolation, so we’ll give you the definition and show you how to
use it with bare-hands.

However, it’s worth saying now: there will be shortcuts to computing line integrals that bypass the
work of parametrization. Those shortcuts are given by the red arrows in the Figure 75. In fact, the entire
next chapter, Chapter 34, is dedicated to these shortcuts.

§33.1 [TEXT] Work
We now define the leftmost purple pictures in our poster Figure 75. When we have a vector field 𝐅 :
ℝ𝑛 → ℝ𝑛 as a path 𝐫 : ℝ → ℝ𝑛 through it, we can define the work on it.

Figure 79: The work integral circled from the giant poster in Figure 75.

Definition of work

The work of 𝐅 : ℝ𝑛 → ℝ𝑛 done on a path 𝐫 : ℝ → ℝ𝑛 is defined as

∫
stop time

𝑡=start time
𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡) d𝑡.

Type signature

Keep in mind the types of the inputs; see Table 17. The work is a scalar quantity (there is a dot
product inside the integrand, so it outputs a number).

Symbol Name Input type Output type
𝐫 : ℝ → ℝ𝑛 Parametrization of a path Scalar 𝑡 (time) Point (dot) in ℝ𝑛

𝐫′ : ℝ → ℝ𝑛 Velocity vector for 𝐫 Scalar 𝑡 (time) Vector (arrow) in ℝ𝑛

𝐅 : ℝ𝑛 → ℝ𝑛 Vector field Point (dot) in ℝ𝑛 Vector (arrow) in ℝ𝑛

Table 17: The type signatures of the objects in the work integral.

This is commonly abbreviated with shorthand in two ways.
• First, we mention a new row of the shorthand in Table 13:

d𝐫 ≔ 𝐫′(𝑡) d𝑡.
• Second, often the time parametrization is suppressed from the notation and we just write ∫

𝒞
instead, where 𝒞 denotes the curve that 𝐫(𝑡) traces out. In this context we always consider the
curve to be directed, i.e. one of the endpoints is the starting point, and the other is the ending
point.

286



Linear Algebra and Multivariable Calculus — Evan Chen

That means the above work integral can be rewritten as just

∫
𝒞

𝐅 ⋅ d𝐫.

Mercifully, the shorthand still writes a dot product in the symbols, to remind you that, yes, you should
be evaluating a dot product when you compute this. I can’t imagine how much confusion it would
cause if the shorthand didn’t have the dot product.

§33.2 [SIDENOTE] Aquatic interpretation of work
Letting 𝐅 represent water current as always, the “work” done along a trajectory can be thought of as:

Idea

The work tells you how much the water current helps or hinders the movement of a swimmer
through the water.

To compute this, consider a trajectory along which an object, such as a boat or swimmer, moves
through the water. The current vector field 𝐅 at any point describes the speed and direction of the
water flow at that location. The work done by the current as the object follows a path 𝒞 depends on
the alignment of the current with the object’s movement along that path.

Figure 80: An illustration of the sign of work for a given vector field 𝐅 which points
roughly southeast. In the leftmost image, the path moves directly along 𝐅 and hence
the work is positive. In the middle image, 𝐅 moves directly against 𝐅 instead and
hence the work is negative. In the rightmost image, 𝐅 moves perpendicular to 𝐅
and the work is zero instead.

1. When the current aligns with the path: If the direction of 𝐅 aligns with the direction of the
trajectory at a point, the current contributes positively to the work along that segment, effectively
aiding the motion. This is experienced as a “push” in the direction of travel. The dot products are
positive since at each point 𝑃 = 𝐫(𝑡), the vectors 𝐅(𝑃) and 𝐫′(𝑡) align well, and the work is a
sum of a lot of positive numbers.

2. When the current opposes the path: If the current direction opposes the trajectory at any point, it
contributes negatively to the work, effectively resisting the motion. In this case, the object has
to work against the current, experiencing it as a “drag” force that slows its progress. The dot
products are negative since at each point 𝑃 = 𝐫(𝑡), the vectors 𝐅(𝑃) and 𝐫′(𝑡) point against each
other, and the work is a sum of a lot of negative numbers.

3. When the current flows perpendicularly to the path: If 𝐅 is perpendicular to the trajectory at a point,
it does no work in the direction of travel, as the current neither aids nor resists the movement
along the path. The effect of the current in this case would primarily cause a lateral drift rather
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than a forward or backward push along the trajectory. The dot products are zero in this case: at
each point 𝑃 = 𝐫(𝑡), the vectors 𝐅(𝑃) and 𝐫′(𝑡) are perpendicular.

An illustration of all three situations is shown in Figure 80.

§33.3 [TEXT] Visualizing line integrals via dot products
If you want to visualize the integral, you can imagine walking along the path cut out by 𝐫. At each
point, you draw the tangent vector 𝐫′(𝑡) to the path, and also look at the arrow for the vector field
𝐅(𝐫(𝐭)) at that point. There’s a dot product of these two vectors, which is a number. The line integral
adds up all these numbers.

The light blue and purple in Figure 81 are totally separate

When drawing a cartoon like in Figure 81, it might be useful to keep in mind that there are two
parts to the picture:

• the curve 𝒞 and its parametrization 𝐫(𝑡) (purple in Figure 81)
• the vector field 𝐅(𝑥, 𝑦) (light blue arrows in Figure 81)

Remember, these two parts have nothing to do with each other. That is:
• When you’re sketching the light blue arrows for 𝐅(𝑥, 𝑦), you should only look at 𝐅 and

completely ignore 𝒞 and 𝐫.
• Similarly, when sketching the purple path 𝒞, ignore 𝐅 completely.

Figure 81: Cartoon of the dot products being added up by the work integral.
Imagine adding up all the dot products 𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡).

In practice, if you actually want to do the integral calculation, you end up having to do a parametriza-
tion, so the shorthand hides how much effort will be needed. For example, in the following exercise, 𝒞
is the upper half of the circle 𝑥2 + 𝑦2 = 1, directed from the point (1, 0) to (−1, 0). (Again, for work
integrals, we always require a specification of which way the integral moves along 𝒞, if we choose to
hide the parametrization 𝐫(𝑡) from the notation.)

288



Linear Algebra and Multivariable Calculus — Evan Chen

Tip: You get flexibility in parametrizations, as in Section 12.7

The work integral depends on which direction you walk along the path (it negates if you flip the
start and stop point), but it doesn’t depend on exactly how exactly you parametrize the path.

Thus, the comments from Section 12.7 apply here: if you’re saying, parametrizing the semicircle
(1, 0) to (−1, 0) the blue arc in later Figure 82), you should probably use 𝐫(𝑡) = (cos(𝑡), sin(𝑡))
for 0 ≤ 𝑡 ≤ 𝜋.

You could also use 𝐫(𝑡) = (cos(𝜋𝑡), sin(𝜋𝑡)) for 0 ≤ 𝑡 ≤ 1. Or if you wanted to annoy the grader,
you could even use 𝐫(𝑡) = (cos(𝜋𝑡2), sin(𝜋𝑡2)) for 0 ≤ 𝑡 ≤ 1, which traces out the same arc at
an irregular rate. Since these all give the same answer, you should pick the parametrization that
makes the calculation easiest for you.

Tip: Splicing is OK

There’s no issue with cutting up the path into multiple parts. For example, if 𝒞 is a closed loop
consisting of walking along the perimeter of the square, just cut it into the four line segments.

§33.4 [RECIPE] Computing line integrals by bare-hands via parametrization
Going back to our definition, here it is in recipe form.

Recipe for computing line integrals with bare-hands parametrization

To compute the line integral of 𝐅 over the curve 𝒞:

1. Pick any parametrization 𝐫 : ℝ → ℝ𝑛 of the curve 𝒞, including specifying the start and
stop times.

• As described in Section 12.7, you have some freedom in how you set the parametriza-
tion: it only matters you start and end at the right place, and trace out the exact curve
𝒞. So you should pick a parametrization that makes your calculation easier.

2. Calculate the derivative 𝐫′(𝑡).
3. Calculate the dot product 𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡).
4. Integrate this from the start time to the stop time.

Let’s show some examples of how to calculate this in practice.

Sample Question

Compute the line integral of the vector field 𝐅(𝑥, 𝑦) = (2𝑦
3𝑥) along the following two curves:

• the upper half of the circle 𝑥2 + 𝑦2 = 1, oriented counterclockwise (blue in Figure 82).
• the line segment from (1, 0) to (−1, 0) (brown in Figure 82).
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Figure 82: Two example of a work integral in the vector field 𝐅(𝑥, 𝑦) = (2𝑦
3𝑥). The

blue path is the upper semicircle of 𝑥2 + 𝑦2 = 1; the brown one is a straight line.

Solution.  We do both parts; to prevent drowning in subscripts, we’ll use 𝒞 and 𝐫 for the curve and
parametrization for each part.

Before jumping into the calculation, look at Figure 82 to get a sense of what’s going on. The blue arc
has mixed signs: near the start and end of the arc, the dot products we’re adding are positive as the
small arrows line up well with the blue path. But we’re moving against the current near the top. Since
the arrows near the start are longer, you might guess the work integral is a small positive number, and
you’d be right.

Meanwhile, along the brown arrow, all the arrows are perpendicular to our trajectory. We should
expect the total work to thus be 0, and indeed it is.

• Let’s first do the problem when 𝒞 is the arc. The upper half of the circle 𝑥2 + 𝑦2 = 1 can be
parametrized by:

𝐫(𝑡) = (cos 𝑡
sin 𝑡), where 𝑡  ranges from 0  to 𝜋.

Substitute the parameterization into the vector field:

𝐅(𝐫(𝑡)) = 𝐅(cos 𝑡, sin 𝑡) = (2 sin 𝑡
3 cos 𝑡).

Differentiate 𝐫(𝑡) with respect to 𝑡:

𝐫′(𝑡) = (− sin 𝑡
cos 𝑡 ).

The line integral of 𝐅 along 𝒞 is given by:
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∫
𝒞

𝐅 ⋅ d𝐫 = ∫
𝜋

𝑡=0
𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡) d𝑡

= ∫
𝜋

𝑡=0
(2 sin 𝑡

3 cos 𝑡) ⋅ (− sin 𝑡
cos 𝑡 ) d𝑡

= ∫
𝜋

𝑡=0
[−2 sin2 𝑡 + 3 cos2 𝑡] d𝑡.

To simplify these trig expressions, we use the fact that

sin2 𝑡 = 1 − cos 2𝑡
2

, cos2 𝑡 = 1 + cos 2𝑡
2

.

Substitute these into the integral:

∫
𝜋

𝑡=0
[−2 ⋅ 1 − cos 2𝑡

2
+ 3 ⋅ 1 + cos 2𝑡

2
] d𝑡 = ∫

𝜋

𝑡=0
[−(1 − cos 2𝑡) + 3

2
(1 + cos 2𝑡)] d𝑡

= ∫
𝜋

𝑡=0
[1
2

+ 5
2

cos 2𝑡] d𝑡.

The term ∫𝜋
𝑡=0

cos(2𝑡) d𝑡 is zero by symmetry, so the final integral is 𝜋/2 .

• Now let’s suppose 𝒞 is the brown line segment shown. Parametrize the curve 𝒞 as 𝐫(𝑡) = (1 −
2𝑡, 0), where 0 ≤ 𝑡 ≤ 1. (You could also use 𝐫(𝑡) = (1 − 𝑡, 0) for 0 ≤ 𝑡 ≤ 2 if you prefer, or any
other parametrization starting from (1, 0) and ending at (−1, 0); you’ll get the same answer.)

Differentiate 𝐫(𝑡) with respect to 𝑡:

𝐫′(𝑡) = (−2
0 ).

Meanwhile, the parameterization into the vector field is:

𝐅(𝐫(𝑡)) = 𝐅(0, 1 − 2𝑡) = ( 0
3 − 6𝑡).

The dot product is identically equal to zero:

(−2
0 ) ⋅ ( 0

3 − 6𝑡) = 0.

So the line integral is 0  as well. □

In particular the work integral in general depends on which path you take: we got different answers
for the blue and brown path above. It’s only for the so-called conservative vector fields, which we’ll
talk about more in a moment, for which work integrals are path-independent.

§33.5 [TEXT] Even more shorthand: 𝑝 d𝑥 + 𝑞 d𝑦
Then notation ∫

𝒞
𝐅 ⋅ d𝐫 can still be contracted further: there is another shorthand that hides both 𝐅

and 𝐫 altogether. Here it is:
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Definition: More shorthand for line integrals

In ℝ2, suppose 𝐅(𝑥, 𝑦) = (𝑝(𝑥,𝑦)
𝑞(𝑥,𝑦)). Then the work integral can further be abbreviated as

∫
𝒞
(𝑝 d𝑥 + 𝑞 d𝑦).

Analogously, suppose we have a vector field 𝐅(𝑥, 𝑦, 𝑧) = (
𝑝(𝑥,𝑦,𝑧)
𝑞(𝑥,𝑦,𝑧)
𝑟(𝑥,𝑦,𝑧)

) for ℝ3. Then the work

integral can further be abbreviated as

∫
𝒞
(𝑝 d𝑥 + 𝑞 d𝑦 + 𝑟 d𝑧).

Remark

Here’s the reason the shorthand is written like so. For simplicity, let’s say we’re in the 2D case
and 𝐫(𝑡) = (𝑥(𝑡)

𝑦(𝑡)). Then (𝑝
𝑞) ⋅ 𝐫′ = (𝑝

𝑞) ⋅ (𝑥′

𝑦′) = 𝑝 ⋅ 𝑥′ + 𝑞 ⋅ 𝑦′ = 𝑝 ⋅ d𝑥
d𝑡 + 𝑞 ⋅ d𝑦

d𝑡 . Hence, if we
are integrating ∫stop

𝑡=start
(𝑝

𝑞) ⋅ 𝐫′ d𝑡, we could imagine “cancelling” the d𝑡 out, the expression we’d
get looks like 𝑝 d𝑥 + 𝑞 d𝑦.

For 18.02 purposes, all of this is only for mnemonic purposes; we don’t actually define what any
of the d symbols mean, so we can’t make a more precise statement than that.

If any of 𝑝, 𝑞, 𝑟 are zero, that term can also be omitted entirely. So for example, in 2D, if you see

∫
𝒞

𝑦 d𝑥

you should take this shorthand to mean

∫
𝒞

𝑦 d𝑥 ≔ ∫
𝒞
(𝑦 d𝑥 + 0 d𝑦) = ∫

𝒞
(𝑦

0) ⋅ d𝐫.

Let’s do an example to practice the weird d𝑥 and d𝑦 shorthand, along a different path.

Sample Question

Let 𝒞 denote the arc of the parabola 𝑦 = 𝑥2 starting from (−1, 1) and moving right to (1, 1).
Compute the line integral

∫
𝒞

𝑦2/3 d𝑥.

Solution.  First we need to expand the shorthand with d𝑥 and d𝑦. Recall that 𝑝 d𝑥 + 𝑞 d𝑦 is shorthand
for the vector field being (𝑝

𝑞). So where 𝑦2/3 d𝑥 = 𝑦2/3 d𝑥 + 0 d𝑦, we expand the shorthand as

∫
𝒞

𝑦2/3 d𝑥 = ∫
𝒞
(𝑦2/3

0 ) ⋅ d𝐫 = ∫
stop time

𝑡=start time
𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡) d𝑡

where 𝐅(𝑥, 𝑦) ≔ (𝑦2/3

0 ) refers to the vector field encoded by the 𝑦2/3 d𝑥 shorthand.
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Again, if you look at the sketch in Figure 83, we’re expecting a positive work: all the arrows are pointing
right, and the path 𝒞 in red is moving right as well, so all the dot products are positive. (Again, if you
imagine the blue arrows as a river current, it’s definitely helping you swim, even if it’s not directly
aligned since you’re not swimming straight east.)

Figure 83: The vector field 𝐅(𝑥, 𝑦) = (𝑦2/3

0 ) (little light blue horizontal arrows)
and an arc 𝒞 from the parabola 𝑦 = 𝑥2 in it (purple).

The arc of the parabola we’re trying to traverse needs to start at (−1, 1) and end at (1, 1). Just to make
things concrete, examples of points we expect to pass through in our path are

(−1, 1) ⟶ (−1
2
, 1
4
) ⟶ (−1

3
, 1
9
) ⟶ (0, 0) ⟶ (1

3
, 1
9
) ⟶ (1

2
, 1
4
) ⟶ (1, 1).

Anyway, we choose to parametrize the time as varying in −1 ≤ 𝑡 ≤ 1 with

𝐫(𝑡) = (𝑡, 𝑡2).

Now if we throw everything in, we have

𝐅(𝐫(𝑡)) = 𝐅(𝑡, 𝑡2) = (𝑡4
3

0 )

and

𝐫′(𝑡) = ( 1
2𝑡).

So the overall line integral becomes

∫
1

𝑡=−1
(𝑡4

3

0 )
⏟
=𝐅(𝐫(𝑡))

⋅ ( 1
2𝑡)⏟

=𝐫′(𝑡)

d𝑡 = ∫
1

𝑡=−1
𝑡4

3 d𝑡 = [3
7
𝑡7

3 ]
1

𝑡=−1
= 6

7
. □
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§33.6 [EXER] Exercises

Exercise 33.1 (Suggested by Ting-Wei Chao).  Let 𝒞 be the oriented closed curve formed by the arc
of the parabola 𝑦 = 𝑥2 − 1 running from (−1, 0) to (1, 0), followed by a line segment from (1, 0)
back to (−1, 0). Let

𝐅(𝑥, 𝑦) = (𝑥2(𝑦 + 1)
(𝑦 + 1)2 ).

Compute ∫
𝒞

𝐅 ⋅ d𝐫 using direct parametrization.

Exercise 33.2.  Let 𝒞 be a curve in ℝ2 from (0, 0) to (2, 3) whose arc length is 7. Let 𝐅 be a vector
field with the property that for any point 𝑃  on the curve,

• 𝐅(𝑃) has magnitude 5;
• 𝐅(𝑃) makes a 45° angle with the tangent vector to 𝒞 at 𝑃  (the tangent vector points along the

direction of 𝒞).

Compute ∫
𝒞

𝐅 ⋅ d𝐫.
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Chapter 34. Shortcuts for work: conservative vector fields and
Green’s theorem
In the last chapter we showed the definition of work and how to compute ∫

𝒞
𝐅 ⋅ d𝐫 with bare-hands by

using parametrization. However, parametrization can be a lot of work. So the purpose of this chapter is
to show you under what conditions you can get away with not having to do a parametrization. There
will be two such categories:

• If 𝐅 is a conservative vector field, then the fundamental theorem of calculus is the way to go.
• If you’re working in 2D and 𝒞 is a closed loop, then Green’s theorem is the way to go.

We’ll show you both of these now.

§34.1 [TEXT] The fundamental theorem of calculus for line integrals
We now show the first Stokes result. It corresponds to a statement for the red arrow shown below.

Figure 84: The FTC for line integrals is the Stokes statement for the “grad” red
arrows in the poster Figure 75.

Memorize: FTC for line integrals

Suppose 𝐅 : ℝ𝑛 → ℝ𝑛 is a conservative vector field, given by 𝐅 = ∇𝑓  for some potential
function 𝑓 : ℝ𝑛 → ℝ. Then for any curve 𝒞 from a point 𝑃  to a point 𝑄 we have

∫
𝒞

𝐅 ⋅ d𝐫 = 𝑓(𝑄) − 𝑓(𝑃).

This has several important consequences. If you know 𝐅 is conservative, then
• For any loop (i.e. a curve from a point to itself), the work integral is zero.
• More generally, all the work integrals are path independent if 𝒞 and 𝒞′ are two different paths

from 𝑃  to 𝑄 but the endpoints are the same, the work integrals will both be equal.

Indeed in the first case the work integral is 𝑓(𝑃 ) − 𝑓(𝑃) = 0 and the second case it equals 𝑓(𝑄) −
𝑓(𝑃) (for both 𝒞 and 𝒞’). But those two bullets are nice philosophically because they don’t even require
you to know anything at all about the function 𝑓 .

In other words:
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Idea: Practical consequences of FTC for line integrals

If you already know 𝐅 is conservative, then
• If you also know the potential function 𝑓 , then work integrals are extremely easy to calculate:

just compute 𝑓(ending point) − 𝑓(starting point).
• If you don’t know the potential function 𝑓 , use the methods in Chapter 16 to find it.
• If the starting point and ending point are the same you don’t even need to find 𝑓 . The work

integral is always 0.

Let’s see this concretely with a conservative vector field. We’ll use

𝐅(𝑥, 𝑦) = (2𝑥 + 1
3𝑦 )

which, if we follow the recipe from Chapter 16, we can recover the 𝑓  such that 𝐅 = ∇𝑓 :

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥 + 3
2
𝑦2.

Thus, now that 𝑓  is known, line integrals are trivial to compute:

Sample Question

Compute the line integral of the vector field 𝐅(𝑥, 𝑦) = (2𝑥+1
3𝑦 ) along the following two curves:

• the upper half of the circle 𝑥2 + 𝑦2 = 1, oriented counterclockwise (blue in Figure 85).
• the line segment from (1, 0) to (−1, 0) (brown in Figure 85).

Figure 85: The same brown and blue path from Figure 82, but this time with a
different vector field, now conservative.
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Solution.  Because we know the potential function

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥 + 3
2
𝑦2

the answer to both parts is the same:

𝑓(−1, 0) − 𝑓(1, 0) = 0 − 2 = −2 . □

For comparison, we show how we could have computed the line integrals “by hand” for each of the
bullets above, if we were not clever enough to notice that 𝐅 was conservative. Of course, we do this
knowing that the two answers better be equal (to −2).

• Work on the blue path, which is again 𝐫(𝑡) = (cos 𝑡, sin 𝑡) for 0 ≤ 𝑡 ≤ 𝜋 with 𝐫′(𝑡) = (− sin 𝑡
cos 𝑡 ).

The values of the new vector field 𝐅 along the curve are

𝐅(𝐫(𝑡)) = 𝐅(cos 𝑡, sin 𝑡) = (2 cos 𝑡 + 1, 3 sin 𝑡)

Hence, the dot product being integrated is

𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡) = (2 cos 𝑡 + 1)(− sin 𝑡) + (3 sin 𝑡)(cos 𝑡)
= −2 cos 𝑡 sin 𝑡 − sin 𝑡 + 3 sin 𝑡 cos 𝑡 = cos 𝑡 sin 𝑡 − sin 𝑡

Integrate with respect to 𝑡 from 0 to 𝜋2 :

∫
𝜋

𝑡=0
(cos 𝑡 sin 𝑡 − sin 𝑡) d𝑡 = ∫

𝜋

𝑡=0
(sin(2𝑡)

2
− sin 𝑡) d𝑡 = [− cos(2𝑡) − cos(𝑡)]𝜋𝑡=0 = −2.

• Work on the brown line segment, parametrized again as 𝐫(𝑡) = (1 − 2𝑡, 0), where 𝑡 ∈ [0, 1], and

𝐫′(𝑡) = (−2
0 ).

Putting parameterization into the new vector field gives:

𝐅(𝐫(𝑡)) = (2(1 − 2𝑡) + 1
3 ⋅ 0 ) = (3 − 4𝑡

0 ).

The line integral of 𝐅 along 𝒞 is given by:

∫
𝒞

𝐅 ⋅ d𝐫 = ∫
1

𝑡=0
𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡) d𝑡 = ∫

1

𝑡=0
−2(3 − 4𝑡) d𝑡

= ∫
1

𝑡=0
(8𝑡 − 6) d𝑡 = (4𝑡2 − 6𝑡)1

𝑡=0
= −2.

Sample Question

Suppose 𝒞 is any path from (1, 100) to (42, 1337). Compute

∫
𝒞

5 d𝑥.
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Solution.  Expanding the shorthand 5 d𝑥 = 5 d𝑥 + 0 d𝑦, the vector field we’re integrating over is the
constant vector field 𝐅(𝑥, 𝑦) = (5

0). (In the cartoon, every blue arrow points directly east and has the
same length 5.) This is certainly conservative: the potential function

𝑓(𝑥, 𝑦) = 5𝑥

can be found just by guessing or via the method in Chapter 16. Indeed, ∇𝑓 = (5
0) as we needed.

So now that we know 𝐅 is conservative and have found a potential function 𝑓 , we can forget about
parametrizing 𝒞 and just write directly

∫
𝒞

5 d𝑥 = 𝑓(42, 1337) − 𝑓(1, 100) = 5 ⋅ 42 − 5 ⋅ 1 = 5(42 − 1) = 204 . □

Remark

In general, the vector field encoded by 𝑐 d𝑥 for any constant 𝑐 is conservative with potential
function 𝑓(𝑥, 𝑦) = 𝑐𝑥. Hence, ∫

𝒞
𝑐 d𝑥 = 𝑐 ∫

𝒞
d𝑥 will always just equal to 𝑐 times the total change

in 𝑥.

§34.2 [TEXT] Okay, but how do you tell whether 𝐅 is conservative?
We saw that when 𝐅 is conservative, the curl ∇ × 𝐅 is zero. It turns out that if 𝐅 is defined everywhere,
then the reverse is true too: that is, we can use ∇ × 𝐅 as a criteria for checking conservative fields.

Memorize: Conservative ⟺ ∇×𝐅 = 𝟎

Assume here the vector field is continuously differentiable and defined everywhere on ℝ2 or ℝ3.
• A vector field 𝐅 : ℝ2 → ℝ2 given by 𝐅(𝑥, 𝑦) = (𝑝(𝑥,𝑦)

𝑞(𝑥,𝑦)) is conservative if and only if the 2D
scalar curl is zero everywhere:

𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

= 0.

• A vector field 𝐅 : ℝ3 → ℝ3 is conservative if and only if the curl ∇ × 𝐅 is zero everywhere.

In symbols, if 𝐅(𝑥, 𝑦) = (
𝑝(𝑥,𝑦,𝑧)
𝑞(𝑥,𝑦,𝑧)
𝑟(𝑥,𝑦,𝑧)

) then we need all three components of the curl to equal

0:

𝜕𝑟
𝜕𝑦

− 𝜕𝑞
𝜕𝑧

= 𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

= 𝜕𝑝
𝜕𝑧

− 𝜕𝑟
𝜕𝑥

= 0.

This should look familiar: it’s the same thing I told you in Section 16.6. The only thing that’s change
is that I now have an aquatic interpretation of all the equations: that we require the 2D or 3D curl to
be zero. But the equations are the same.

Remark

This theorem also fails if the vector field 𝐅 is only defined on part of ℝ𝑛 and the region is not
simply connected. In that case it only works one direction — that is, if ∇ × 𝐅 ≠ 𝟎 then 𝐅 is
definitely not conservative, but some non-conservative fields also satisfy ∇ × 𝐅 = 𝟎.
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Sample Question

For which real number 𝑐 is the vector field

𝐅 = ( 𝑒cos 𝑥 + 𝑥𝑦5

𝑐𝑥2𝑦4 + log(𝑦2 + 1))

a conservative vector field?

Solution.  We need the number 𝑐 such that

𝜕
𝜕𝑥

(𝑐𝑥2𝑦4 + log(𝑦2 + 1)) = 𝜕
𝜕𝑦

(𝑒cos 𝑥 + 𝑥𝑦5)

⟺ 𝑐 ⋅ 2𝑥𝑦4 = 5𝑥𝑦4

holds for all real numbers 𝑥 and 𝑦. This occurs only when 𝑐 = 5
2
. . □

Sample Question

For which real numbers 𝑎, 𝑏 is the vector field

𝐅 =
(
((
(𝑦2 + 𝑎𝑥2𝑧 + 𝑒𝑥

𝑏𝑥𝑦 + 𝑧 cos(𝑦𝑧)
𝑥3 + 𝑦 cos(𝑦𝑧) )

))
).

a conservative vector field?

Solution.  Let

𝑝 = 𝑦2 + 𝑎𝑥2𝑧 + 𝑒𝑥

𝑞 = 𝑏𝑥𝑦 + 𝑧 cos(𝑦𝑧)

𝑟 = 𝑥3 + 𝑦 cos(𝑦𝑧).

We need to seek (𝑎, 𝑏) such that the curl ∇ ⋅ 𝐅 is zero, that is

𝜕𝑟
𝜕𝑦

− 𝜕𝑞
𝜕𝑧

= 𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

= 𝜕𝑝
𝜕𝑧

− 𝜕𝑟
𝜕𝑥

= 0.

We compute all six partial derivatives in turn.

• For the first component of the curl to be zero, we need the following to partials to be equal:

𝜕𝑟
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑥3 + 𝑦 cos(𝑦𝑧)) = cos(𝑦𝑧) + 𝑦(− sin(𝑦𝑧))𝑧 = cos(𝑦𝑧) − 𝑦𝑧 sin(𝑦𝑧)

𝜕𝑞
𝜕𝑧

= 𝜕
𝜕𝑧

(𝑏𝑥𝑦 + 𝑧 cos(𝑦𝑧)) = cos(𝑦𝑧) + 𝑧(− sin(𝑦𝑧))𝑦 = cos(𝑦𝑧) − 𝑦𝑧 sin(𝑦𝑧).

But this is always true, regardless of 𝑎 and 𝑏.
• For the second component of the curl to be zero, we need the following to partials to be equal:
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𝜕𝑝
𝜕𝑧

= 𝜕
𝜕𝑧

(𝑦2 + 𝑎𝑥2𝑧 + 𝑒𝑥) = 𝑎𝑥2

𝜕𝑟
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑥3 + 𝑦 cos(𝑦𝑧)) = 3𝑥2.

This occurs if and only if 𝑎 = 3.
• For the third component of the curl to be zero, we need the following to partials to be equal:

𝜕𝑞
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑏𝑥𝑦 + 𝑧 cos(𝑦𝑧)) = 𝑏𝑦

𝜕𝑝
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑦2 + 𝑎𝑥2𝑧 + 𝑒𝑥) = 2𝑦.

This occurs if and only if 𝑏 = 2.

Hence (𝑎, 𝑏) = (3, 2)  is the only answer. □

Digression

In particular, there should be a potential function for each of the two examples above.

In the first example, it’s not easy to write down a potential function, because 𝑒cos 𝑥 has no easily-
expressed anti-derivative. (Though log(𝑦2 + 1) does; it turns out to be 𝑦(log(𝑦2 + 1) − 2) +
2 arctan(𝑦).) So we are content that some potential function does exist even if it cannot be written
down using familiar functions.

On the other hand, the second example can be integrated readily enough, by following the
procedure in Chapter 16: one should get

𝑓(𝑥, 𝑦, 𝑧) = 𝑒𝑥 + cos(𝑦𝑧) + 𝑥3𝑧 + 𝑥𝑦2 + 𝐶.

§34.3 [TEXT] Green’s theorem (2D only)
We expect there should be a Stokes result as well for the red arrow joining the 2D work integral to an
area integral.

Figure 86: Green’s theorem is the Stokes result for the above red arrow from the
poster Figure 75.

Here is what it says.
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Memorize: Green’s theorem for converting work to curl

Suppose 𝒞 is a closed loop parametrized by 𝐫(𝑡) that encloses a region ℛ counterclockwise. Then
for any vector field 𝐅 = (𝑝(𝑥,𝑦)

𝑞(𝑥,𝑦)), conservative or not, we have

∮
𝒞

𝐅 ⋅ d𝐫 = ∮
𝒞
(𝑝 d𝑥 + 𝑞 d𝑦) = ∬

ℛ
(𝜕𝑞

𝜕𝑥
− 𝜕𝑝

𝜕𝑦
) d𝐴.

There’s a new symbol ∮
𝒞

 on the left, but it has the same meaning as ∫
𝒞

. The circle is there to emphasize
that 𝒞 is a closed loop, i.e. it’s required to have the same start and ending point (unlike the other curves
we saw in earlier examples). In other words:

Definition of ∮

∮
𝒞

 means “∫
𝒞

 but with an extra optional reminder that 𝒞 is a loop”. (The reminder is optional,
i.e. you are not obligated to add the circle even when 𝒞 is a loop.)

Note this doesn’t require 𝐅 to be conservative! (All the past discussion about 𝐅 being conservative
was because we were using the red “grad” arrow in Figure 84. But we’re now moving on to a new red
arrow in our poster, and that assumption about a gradient isn’t needed anymore.) In fact, in the event
that 𝐅 = ∇𝑓  is conservative, we know that 𝜕𝑞

𝜕𝑥 − 𝜕𝑝
𝜕𝑦 = 0: the 2D scalar curl of a conservative vector

field is 0. So Green’s theorem is then just saying that ∮
𝒞

∇𝑓 d𝐫 = 0 which we already knew.

Tip: Always use counterclockwise orientation

Whenever 𝒞 is a closed loop in ℝ2, we’ll basically always assume that the direction we walk
around it is counterclockwise. It’s considered bad manners to break this convention and have a
loop oriented clockwise.

Green’s theorem gives us a way to short-circuit a bunch of calculations that we were doing by hand
earlier in the case where our loop is closed. Here are a few.

Sample Question

Calculate the line integral

∮
𝒞
(𝑥3 − 𝑦) d𝑥 + (𝑥 + 𝑦3) d𝑦,

where 𝒞 is the circle 𝑥2 + 𝑦2 = 4 oriented counterclockwise.

Solution.  Let ℛ denote the region enclosed by 𝒞. We use Green’s theorem with the vector field

𝑝(𝑥, 𝑦) = 𝑥3 − 𝑦, 𝑞(𝑥, 𝑦) = 𝑥 + 𝑦3.

Calculate the partial derivatives of 𝑞 with respect to 𝑥 and 𝑝 with respect to 𝑦:

𝜕𝑞
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑥 + 𝑦3) = 1, 𝜕𝑝
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑥3 − 𝑦) = −1.

Substitute the partial derivatives into Green’s theorem:
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∮
𝒞

𝑝 d𝑥 + 𝑞 d𝑦 = ∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴 = ∬
ℛ

(1 − (−1)) d𝐴 = ∬
ℛ

2 d𝐴.

The region ℛ is the disk defined by 𝑥2 + 𝑦2 ≤ 4, which is a circle of radius 2, hence with area

Area(ℛ) = 𝜋𝑟2 = 𝜋(2)2 = 4𝜋.

So the answer is 2 ⋅ 4𝜋 = 8𝜋 . □

Sample Question

Evaluate the line integral

∮
𝒞
(𝑦 d𝑥 − 𝑥 d𝑦)

where 𝒞 is the triangle with vertices at (0, 0), (1, 0), and (0, 1), oriented counterclockwise.

Solution.  Let ℛ denote the interior of the triangle. By Green’s theorem:

∮
𝒞

𝑝 d𝑥 + 𝑞 d𝑦 = ∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴,

where 𝑃(𝑥, 𝑦) = 𝑦 and 𝑄(𝑥, 𝑦) = −𝑥. Calculate 𝜕𝑞
𝜕𝑥  and 𝜕𝑝

𝜕𝑦 :

𝜕𝑞
𝜕𝑥

= −1, 𝜕𝑝
𝜕𝑦

= 1.

Hence

∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴 = ∬
ℛ

(−1 − 1) d𝐴 = ∬
ℛ

−2 d𝐴.

The area of the triangle ℛ is:

Area(ℛ) = 1
2

⋅ base ⋅ height = 1
2

⋅ 1 ⋅ 1 = 1
2
.

Thus:

∬
ℛ

−2 d𝐴 = −2 ⋅ 1
2

= −1 . □

Sample Question

Calculate the line integral

∮
𝒞
(𝑥2 d𝑦 − 𝑦2 d𝑥)

where 𝐶 is the boundary of the square with vertices at (1, 1), (0, 1), (0, 0), and (1, 0), oriented
counterclockwise.

Solution.  Let ℛ denote the interior of the square. By Green’s theorem:
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∮
𝒞

𝑝 d𝑥 + 𝑞 d𝑦 = ∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴,

where 𝑝(𝑥, 𝑦) = −𝑦2 and 𝑞(𝑥, 𝑦) = 𝑥2. Calculate 𝜕𝑞
𝜕𝑥  and 𝜕𝑝

𝜕𝑦 :

𝜕𝑞
𝜕𝑥

= 2𝑥, 𝜕𝑝
𝜕𝑦

= −2𝑦.

Substitute these into Green’s theorem:

∬
ℛ

(2𝑥 − (−2𝑦)) d𝐴 = ∬
ℛ

(2𝑥 + 2𝑦) d𝐴.

Since ℛ is a square with side length 1 centered at the origin, integrate over 𝑥 and 𝑦 from 0 to 1:

∬
ℛ

(2𝑥 + 2𝑦) d𝐴 = 2 ∫
1

𝑦=0
∫

1

𝑥=0
(𝑥 + 𝑦) d𝑥 d𝑦.

Evaluate the inner integral with respect to 𝑥:

[𝑥2

2
+ 𝑦𝑥]

1

𝑥=0

= 𝑦 + 1
2
.

Evaluate the integral with respect to 𝑦:

2 ∫
1

𝑦=0
(𝑦 + 1

2
) d𝑦 = 2 . □

§34.4 [SIDENOTE] A picture explaining why Green’s Theorem for work should
be true (not a formal proof)
Here is an extremely informal explanation of what Green’s Theorem is trying to say pictorially. We
won’t make it precise or go into the details.

Remember that the 2D scalar curl of a 2D vector field 𝐅 at a point 𝑃  is a number that describes the
counterclockwise swirl of the field 𝐅 near 𝑃 . So to draw a picture (Figure 87):

• Let’s 𝒞 be a counterclockwise loop oriented counterclockwise. For the picture, we’ll draw 𝒞 as a
purple square, which encloses a region ℛ.

• Then we imagine breaking ℛ into a bunch of tiny little squares. At each little square, we draw a
little green swirl inside it that corresponds roughly to the 2D scalar curl of 𝐅 at the center of the
tiny square.

Then the integral

∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴

can be thought of as the “sum of the green swirls” (whatever that means).

303



Linear Algebra and Multivariable Calculus — Evan Chen

Figure 87: A rough picture of what Green’s Theorem for work is trying to say: “if
you add up the green swirls, then only the work along the purple boundary is left”.

However, in Figure 87 you should realize: all the swirls on the inside cancel. Imagine one of the
vertical grey walls between two grey cells: you can imagine the direction and magnitude of 𝐅 along
the wall contributes to the “swirliness” of the two adjacent cells, but whatever it contributes positively
to one cell, it contributes negatively to the other one. (Again, this is all an informal picture, so I won’t
make this precise.)

So if we add all the green stuff, the only thing that’s left is the green stuff that’s just along the purple
curve (drawn darker above). For example, the dark green arrows on the left correspond to how much
𝐅 points downwards against the nearby grey walls: which exactly matches the description of the work
integral of 𝐅 along that western wall. And when you sum all four dark green currents, you just get
the total work done by 𝐅 along the purple curve 𝒞, as desired.

§34.5 [RECIPE] Evaluating line integrals, all together now
While we gave a definition of line integrals with parametrization, we then saw right away there are
a couple shortcuts, namely FTC and Green’s theorem (in 2D) in certain cases. So with this, we can
present a recipe that condenses these together.
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Recipe for computing line integrals with possible shortcuts

Suppose we want to evaluate ∫
𝒞

𝐅 ⋅ d𝐫.

1. First, check if the vector field is conservative by seeing if the curl is zero.
• If so, don’t bother parametrizing 𝒞. Don’t even look at 𝒞 besides the endpoints. Find a

potential function 𝑓  for the vector field 𝐅 and use the FTC as a shortcut: output

𝑓(stop) − 𝑓(start).
2. Second, if the line integral is in ℝ2, check if 𝒞 is a closed loop.

• If so, see if Green’s theorem gives you an easy shortcut:

∮
𝒞
(𝑝 d𝑥 + 𝑞 d𝑦) = ∬

ℛ
(𝜕𝑞

𝜕𝑥
− 𝜕𝑝

𝜕𝑦
) d𝐴.

3. If both of these fail, fall back to the parametrization recipe described in Section 33.4. To
repeat it here:

1. Pick any parametrization 𝐫 : ℝ → ℝ𝑛 of the curve 𝒞, including specifying the start
and stop times. As described in Section 12.7, you have some freedom in how you set
the parametrization.

2. Calculate the derivative 𝐫′(𝑡).
3. Calculate the dot product 𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡).
4. Integrate this from the start time to the stop time.

We’ll give several more examples of this in Section 35.5, where we contrast it to another type of line
integral, the “2D flux”.

§34.6 [TEXT] Advanced technique: sealing regions
Green’s Theorem is powerful enough that it can be handy even if the path 𝒞 is not a closed loop: the
idea is to “seal” the loop by adding some simple path, for which the line integral is easy to calculate.
To show this technique, we bring back the first example from Section 33.4 all the way back when we
first introduced how to compute work with bare hands.

Sample Question

Compute the line integral of the vector field 𝐅(𝑥, 𝑦) = (2𝑦
3𝑥) along the upper half of the circle

𝑥2 + 𝑦2 = 1, oriented counterclockwise. See Figure 88.

We already saw that we could compute this using bare-hands parametrization. Now we’ll show how
to use Green’s Theorem as a shortcut by adding the line segment from (−1, 0), to (1, 0).

305



Linear Algebra and Multivariable Calculus — Evan Chen

Figure 88: Evaluation of ∫
𝒞

𝐅 ⋅ d𝐫 by “sealing” the region, adding in a line segment
joining (−1, 0) to (1, 0). The line integral across the segment is easy to compute (it
equals zero, since the force is perpendicular to it.) Then Green’s theorem applies
to the sealed region ℛ.

Solution.  Let 𝒞 denote the semicircle. Because 𝒞 is not a closed loop, Green’s Theorem does not apply
directly. To use it, we instead add a new line segment 𝒞lid pointing from (−1, 0) to (1, 0). Then if we
consider both 𝒞 and the new lid 𝒞lid, they enclose the upper half of a disk ℛ with area 𝜋2 , as shown in
Figure 88. Hence Green’s Theorem on the two-part boundary states that

∫
𝒞
(2𝑦 d𝑥 + 3𝑥 d𝑦)

⏟⏟⏟⏟⏟⏟⏟
what we want

+ ∫
𝒞lid

(2𝑦 d𝑥 + 3𝑥 d𝑦) = ∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴

= ∬
ℛ

( 𝜕
𝜕𝑥

(3𝑥) − 𝜕
𝜕𝑦

(2𝑦)) d𝐴

= ∬
ℛ

(3 − 2) d𝐴 = ∬
ℛ

d𝐴

= Area(ℛ) = 𝜋
2
.

On the other hand, I claim that

∫
𝒞lid

(2𝑦 d𝑥 + 3𝑥 d𝑦) = 0.

This is easy to compute with direct parametrization: if we parametrize the lid by 𝐫(𝑡) = (𝑡, 0) for −1 ≤
𝑡 ≤ 1, for example, then

∫
𝒞lid

(2𝑦 d𝑥 + 3𝑥 d𝑦) = ∫
1

𝑡=−1
(2 ⋅ 0

3 ⋅ 𝑡) ⋅ 𝐫′(𝑡) d𝑡 = ∫
1

𝑡=−1
( 0

3𝑡) ⋅ (1
0) d𝑡 = ∫

1

𝑡=−1
0 d𝑡 = 0.
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Indeed one can even see it from Figure 88 directly, since the vector field is perpendicular to the 𝑥-axis
along the entire lid, so the total work being 0 is not a surprise. Thus, the desired line integral is

∫
𝒞
(2𝑦 d𝑥 + 3𝑥 d𝑦)

⏟⏟⏟⏟⏟⏟⏟
what we want

= ∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴 − ∫
𝒞lid

(2𝑦 d𝑥 + 3𝑥 d𝑦)

= 𝜋
2

− 0 =
𝜋
2 . □

§34.7 [EXER] Exercises

Exercise 34.1.  Is the vector field

𝐅(𝑥, 𝑦) = ( sin(𝑒𝑥)
arctan(𝑦𝜋 + 𝜋𝑦))

conservative?

Exercise 34.2.  Calculate the line integral

∮
𝒞
(𝑥2 − 𝑦) d𝑥 + (𝑦2 − 𝑥) d𝑦

where 𝒞 is the boundary of the region enclosed by the circle 𝑥2 + 𝑦2 = 4, oriented counterclock-
wise.

Exercise 34.3 (Suggested by Ting-Wei Chao).  As in Exercise 33.1, let 𝒞 be the oriented closed curve
formed by the arc of the parabola 𝑦 = 𝑥2 − 1 running from (−1, 0) to (1, 0), followed by a line
segment from (1, 0) back to (−1, 0). Again let

𝐅(𝑥, 𝑦) = (𝑥2(𝑦 + 1)
(𝑦 + 1)2 ).

Compute ∫
𝒞

𝐅 ⋅ d𝐫 this time using Green’s Theorem.

Exercise 34.4 (*) (Shoelace formula).  Let 𝑛 ≥ 3 be an integer and suppose 𝒫 = 𝑃1𝑃2…𝑃𝑛 is a
convex 𝑛-gon in ℝ2, where the vertices 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖) are labeled counterclockwise. Use Green’s
theorem to prove the following formula for the area of 𝒫:

Area(𝒫) = 1
2

∑
𝑛−1

𝑖=0
(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖).

Here 𝑥0 = 𝑥𝑛 and 𝑦0 = 𝑦𝑛 by convention, so the 𝑖 = 0 summand is 𝑥𝑛𝑦1 − 𝑥1𝑦𝑛.
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Chapter 35. 2D flux

§35.1 [TEXT] Definition of 2D flux
I will grudgingly define 2D flux first, since I just went over Green’s theorem. I say “grudgingly” because
2D flux is really a special case of 3D flux, but to keep things simple we’ve still been working in two
dimensions.

The idea of flux is that you have some closed curve 𝒞 in ℝ2. When we had a work integral, we went
along the curve 𝒞 and added together the dot product of the vector field with the tangent vectors on
that vector field.

With 2D flux, we instead take the dot product of the vector field with the normal vector rather than
the tangent vector. This should be drawn as a 90° clockwise rotation of 𝐫′(𝑡). Seriously, I can’t make
this up.

Figure 89: The 2D flux is the dot product where the tangent 𝐫′(𝑡) is replaced by
its rotated version.

In any case, the 2D flux is then defined as follows.

Definition of 2D flux

The 2D flux of a vector field 𝐅 through the closed path 𝒞 parametrized by 𝐫(𝑡) is defined by

∫
stop time

𝑡=start time
𝐅(𝐫(𝑡)) ⋅ (90° clockwise rotation of 𝐫′(𝑡)) d𝑡.

Type signature

2D flux is a scalar quantity. It’s only defined for a vector field in ℝ2 piercing a closed path in ℝ2.
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The “90° clockwise rotation of 𝐫′(𝑡)” is so awkward that you can bet people immediately made up a
shorthand to sweep it under the rug. I think the usual notation is

𝐧 d𝑠 ≔ (90° clockwise rotation of 𝐫′(𝑡)) d𝑡

so that the above thing will usually be condensed to

∫
𝒞

𝐅 ⋅ 𝐧 d𝑠.

Digression on why 𝐧d𝑠 is the shorthand

I think the reason this shorthand is used is: 𝐧 is supposed to be the “outward unit normal vector”,
i.e. a vector of length 1 whose direction is 90° rotated from 𝐫′(𝑡). So then it needs to be scaled by
the magnitude |𝐫′(𝑡)|, and so we copy the old d𝑠 from arc length.

So this notation is consistent with the notation used for scalar-field line integrals (if you consider
the scalar field 𝑓 = 𝐅 ⋅ 𝐧). But I don’t like to mention this because I want to avoid scalar-field
line integrals in 18.02 for anything that isn’t arc length to keep things simple.

Warning

The rotated 𝐫′(𝑡) is sometimes called the “outward normal vector”. However, despite the name,
it only points outward if we oriented 𝒞 counterclockwise. If 𝒞 is clockwise it points inwards
instead!

§35.2 [TEXT] Aquatic interpretation of 2D flux
Aquatically, if the curve 𝒞 is thought of as some permeable membrane, then the 2D flux measures the
rate the current passes through the membrane. Assuming 𝒞 is oriented counterclockwise, the 2D flux
is positive if water is (net) moving out of 𝒞; it’s negative if it flows in.

§35.3 [TEXT] 2D flux is a rotation of 2D work
We don’t like the 𝐧 d𝑠 notation because we don’t like scalar-field line integrals. Fortunately, there is
another way to write the flux with shorthand that avoids 𝐧 d𝑠 notation. To see where it comes from,
once again write

𝐅(𝑥, 𝑦) = (𝑝(𝑥, 𝑦)
𝑞(𝑥, 𝑦)).

Rather than rotating 𝐫′(𝑡) by 90° clockwise, let’s imagine we instead rotated 𝐅 by 90° counterclockwise
instead, and use:

(90°  counterclockwise rotation of 𝐅(𝑥, 𝑦)) = (−𝑞(𝑥, 𝑦)
𝑝(𝑥, 𝑦) ).

The idea is the following:

Idea

𝐅 ⋅ (90° clockwise rotation of 𝐫′) = (90° counterclockwise rotation of 𝐅) ⋅ 𝐫′.
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So what we’ve done is put the rotation thing onto the vector field instead.

Proof of the equation.  To spell this out, imagine that 𝐫′(𝑡) = (𝑟′
1(𝑡)

𝑟′
2(𝑡)), meaning that its 90° clockwise

rotation is ( 𝑟′
2(𝑡)

−𝑟′
1(𝑡)). Then the two quantities

𝐅 ⋅ (90° clockwise rotation of 𝐫′) = (𝑝
𝑞) ⋅ ( 𝑟′

2
−𝑟′

1
)

(90° counterclockwise rotation of 𝐅) ⋅ 𝐫′ = (−𝑞
𝑝 ) ⋅ (𝑟′

1
𝑟′
2
)

and equal as both are 𝑝𝑟′
2 − 𝑞𝑟′

1 (strictly speaking, this quantity should be written in full as
𝑝(𝐫(𝑡))𝑟′

2(𝑡) − 𝑞(𝐫(𝑡))𝑟′
1(𝑡), for each time 𝑡). □

The upshot of this is that we can actually change the flux into a work integral:

∫
𝒞

𝐅 ⋅ 𝐧 d𝑠 = ∫
𝒞
(𝐅 rotated 90° counterclockwise) ⋅ d𝐫.

This looks a bit better but we still want to get rid of the rotation thing. But we can, because there
is a shorthand for work that uses just 𝑝 and 𝑞. Specifically, since 𝐅 rotated 90° counterclockwise =
( 𝑞

−𝑝), we have

∫
𝒞
(𝐅 rotated 90° counterclockwise) ⋅ d𝐫 = ∫

𝒞
(−𝑞 d𝑥 + 𝑝 d𝑦).

In summary, we get the following more readable shorthand:

Better definition of 2D flux using work shorthand

Let 𝐅(𝑥, 𝑦) = (𝑝(𝑥,𝑦)
𝑞(𝑥,𝑦)) be a 2D vector field and let 𝒞 be a path in ℝ2. Then the flux of 𝐅 through

𝒞 is defined as

∫
𝒞
(−𝑞 d𝑥 + 𝑝 d𝑦).

Tip

For this reason, we usually prefer to rotate 𝐅 by 90° counterclockwise (rather than rotate 𝐫′ by
90° clockwise) when doing concrete calculation, though of course they give the same result. I
think it’s easier to remember and more natural this way, because it makes things more consistent
with the work integral. We’ll use that convention in all the examples to follow.

In particular, if 𝒞 is a loop (and that’s usually the case if we’re talking about flux at all) that means
we can apply Green’s theorem again; the resulting theorem is called Green’s theorem in flux form. We
get that

∮
𝒞
(−𝑞 d𝑥 + 𝑝 d𝑦) = ∬

ℛ
(𝜕𝑝

𝜕𝑥
+ 𝜕𝑞

𝜕𝑦
) d𝐴.

The right-hand side is 2D divergence, so it could be condensed even further to
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∬
ℛ

∇ ⋅ 𝐅 d𝐴.

There’s like four different versions of the same expression now, so let me just put everything in one
place for sanity’s sake:

Memorize: Green’s theorem in flux form

Suppose 𝒞 is a closed curve oriented counterclockwise enclosing a region ℛ. We have

∮
𝒞
(−𝑞 d𝑥 + 𝑝 d𝑦)

⏟⏟⏟⏟⏟⏟⏟
= ∮

𝒞
(𝐅⋅𝐧 d𝑠)

= ∬
ℛ

(𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

) d𝐴
⏟⏟⏟⏟⏟⏟⏟⏟⏟

= ∬
ℛ

∇⋅𝐅 d𝐴

.

Warning: There’s no FTC for flux

2D flux is conspicuously missing from our poster in Figure 75. Through this chapter, we were
able to complete an analogy to get one Stokes result by translating 2D flux into 2D work and then
quoting Green’s theorem. However, as far as I can tell there isn’t an analog of FTC that can be
made this way. So actually one good thing about the notation 𝐧 d𝑠 is that the presence of d𝑠 is a
good reminder that there’s no FTC result.

In other words, 2D flux is conceptually missing one red Stokes arrow compared to 2D work. (I
suppose if you really missed it, you could try to force it by asking whether (−𝑞

𝑝 ) is conservative,
but I haven’t seen this done. One possible reason is that 2D flux is mostly used for closed loops
𝒞, and Green’s theorem can handle that case anyway.)

§35.4 [SIDENOTE] A picture explaining why Green’s Theorem for flux should
be true (not a formal proof)
We can draw a figure much like the earlier Figure 87 (from Section 34.4) for Green’s Theorem for flux.
Remember that the quantity

𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

= ∇ ⋅ 𝐅

is the divergence and interprets how much 𝐅 is moving away from the point. So instead of spirals, we
draw little green explosions corresponding to how fast 𝐅 is moving out of each individual grey cell.
The picture now turns into Figure 90, and

∬
ℛ

∇ ⋅ 𝐅 d𝐴

is drawn as the sum of the green explosions.

Like before, everything on the inside just cancels out. So what’s left over is now the measure of 𝐅
against the purple walls: the dark green arrows in Figure 90. And this corresponds to the 2D flux of 𝐅
against the purple walls, as desired.
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Figure 90: Roughly what Green’s Theorem for flux is trying to say: summing the
green explosions gives just the force of 𝐅 against the walls.

§35.5 [RECIPE] Computing 2D flux

Recipe for computing 2D flux

1. If 𝒞 is a closed loop, use Green’s theorem as a shortcut:

∮
𝒞
(−𝑞 d𝑥 + 𝑝 d𝑦) = ∬

ℛ
(𝜕𝑝

𝜕𝑥
+ 𝜕𝑞

𝜕𝑦
) d𝐴.

2. Otherwise, do the manual recipe in Section 33.4 with 𝐅 = (𝑝
𝑞) replaced by its 90° counter-

clockwise rotation (−𝑞
𝑝 ):

1. Pick any parametrization 𝐫 : ℝ → ℝ𝑛 of the curve 𝒞, including specifying the start
and stop times. As described in Section 12.7, you have some freedom in how you set
the parametrization.

2. Calculate the derivative 𝐫′(𝑡).
3. Calculate the dot product (−𝑞

𝑝 ) ⋅ 𝐫′(𝑡). (The vector field (−𝑞
𝑝 ) is the 90° counterclock-

wise rotation of 𝐅.)
4. Integrate this from the start time to the stop time.

Here are a few examples for documentation. For each example, we actually show how to do it
“manually” (by calculating a line integral) and how to do it with Green’s theorem for flux.
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Sample Question

Compute the flux of the vector field 𝐅(𝑥, 𝑦) = (𝑥2

𝑦2) across the circle 𝒞 defined by 𝑥2 + 𝑦2 = 1,
oriented counterclockwise.

Solution.  For this one, we’ll actually show how to do it both using Green and manually, for comparison.

• Using Green’s theorem: Green’s theorem for flux states:

Flux = ∬
ℛ

(𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

) d𝐴,

where ℛ is the region enclosed by 𝒞.

The divergence is

∇ ⋅ 𝐅 = 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

= 𝜕
𝜕𝑥

(𝑥2) + 𝜕
𝜕𝑦

(𝑦2) = 2𝑥 + 2𝑦.

Therefore,

Flux = ∬
ℛ

(2𝑥 + 2𝑦) d𝐴.

Since the region ℛ is the unit circle centered at the origin, and the integrand 2𝑥 + 2𝑦 is an odd
function over this symmetric region, the integral evaluates to 0 . (Alternatively, integrate using
polar coordinates.)

• Use the definition

Flux = ∮
𝒞
(𝑝 d𝑦 − 𝑞 d𝑥)

and parametrize the curve by using

𝐫(𝑡) = (cos(𝑡)
sin(𝑡)) 0 ≤ 𝑡 ≤ 2𝜋

so

𝐫′(𝑡) = (− sin(𝑡)
cos(𝑡) ) 0 ≤ 𝑡 ≤ 2𝜋.

So the dot product inside the integrand is

(𝐅 rotated 90° counterclockwise) ⋅ 𝐫′(𝑡) = (−𝑞
𝑝 ) ⋅ 𝐫′(𝑡)

= (cos(𝑡)2

sin(𝑡)2) ⋅ (− sin(𝑡)
cos(𝑡) )

= cos2 𝑡 ⋅ cos 𝑡 − sin2 𝑡 ⋅ (− sin 𝑡) = cos3 𝑡 + sin3 𝑡.

Hence

Flux = ∫
𝑡=2𝜋

𝑡=0
(cos3 𝑡 + sin3 𝑡) d𝑡.
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It’s possible to observe from here again that the integral is symmetric; that is, for 0 ≤ 𝑡 ≤ 𝜋 we
have cos3(𝑡) + cos3(𝑡 + 𝜋) = 0 and sin3(𝑡) + sin3(𝑡 + 𝜋) = 0. So again the entire contribution
of the integral is 0 .

□

Sample Question

Compute the flux of the vector field 𝐅(𝑥, 𝑦) = (5𝑥
7𝑦) across the square 𝒞 with vertices at (1, 1),

(−1, 1), (−1, −1), (1, −1), oriented counterclockwise.

Solution.  If we were to do the line integral manually, we would have to parametrize all four sides.
This would be straightforward, but it’s annoying, so we’ll just jump straight the shortcut with Green’s
theorem.

The divergence is

∇ ⋅ 𝐅 ≔ 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

= 𝜕
𝜕𝑥

(5𝑥) + 𝜕
𝜕𝑦

(7𝑦) = 12.

So by Green’s theorem, Flux = ∬
ℛ

12 d𝐴 = 12 Area(ℛ) = 12 ⋅ 22 = 48  where ℛ is the region
enclosed by 𝒞, a square of side length 2. □

Sample Question

Let 𝑎, 𝑏 > 0. Compute the flux of the vector field 𝐅(𝑥, 𝑦) = (𝑥
𝑦) across the ellipse 𝒞 defined by

𝑥2

𝑎2 + 𝑦2

𝑏2 = 1, oriented counterclockwise.

Solution.  We don’t really want to parametrize the ellipse²⁵ Again, we jump straight to Green’s theorem,
with

∇ ⋅ 𝐅 = 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

= 𝜕
𝜕𝑥

(𝑥) + 𝜕
𝜕𝑦

(𝑦) = 1 + 1 = 2.

So by Green’s theorem,

Flux = ∬
ℛ

2 d𝐴 = 2 Area(ℛ).

In a previous section (Section 23.5) we saw the area of this ellipse is was 𝑎𝑏𝜋; if you didn’t remember
this, you would go back to the change of variables and execute it. In any case, this means the flux is
2 ⋅ (𝑎𝑏𝜋) = 2𝑎𝑏𝜋 . □

§35.6 [RECAP] Comparison
Since the recipes for 2D flux and work look so similar, it might be helpful to compare them side by
side. This comparison is shown in the table below.

²⁵Although it could be done with 𝐫 = (𝑎 cos 𝑡, 𝑏 sin 𝑡) for 0 ≤ 𝑡 ≤ 2𝜋. So it’s not that bad.
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Method Work ∫
𝒞

𝐅 ⋅ 𝐫
(see Section 34.5)

2D Flux ∫
𝒞

𝐅 ⋅ 𝐧 d𝑠
(see Section 35.5)

𝐅 is conservative
⟹ FTC

If 𝐅 = ∇𝑓 ,
Output 𝑓(stop) − 𝑓(start)

Not applicable

𝒞 is a closed loop
⟹ Green

Output ∬
ℛ

( 𝜕𝑞
𝜕𝑥 − 𝜕𝑝

𝜕𝑦)⏟⏟⏟⏟⏟
2D scalar curl

d𝐴 Output ∬
ℛ

𝜕𝑝
𝜕𝑥 + 𝜕𝑞

𝜕𝑦⏟
Div =∇⋅𝐅

d𝐴

Bare-hands definition
Use parametrization

Output ∫(𝑝 d𝑥 + 𝑞 d𝑦)
= ∫

𝒞
𝐅 ⋅ 𝐫′(𝑡) d𝑡

Output ∫(−𝑞 d𝑥 + 𝑝 d𝑦)
= ∫

𝒞
(𝐅 rot 90° ccw) ⋅ 𝐫′(𝑡) d𝑡

Table 18:  Comparison of the recipe for work and flux. Methods higher in the table
are less work, and preferred when they apply.

If you want to see examples of this written out, see Chapter 36. There I do four examples in full, using
every applicable cell of Table 18. Since it’s so long, I broke it out into a separate skippable chapter.

§35.7 [EXER] Exercises

Exercise 35.1 (Suggested by Ting-Wei Chao).  As in Exercise 33.1 and Exercise 34.3, let 𝒞 be the
oriented closed curve formed by the arc of the parabola 𝑦 = 𝑥2 − 1 running from (−1, 0) to (1, 0),
followed by a line segment from (1, 0) back to (−1, 0). Again let

𝐅(𝑥, 𝑦) = (𝑥2(𝑦 + 1)
(𝑦 + 1)2 ).

Compute ∫
𝒞

𝐅 ⋅ 𝐧 d𝑠 using direct parametrization and by using Green’s Theorem for flux.

Exercise 35.2.  Triangle 𝐴𝐵𝐶 has vertices 𝐴 = (−5, 0), 𝐵 = (9, 0), and 𝐶 on the positive 𝑦-axis.
The flux of the vector field

𝐅(𝑥, 𝑦) = (𝑥 + 7𝑦2

𝑥2 + 7𝑦)

across the perimeter of 𝐴𝐵𝐶 , oriented counterclockwise, is 672. Compute the length of the
perimeter of 𝐴𝐵𝐶 .
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Chapter 36. Way too many examples of work and 2D flux
This entire chapter is review and examples only and can be skipped if you know what you’re doing.

The goal of this chapter is to fully write out several examples of Table 18. We’ll show the entire table
with four situations:

• The conservative field 𝐅 = (2𝑥+𝑦
𝑥+2𝑦) over the unit circle oriented counterclockwise (a closed loop).

• The conservative field 𝐅 = (2𝑥+𝑦
𝑥+2𝑦) over the line segment from (1, 4) to (3, 9).

• The non-conservative field 𝐅 = (𝑥2+3𝑦
5𝑦 ) over the unit circle oriented counterclockwise (a closed

loop).
• The non-conservative field 𝐅 = (𝑥2+3𝑦

5𝑦 ) over the line segment from (1, 4) to (3, 9).

§36.1 Example with 𝐅 = (2𝑥+𝑦
𝑥+2𝑦) and 𝒞 the unit circle

Sample Question

Let 𝐅 = (2𝑥+𝑦
𝑥+2𝑦) and let 𝒞 be the unit circle oriented counterclockwise. Evaluate ∫ 𝐅 ⋅ d𝐫 and

∫ 𝐅 ⋅ 𝐧 d𝑠.

We use the parametrization

𝐫(𝑡) = (cos(𝑡)
sin(𝑡)) 0 ≤ 𝑡 ≤ 2𝜋

so

𝐫′(𝑡) = (− sin(𝑡)
cos(𝑡) ) 0 ≤ 𝑡 ≤ 2𝜋.

In this case all five methods are applicable, see the table below.

Method Work ∫
𝒞

𝐅 ⋅ 𝐫
(see Section 34.5)

2D Flux ∫
𝒞

𝐅 ⋅ 𝐧 d𝑠
(see Section 35.5)

𝐅 is conservative
⟹ FTC

𝑓(1, 0) − 𝑓(1, 0) = 0 Not applicable

𝒞 is a closed loop
⟹ Green

∬
ℛ

1 − 1⏟
2D scalar curl

d𝐴 = 0 Output ∬
ℛ

2 + 2⏟
Div =∇⋅𝐅

d𝐴 = 4𝜋

Bare-hands definition
Use parametrization

∫2𝜋
𝑡=0

(2 cos(𝑡)+ sin(𝑡)
cos(𝑡)+2 sin(𝑡)) ⋅ (− sin(𝑡)

cos(𝑡) ) d𝑡 ∫2𝜋
𝑡=0

(−(cos(𝑡)+2 sin(𝑡))
2 cos(𝑡)+ sin(𝑡) ) ⋅ (− sin(𝑡)

cos(𝑡) ) d𝑡

Table 19: For 𝐅 = (2𝑥+𝑦
𝑥+2𝑦) which is conservative, with potential function 𝑓(𝑥, 𝑦) =

𝑥2 + 𝑥𝑦 + 𝑦2, around the unit circle.

§36.1.1 Using FTC for work

The line integral is trivially zero: we don’t even have to compute the potential function, because the
FTC implies that we’ll get 𝑓(1, 0) − 𝑓(1, 0) = 0 . In fact the potential function is 𝑓(𝑥, 𝑦) = 𝑥2 +
𝑥𝑦 + 𝑦2 but we won’t use this until the next example.
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§36.1.2 Green’s theorem for work

If you missed that the vector field was conservative, and you use Green’s theorem, you unsurprisingly
get 0 for the 2D scalar curl:

∬
ℛ

1 − 1⏟
2D scalar curl

d𝐴 = ∬
ℛ

0 d𝐴 = 0 .

Conservative functions have vanishing curl. So actually even if you don’t notice the field is conserv-
ative to start, when you try to apply Green’s theorem you’ll get a rather rude reminder when you
realize you’re just integrating the 0 function.

§36.1.3 Bare-hands for work

For the work integral, you compute it as follows:

𝐅(cos 𝑡, sin 𝑡) ⋅ 𝐫′(𝑡) = (2 cos(𝑡) + sin(𝑡)
cos(𝑡) + 2 sin(𝑡)) ⋅ (− sin(𝑡)

cos(𝑡) )

= (2 cos 𝑡 + sin 𝑡)(− sin 𝑡) + (cos 𝑡 + 2 sin 𝑡)(cos 𝑡)

= −2 cos 𝑡 sin 𝑡 − sin2 𝑡 + cos2 𝑡 + 2 cos 𝑡 sin 𝑡
= cos2 𝑡 − sin2 𝑡 = cos(2𝑡).

So the integral becomes:

∫
2𝜋

0
cos(2𝑡) d𝑡 = 0

because it’s an integral over two full periods of the cosine function, hence 0. (Alternatively, write
[ sin 2𝑡

2 ]2𝜋
𝑡=0

= sin 4𝜋
2 − sin 0

2 = 0 − 0 = 0.)

§36.1.4 Green’s theorem for flux

For flux, we don’t get a fundamental theorem of calculus anyway, but the divergence is 2 + 2 = 4
everywhere, which is a constant, so the flux works out to 4 Area(ℛ), which is just 4𝜋 .

§36.1.5 Bare-hands for flux

For the flux integral, rotate the vector for the vector field (that is, look at −𝑞 d𝑥 + 𝑝 d𝑦) to get the dot
product

(−(cos(𝑡) + 2 sin(𝑡))
2 cos(𝑡) + sin(𝑡) ) ⋅ (− sin(𝑡)

cos(𝑡) ) = (2 cos 𝑡 + sin 𝑡) cos 𝑡 + (cos 𝑡 + 2 sin 𝑡) sin 𝑡

= 2 cos2 𝑡 + sin 𝑡 cos 𝑡 + cos 𝑡 sin 𝑡 + 2 sin2 𝑡
= 2(cos2 𝑡 + sin2 𝑡) + 2 sin 𝑡 cos 𝑡
= 2(1) + sin 2𝑡 = 2 + sin 2𝑡.

Consequently,

∫
2𝜋

𝑡=0
(2 + sin 2𝑡) d𝑡 = 4𝜋 + ∫

2𝜋

𝑡=0
sin 2𝑡 d𝑡 = 4𝜋 .

since ∫2𝜋
𝑡=0

sin 2𝑡 is an integral over two full periods of the sine function.
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§36.2 Example with 𝐅 = (2𝑥+𝑦
𝑥+2𝑦) and 𝒞 a line segment

Sample Question

Let 𝐅 = (2𝑥+𝑦
𝑥+2𝑦) and let 𝒞 be the path from (1, 4) to (3, 9). Evaluate ∫ 𝐅 ⋅ d𝐫 and ∫ 𝐅 ⋅ 𝐧 d𝑠.

We use the same vector field, but this time we parametrize our line segment

𝐫(𝑡) = (1 + 2𝑡
4 + 5𝑡) 0 ≤ 𝑡 ≤ 1

so

𝐫′(𝑡) = (2
5) 0 ≤ 𝑡 ≤ 2𝜋.

This time, our table looks like this:

Method Work ∫
𝒞

𝐅 ⋅ 𝐫
(see Section 34.5)

2D Flux ∫
𝒞

𝐅 ⋅ 𝐧 d𝑠
(see Section 35.5)

𝐅 is conservative
⟹ FTC

𝑓(3, 9) − 𝑓(1, 4) = 117 − 21 = 96 Not applicable

𝒞 is a closed loop
⟹ Green

Cannot use here Cannot use here

Bare-hands definition
Use parametrization

∫1
𝑡=0

(2(1+2𝑡)+(4+5𝑡)
(1+2𝑡)+2(4+5𝑡)) ⋅ (2

5) d𝑡 ∫1
𝑡=0

(−((1+2𝑡)+2(4+5𝑡))
2(1+2𝑡)+(4+5𝑡) ) ⋅ (2

5) d𝑡

Table 20: For 𝐅 = (2𝑥+𝑦
𝑥+2𝑦) which is conservative, with potential function 𝑓(𝑥, 𝑦) =

𝑥2 + 𝑥𝑦 + 𝑦2, but this time on the line segment from (1, 4) to (3, 9).

As always, the bare-hands method is the most work, but for the flux integral we don’t really have a
choice because no other method is possible.

§36.2.1 Using FTC

This time, we will actually use the potential function

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2

(or really 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2 + 𝐶 for any constant 𝐶). So we can short-circuit the entire line
integral by simply evaluating

𝑓(3, 9) − 𝑓(1, 4) = 117 − 21 = 96 .

§36.2.2 Bare-hands for work

For the work integral, first expand

𝐅(1 + 2𝑡, 4 + 5𝑡) = (2(1 + 2𝑡) + (4 + 5𝑡)
(1 + 2𝑡) + 2(4 + 5𝑡)) = ( 2 + 4𝑡 + 4 + 5𝑡

1 + 2𝑡 + 8 + 10𝑡) = ( 6 + 9𝑡
9 + 12𝑡).

Hence the dot product is
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𝐅(1 + 2𝑡, 4 + 5𝑡) ⋅ 𝐫′(𝑡) = ( 6 + 9𝑡
9 + 12𝑡) ⋅ (2

5) = 2(6 + 9𝑡) + 5(9 + 12𝑡) = 57 + 78𝑡.

Integrating this gives

∫
1

𝑡=0
(57 + 78𝑡) d𝑡 = [57𝑡 + 39𝑡2]1

0
= 57(1) + 39(1)2 − 0 = 57 + 39 = 96 .

§36.2.3 Bare-hands for flux

For the flux integral, rotate the vector for the vector field (that is, look at −𝑞 d𝑥 + 𝑝 d𝑦) to get the dot
product

(−(9 + 12𝑡)
6 + 9𝑡 ) ⋅ (2

5) = −2(9 + 12𝑡) + 5(6 + 9𝑡) = 12 + 21𝑡

Integrating this gives

∫
1

𝑡=0
(12 + 21𝑡) d𝑡 = [12𝑡 + 21

2
𝑡2]

1

𝑡=0
= 45

2
.

§36.3 Example with 𝐅 = (𝑥2+3𝑦
5𝑦 ) and 𝒞 the unit circle

Sample Question

Let 𝐅 = (𝑥2+3𝑦
5𝑦 ) and let 𝒞 be the unit circle oriented counterclockwise. Evaluate ∫ 𝐅 ⋅ d𝐫 and

∫ 𝐅 ⋅ 𝐧 d𝑠.

Green’s theorem works readily here because 𝒞 is closed. You can also do parametrization, which is
disgusting, but it works.

Method Work ∫
𝒞

𝐅 ⋅ 𝐫
(see Section 34.5)

2D Flux ∫
𝒞

𝐅 ⋅ 𝐧 d𝑠
(see Section 35.5)

𝐅 is conservative
⟹ FTC

Cannot use here Not applicable

𝒞 is a closed loop
⟹ Green

∬
ℛ

0 − 3⏟
2D scalar curl

d𝐴 = 0 Output ∬
ℛ

2𝑥 + 5⏟
Div =∇⋅𝐅

d𝐴 = 5𝜋

Bare-hands definition
Use parametrization

∫2𝜋
𝑡=0

(cos(𝑡)2+3 sin(𝑡)
5 sin(𝑡) ) ⋅ (− sin(𝑡)

cos(𝑡) ) d𝑡 ∫2𝜋
𝑡=0

( −5 sin(𝑡)
cos(𝑡)2+3 sin(𝑡)) ⋅ (− sin(𝑡)

cos(𝑡) ) d𝑡

Table 21: For 𝐅 = (𝑥2+3𝑦
5𝑦 ) which is not conservative, integrated over the unit

circle.

§36.3.1 Green’s theorem for work

For the work version, we do

𝜕𝑞
𝜕𝑥

= 𝜕
𝜕𝑥

(5𝑦) = 0

𝜕𝑝
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑥2 + 3𝑦) = 3.

so the answer is ∬
ℛ

(0 − 3) d𝐴 = −3𝜋 .
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§36.3.2 Bare-hands for work

We need to compute

∫
2𝜋

𝑡=0
(cos(𝑡)2 + 3 sin(𝑡)

5 sin(𝑡) ) ⋅ (− sin(𝑡)
cos(𝑡) ) d𝑡.

Expanding the dot product gives

∫
2𝜋

𝑡=0
(− cos2 𝑡 sin 𝑡 − 3𝜋 sin2 𝑡 + 5𝜋 sin 𝑡 cos 𝑡) d𝑡.

Compute each integral separately:
1. ∫2𝜋

𝑡=0
cos2 𝑡 sin 𝑡 d𝑡: Let 𝑢 = cos 𝑡, then d𝑢 = − sin 𝑡 d𝑡.

∫ cos2 𝑡 sin 𝑡 d𝑡 = − ∫ 𝑢2 d𝑢 = −𝑢3

3
+ 𝐶 = −cos3 𝑡

3
+ 𝐶.

Evaluate from 0 to 2𝜋:

[−cos3 𝑡
3

]
2𝜋

𝑡=0

= −cos3(2𝜋)
3

+ cos3 0
3

= −1
3

+ 1
3

= 0.

2. ∫2𝜋
𝑡=0

sin2 𝑡 d𝑡: Use the identity sin2 𝑡 = 1− cos 2𝑡
2 :

∫
2𝜋

𝑡=0
sin2 𝑡 d𝑡 = 1

2
∫

2𝜋

𝑡=0
(1 − cos 2𝑡) d𝑡 = 1

2
[𝑡 − sin 2𝑡

2
]

2𝜋

𝑡=0
= 1

2
(2𝜋 − 0) = 𝜋.

3. ∫2𝜋
𝑡=0

sin 𝑡 cos 𝑡 d𝑡:

Use the identity sin 𝑡 cos 𝑡 = sin 2𝑡
2 :

∫
2𝜋

𝑡=0
sin 𝑡 cos 𝑡 d𝑡 = 1

2
∫

2𝜋

𝑡=0
sin 2𝑡 d𝑡 = 0.

(Since the integral of sine over its full period is zero.) Combine the results to get

−0 − 3 ⋅ 𝜋 + 5 ⋅ 0 = −3𝜋 .

§36.3.3 Green’s theorem for flux

For the flux version, it’s instead

𝜕𝑝
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑥2 + 3𝑦) = 2𝑥

𝜕𝑞
𝜕𝑦

= 𝜕
𝜕𝑦

(5𝑦) = 5.

so the flux is

∮
𝒞

𝐅 ⋅ 𝐧 d𝑠 = ∬
ℛ

(2𝑥 + 5) d𝐴.

By symmetry, we have

∬
ℛ

𝑥 d𝐴 = 0
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and we also have

∬
ℛ

5 d𝐴 = 5𝜋

so we get the answer 0 + 5𝜋 = 5𝜋 .

Polar coordinates is fine too for the flux one

If you don’t notice the symmetry trick, you can use polar coordinates too. Write 2𝑥 + 5 =
2𝑟 cos 𝜃 + 5 and set up the flux integral as:

∮
𝒞

𝐅 ⋅ 𝐧 d𝑠 = ∫
2𝜋

𝜃=0
∫

1

𝑟=0
(2𝑟 cos 𝜃 + 5)𝑟 d𝑟 d𝜃

= ∫
2𝜋

𝜃=0
∫

1

𝑟=0
(2𝑟2 cos 𝜃 + 5𝑟) d𝑟 d𝜃

= 2 ∫
2𝜋

𝜃=0
cos 𝜃 ∫

1

𝑟=0
𝑟2 d𝑟 d𝜃 + 5 ∫

2𝜋

𝜃=0
∫

1

𝑟=0
𝑟 d𝑟 d𝜃.

The inner integrals are ∫1
𝑟=0

𝑟2 d𝑟 = 1
3  and ∫1

𝑟=0
𝑟 d𝑟 = 1

2 , so we get the same answer

2 ⋅ 1
3

∫
2𝜋

0
cos 𝜃 d𝜃 + 5 ⋅ 1

2
∫

2𝜋

0
d𝜃 = 2

3
⋅ 0 + 5 ⋅ 1

2
⋅ 2𝜋 = 5𝜋.

§36.3.4 Bare-hands for flux

We need to compute

∫
2𝜋

𝑡=0
( −5 sin(𝑡)

cos(𝑡)2 + 3 sin(𝑡)) ⋅ (− sin(𝑡)
cos(𝑡) ) d𝑡.

Expand the dot product:

∫
2𝜋

𝑡=0
(cos3 𝑡 + 3 sin 𝑡 cos 𝑡 + 5 sin2 𝑡) d𝑡.

Compute each integral separately:
1. ∫2𝜋

𝑡=0
cos3 𝑡 d𝑡: Use the identity cos3 𝑡 = 3 cos 𝑡+ cos 3𝑡

4 :

∫
2𝜋

𝑡=0
cos3 𝑡 d𝑡 = 3

4
∫

2𝜋

𝑡=0
cos 𝑡 d𝑡 + 1

4
∫

2𝜋

𝑡=0
cos 3𝑡 d𝑡 = 0 + 0 = 0.

2. ∫2𝜋
𝑡=0

sin 𝑡 cos 𝑡 d𝑡: Use the identity sin 𝑡 cos 𝑡 = sin 2𝑡
2 :

∫
2𝜋

𝑡=0
sin 𝑡 cos 𝑡 d𝑡 = 1

2
∫

2𝜋

𝑡=0
sin 2𝑡 d𝑡 = 0.

3. ∫2𝜋
𝑡=0

sin2 𝑡 d𝑡: Use the identity sin2 𝑡 = 1− cos 2𝑡
2 :

∫
2𝜋

𝑡=0
sin2 𝑡 d𝑡 = 1

2
∫

2𝜋

𝑡=0
(1 − cos 2𝑡) d𝑡 = 1

2
[2𝜋 − 0] = 𝜋.

Combine the results to get
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0 + 3 ⋅ 0 + 5 ⋅ 𝜋 = 5𝜋 .

§36.4 Example with 𝐅 = (𝑥2+3𝑦
5𝑦 ) and 𝒞 a line segment

Sample Question

Let 𝐅 = (𝑥2+3𝑦
5𝑦 ) and let 𝒞 be the path from (1, 4) to (3, 9). Evaluate ∫ 𝐅 ⋅ d𝐫 and ∫ 𝐅 ⋅ 𝐧 d𝑠.

Here in both cases we have to bite the bullet — none of our shortcuts apply. As before we use the
parametrization

𝐫(𝑡) = (1 + 2𝑡
4 + 5𝑡) 0 ≤ 𝑡 ≤ 1

with

𝐫′(𝑡) = (2
5) 0 ≤ 𝑡 ≤ 2𝜋.

Method Work ∫
𝒞

𝐅 ⋅ 𝐫
(see Section 34.5)

2D Flux ∫
𝒞

𝐅 ⋅ 𝐧 d𝑠
(see Section 35.5)

𝐅 is conservative
⟹ FTC

Cannot use here Not applicable

𝒞 is a closed loop
⟹ Green

Cannot use here Cannot use here

Bare-hands definition
Use parametrization

∫1
𝑡=0

((1+2𝑡)2+3(4+5𝑡)
5(4+5𝑡) ) ⋅ (2

5) d𝑡 ∫1
𝑡=0

( −5(4+5𝑡)
(1+2𝑡)2+3(4+5𝑡)) ⋅ (2

5) d𝑡

Table 22: For 𝐅 = (𝑥2+3𝑦
5𝑦 ) which is not conservative, integrated over the unit

circle.

§36.4.1 Bare-hands for work

For the work integral, substitute 1 + 2𝑡 and 4 + 5𝑡 into 𝐅:

𝐅(1 + 2𝑡, 4 + 5𝑡) = ((1 + 2𝑡)2 + 3(4 + 5𝑡)
5(4 + 5𝑡) ) = (4𝑡2 + 19𝑡 + 13

25𝑡 + 20 ).

Then the dot product is Dot product:

(4𝑡2 + 19𝑡 + 13
25𝑡 + 20 ) ⋅ (2

5) = 2(4𝑡2 + 19𝑡 + 13) + 5(25𝑡 + 20) = 8𝑡2 + 163𝑡 + 126.

Hence

∫
𝒞

𝐅 ⋅ d𝐫 = ∫
1

𝑡=0
(8𝑡2 + 163𝑡 + 126) d𝑡.

Integrate term by term:
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∫
1

𝑡=0
126 d𝑡 = 126,

∫
1

𝑡=0
163𝑡 d𝑡 = [163

2
𝑡2]

1

𝑡=0
= 163

2
(1)2 − 163

2
(0)2 = 163

2
,

∫
1

𝑡=0
8𝑡2 d𝑡 = [8

3
𝑡3]

1

𝑡=0
= 8

3
(1)3 − 8

3
(0)3 = 8

3
.

Combine the results:

∫
𝒞

𝐅 ⋅ d𝐫 = 126 + 163
2

+ 8
3

= 1261
6

.

§36.4.2 Bare-hands for flux

For the flux integral, instead do the dot product

( −(25𝑡 + 20)
4𝑡2 + 19𝑡 + 13) ⋅ (2

5) = −2(25𝑡 + 20) + 5(4𝑡2 + 19𝑡 + 13) = 20𝑡2 + 45𝑡 + 25.

Integrate term by term again:

∫
1

𝑡=0
25 d𝑡 = 25,

∫
1

𝑡=0
45𝑡 d𝑡 = [45

2
𝑡2]

1

𝑡=0
= 45

2
(1)2 − 45

2
(0)2 = 45

2
,

∫
1

𝑡=0
20𝑡2 d𝑡 = [20

3
𝑡3]

1

𝑡=0
= 20

3
(1)3 − 20

3
(0)3 = 20

3
.

Combine the results:

∫
𝒞

𝐅 ⋅ 𝐧 d𝑠 = 25 + 45
2

+ 20
3

= 150
6

+ 135
6

+ 40
6

= 325
6

.
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Chapter 37. Practice midterm for 2D topics in Parts Golf, Hotel,
India
This is a practice midterm that was given on November 13, 2024, covering topics in Part Golf, Hotel,
and India, but only the 2D topics in these parts. Solutions are in Chapter 50.

Exercise 37.1.  Another butterfly is fluttering in the 𝑥𝑦 plane with position 𝐫(𝑡) = ⟨sin(𝑡), sin(𝑡)⟩.
Let 𝒞 denote its trajectory between 0 ≤ 𝑡 ≤ 2𝜋. Compute ∫

𝒞
(𝑥 d𝑥) and ∫

𝒞
(𝑦 d𝑥).

Exercise 37.2.  Let 𝒞 denote the unit circle 𝑥2 + 𝑦2 = 1 oriented counterclockwise, and consider
the vector field 𝐅(𝑥, 𝑦) = ⟨𝑥 + 2𝑦, 4𝑥 + 8𝑦⟩. Compute ∫

𝒞
𝐅 ⋅ d𝐫 and ∫

𝒞
𝐅 ⋅ 𝐧 d𝑠.

Exercise 37.3.  Compute all real numbers 𝑘 for which the following region has area 𝜋:

(𝑘𝑥 + 𝑦)2 + (𝑥 + 𝑘𝑦)2 ≤ 1
4
.

Exercise 37.4.  Compute the center of mass of the region where 𝑦 ≥ 0 and 3𝑥2 ≤ 𝑦2 ≤ 9 − 𝑥2,
assuming constant density.

Exercise 37.5.  Let 𝒞 denote any path from (0, 0) to (𝜋, 𝜋). Determine the unique function ℎ(𝑥) for
which 𝐅(𝑥, 𝑦) = ⟨𝑥𝑦 + cos(𝑥), ℎ(𝑥) + cos(𝑦)⟩ is conservative, and moreover ∫

𝒞
𝐅 ⋅ d𝐫 = 0.

Exercise 37.6.  Assume log is base 𝑒 ≈ 2.718. Use any method you want to compute

∫
(𝑒−1)2

𝑥=0
log(

√
𝑥 + 1) d𝑥.

Recommended approach: view the integral as the area under a curve, then switch from vertical to
horizontal slicing.

324



Linear Algebra and Multivariable Calculus — Evan Chen

Part Juliett: Flux integrals of vector fields over
a surface
For comparison, Part Juliett corresponds to §17.7, §18, §19, §21 of Poonen’s notes.

Chapter 38. Flux
We now discuss (3D) flux, the final type of vector field integral that we haven’t seen yet. This is the
final cell in the poster Figure 75 that we haven’t met yet.

Figure 91: The flux integral for a surface circled in our poster Figure 75.

This chapter will be pretty reminiscent of Chapter 33. We’ll start by giving a “bare-hands” definition
of the flux through a parametrized surface. It will be usable, but pretty cumbersome, so in the next
chapter Chapter 39 we’ll immediately try to find ways to shortcut it. For 18.02, the methods available
to you will be

• Bare-hands parametrization (covered here)
‣ Even here, magic formulas can save you a lot of work — see Table 23.

• Shortcut: Transforming to a surface area integral (covered in Section 38.6)
• Shortcut: The divergence theorem, by converting to a 3D volume integral (covered in the next

chapter Chapter 39)

§38.1 [TEXT] The definition of flux using bare-hands parametrization

Definition of flux

Let 𝐫(𝑢, 𝑣) : ℛ → ℝ3 parametrize an oriented surface 𝒮 in ℝ3. The flux of a vector field 𝐅 : ℝ3 →
ℝ3 through 𝒮 is defined by

∬
ℛ

𝐅(𝐫(𝑢, 𝑣)) ⋅ (𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

) d𝑢 d𝑣.

(We’ll explain what “oriented” means in the next section.)

Type signature

Flux requires two inputs: an oriented surface 𝒮 and a vector field 𝐅.

Yes, there’s that hideous cross product again. Naturally, people have shorthand to make this easier to
swallow: this time either

∬
𝒮

𝐅 ⋅ d𝐒 = ∬
𝒮

𝐅 ⋅ 𝐧 d𝑆

is used to sweep everything under the carpet. That is, d𝐒 and 𝐧 d𝑆 are both shorthands for the longer
𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 d𝑢 d𝑣. We’ll usually prefer 𝐧 d𝑆 in this book.
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I promised you back in the surface area chapter (Chapter 29) that at some point you’d need the whole
cross product and not just its magnitude, and here we are! In fact, the absolute value being gone is in
some sense an improvement: I would argue ⟨−𝜕𝑓

𝜕𝑥 , −𝜕𝑓
𝜕𝑦 , 1⟩ is less messy than √1 + (𝜕𝑓

𝜕𝑥)
2

+ (𝜕𝑓
𝜕𝑦)

2
.

We’ll do example calculations in a moment, but let me first talk about how to think about this, and
also explain what the adjective “oriented”.

§38.2 [TEXT] Aquatic interpretation of flux
Flip back to Figure 81 for a moment. Back when we were talking about the work integral 𝐅(𝐫(𝑡)) ⋅
𝐫′(𝑡), I told you to visualize the work as adding the dot products of the force vectors with tangent
vectors.

The interpretation here is similar to 2D flux. You should imagine the surface 𝒮 as some membrane in
the water; then the flux measures the rate at which water moves through it.

To make this picture complete, I need to tell you about orientation. Remember, back when we had work
integrals, a curve 𝒞 wasn’t just a bunch of points; we also had to tell you which point was the “start”
and which one was the “stop”. In other words, work integrals operate on a curve with a direction.

Something similar happens with flux integrals over surfaces: in addition to the actual points, we need
to specify an orientation. To be more precise, at every point 𝑃  of the surface 𝒮, the cross product from
our parametrization could point in one of two opposite directions.

Definition of orienting a surface

To orient the surface 𝒮 is to specify, at each point, which way you want the cross product of your
parametrization to point.

Figure 92: The normal vector from before, and its negation. Note that when we
swap 𝑢 and 𝑣, the vector flips the other way to the negative. Hence when parame-
trizing a surface, the order of 𝑢 and 𝑣 induces an orientation on the surface.

Algebraically, this corresponds to choosing the order of 𝑢 and 𝑣; as if you flip the order of the two
parameters it will negate the entire cross product:

326



Linear Algebra and Multivariable Calculus — Evan Chen

𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

= −(𝜕𝐫
𝜕𝑣

× 𝜕𝐫
𝜕𝑢

).

Hence the flux will get negated too. This sign issue is disorienting because it wasn’t present for work,
where “start to stop” was pretty easy to think about; we’ll give more examples momentarily.

Going back to our new flux integral, we need to visualize the dot products

∬
ℛ

𝐅 ⋅ (𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

) d𝑢 d𝑣.

The 𝐅 is still the force vector, and as we describe earlier, the vector

𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

represents a normal vector to the surface at each point. We draw this in Figure 93.

Figure 93:  Picture of a parametrized surface sitting in a vector field 𝐅. At each
point, we take the dot product of the vector field 𝐅 at that point (drawn in black
here) with a normal vector on the surface given by the same cross product that we
considered for surface area (drawn in green here). The flux can be thought of as
the sum of all the dot products across the whole surface.

The dot product of Figure 93 should match your aquatic intuition. For our oriented surface, the dot
product is large when the force is moving along the same direction as the normal vector. That matches
our description of a water current puncturing the surface. On the other hand, if the force had been
moving mostly parallel to the surface, then the dot products and hence flux are both close to zero.

§38.3 [TEXT] More on orientation
Here’s another example of an orientation to make things less abstract.
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Example: Orienting a sphere

Let’s consider the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 with 𝑧 > 0. For each point 𝑃  on the sphere, the
normal vector to the sphere at 𝑃  either points straight towards the center of from 𝑃 , or away
from the center of 𝑃 .

What does this correspond to algebraically? We consider two possible ways to parametrize the
sphere that differ only in the order.

• Let’s imagine we used a spherical parametrization of the hemisphere as

𝐫(𝜑, 𝜃) = (sin 𝜑 cos 𝜃, sin 𝜑 sin 𝜃, cos 𝜑)

where 0 ≤ 𝜑 ≤ 𝜋 and 0 ≤ 𝜃 ≤ 2𝜋. If we grinded out the cross product, you would find that
(see Chapter 30 to see this written out)

𝜕𝐫
𝜕𝜑

× 𝜕𝐫
𝜕𝜃

= sin 𝜑 ⋅ (sin 𝜑 cos 𝜃, sin 𝜑 sin 𝜃, cos 𝜑) = sin 𝜑 ⋅ 𝐫(𝜑, 𝜃).

At each point 𝑃 = 𝐫(𝜑, 𝜃) = (sin 𝜑 cos 𝜃, sin 𝜑 sin 𝜃, cos 𝜑) of the sphere, this points out-
wards (since sin 𝜑 ≥ 0), so this would be a parametrization of the sphere with all the cross
products pointing out.

• But what if we had flipped the order of 𝜑 and 𝜃? That is, suppose we used

𝐫(𝜃, 𝜑) = (sin 𝜑 cos 𝜃, sin 𝜑 sin 𝜃, cos 𝜑)

where 0 ≤ 𝜃 ≤ 2𝜋 and 0 ≤ 𝜑 ≤ 𝜋 instead. Then the cross product will get negated:

𝜕𝐫
𝜕𝜃

× 𝜕𝐫
𝜕𝜑

= − sin 𝜑 ⋅ (sin 𝜑 cos 𝜃, sin 𝜑 sin 𝜃, cos 𝜑) = − sin 𝜑 ⋅ 𝐫(𝜑, 𝜃).

And now at every point, the cross product points inside the sphere instead!

So which one of these orientations is “correct”? Well, that’s why a convention is needed. It’s just
like when we computed work or flux integrals of circles in 2D, we had to say “counterclockwise”
or “clockwise”. For this sphere we have to say “outwards” or “inwards” or something like that so
that whoever is computing the flux integral knows which way to take the cross product.

In general, for surfaces where inward vs outward has an obvious meaning, the convention is usually
“outward”. But not all surfaces have an obvious inward vs outward (for example, the 𝑥𝑦-plane given
by 𝑧 = 0), and in those cases an exam question should tell you which one to use for that question.

Digression: Comparison to 2D flux

In 2D flux, we had a notion of “outside” vs “inside” even for curves 𝒞 that weren’t closed, because
we had a notion of 90° clockwise vs 90° counterclockwise. We don’t have this in 3D space, sadly,
which is why we resort to normal vectors instead.

§38.4 [TEXT] Magic formulas for the cross product (reprise)
TL;DR: cross products are too annoying, so we pre-compute them all.

In Chapter 30 I gave you Table 14 which let you bypass the cross product step when calculating surface
area, and it still works here. But I’m actually going to rewrite the table to connect it to the shorthand

328



Linear Algebra and Multivariable Calculus — Evan Chen

𝐧 d𝑆. In fact, people often split the shorthand 𝐧 d𝑆 into two parts: 𝐧 is the unit vector in the direction
of the cross product, while d𝑆 represents the absolute value with d𝑢 d𝑣 tacked on. In symbols, this says

𝐧 ≔
𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣

| 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 |
 and d𝑆 ≔ |𝜕𝐫

𝜕𝑢
× 𝜕𝐫

𝜕𝑣
| d𝑢 d𝑣.

(So 𝐧 d𝑆 is indeed the full cross product, as the two absolute value things cancel.)

The reason people will separate it like this is to make the geometry a bit easier to think about.
Remember from back in Chapter 6 that a cross product has two pieces of information: a direction
(meant to give two right angles) and a magnitude (meant to interpret area). The point of separating
the shorthand is to make these correspond to 𝐧 and d𝑆 respectively.

Personally, I don’t see the point of decomposing the information like this, since you need the entire
cross product when you do calculation anyway. But a lot of people do it. So by popular request, here’s
a version of Table 14 that separates the components. I think this separation only really helps with the
fourth and fifth rows, because back in Chapter 30 we described ways to remember d𝑆 geometrically
for the cylinder and the sphere. (For the cylinder, d𝑆 ≈ d𝑉

d𝑟 ; for the sphere, d𝑆 ≈ d𝑉
d𝜌 .) For the first and

second rows, you should just remember the fifth column.

Surface Param’s 𝐧 (unit vec) d𝑆
𝐧 d𝑆

= 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣 d𝑢 d𝑣

𝑧 = 𝑓(𝑥, 𝑦) (𝑥, 𝑦)
⟨−𝜕𝑓

𝜕𝑥,−𝜕𝑓
𝜕𝑦,1⟩

√1+(𝜕𝑓
𝜕𝑥)

2
+(𝜕𝑓

𝜕𝑦)
2

√1 + (𝜕𝑓
𝜕𝑥)

2
+ (𝜕𝑓

𝜕𝑦)
2

d𝑥 d𝑦

⟨−𝜕𝑓
𝜕𝑥 , −𝜕𝑓

𝜕𝑦 , 1⟩

d𝑥 d𝑦

Level surface
𝑔(𝑥, 𝑦, 𝑧) = 𝑐

over an 𝑥𝑦-region
(𝑥, 𝑦) ± ∇𝑔

|∇𝑔|
|∇𝑔|

|𝜕𝑔/𝜕𝑧|
d𝑥 d𝑦

∇𝑔
𝜕𝑔/𝜕𝑧

d𝑥 d𝑦

Flat surface 𝑧 = 𝑐 (𝑥, 𝑦) ⟨0, 0, 1⟩ d𝑥 d𝑦 ⟨0, 0, 1⟩ d𝑥 d𝑦

Cylindrical coords with
fixed 𝑅

𝐫(𝜃, 𝑧) =
(𝑅 cos 𝜃, 𝑅 sin 𝜃, 𝑧)

(𝜃, 𝑧) ⟨cos 𝜃, sin 𝜃, 0⟩ 𝑅 d𝜃 d𝑧
⟨𝑅 cos 𝜃, 𝑅 sin 𝜃, 0⟩

d𝜃 d𝑧

Spherical coords with
fixed 𝑅

𝐫(𝜑, 𝜃) = (𝑅 sin 𝜑 cos 𝜃,
𝑅 sin 𝜑 sin 𝜃, 𝑅 cos 𝜑)

(𝜑, 𝜃)
1
𝑅 ⋅ 𝐫(𝜑, 𝜃)

(if 0 ≤ 𝜑 ≤ 𝜋)
𝑅2 sin 𝜑 d𝜑 d𝜃
(if 0 ≤ 𝜑 ≤ 𝜋)

𝑅 sin 𝜑 ⋅ 𝐫(𝜑, 𝜃)
d𝜑 d𝜃

Table 23: An alternate version of Table 14 written in 𝐧 and d𝑆 notation. I think
it’s less elegant and you should just use the original Table 14, personally, but the
tables are the same, so it doesn’t matter which one you use.

Again, when actually doing flux calculation with bare hands, you only need the fifth column. And if
you ever do need the third and fourth column for some other reason, they can be derived instantly from
the fifth column anyways. So the third and fourth column are only helpful insomuch as they might
make the formula for the cylinder and sphere easier to remember or more conceptually intuitive. But
for practical calculation they are redundant.

§38.5 [RECIPE] Recipe for flux integrals with bare-hands parametrization
We go back to recipe format now.

329



Linear Algebra and Multivariable Calculus — Evan Chen

Recipe for computing flux integrals with bare-hands parametrization

To compute the flux of 𝐅 over a surface 𝒮:

1. Get the cross product 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣  for a parametrization 𝐫 using the following checklist.
• If you are using (𝑥, 𝑦)-coordinates to parametrize (meaning 𝒮 is 𝑧 = 𝑓(𝑥, 𝑦) or a level

surface), use the magic formulas in rows 1 or 2 of Table 23.
• For a flat surface, it’s easy (row 3 of Table 23).
• If 𝒮 is specifically given by cylindrical/spherical coordinates with fixed radius, use rows

4 or 5 of Table 23.
• Otherwise, evaluate the cross product manually:

‣ Pick a parametrization 𝐫(𝑢, 𝑣) : ℛ → ℝ3 of the surface 𝒮. Sort of like in
Section 12.7, you have some freedom in how you set the parametrization.

‣ Compute 𝜕𝐫
𝜕𝑢  and 𝜕𝐫

𝜕𝑣  (both are three-dimensional vectors at each point).
‣ Compute the cross product 𝜕𝐫

𝜕𝑢 × 𝜕𝐫
𝜕𝑣  as in Chapter 6.

2. Look at which way the cross product points. Does it point the direction you want? If not,
negate the entire cross product (equivalently, swap the order of 𝑢 and 𝑣) before going on.

3. Compute the dot product

𝐅 ⋅ (𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

).

This gives you a number at every point on the parametrizing region ℛ.
4. Integrate the entire thing over ℛ using any of the methods for double integrals (such as

horizontal/vertical slicing, polar coordinates, change of variables, etc.).

Let’s give one example corresponding to each row of Table 23.

Sample Question

Consider the surface 𝒮 defined by 𝑧 = 𝑥3 + 𝑦3 for 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1, with the normal

vector oriented upwards (i.e. with positive 𝑧-component). Let 𝐅(𝑥, 𝑦, 𝑧) = (
1
1
𝑧
). Compute the

flux of 𝐅 through 𝒮.

Solution.  Our parametrization of the surface 𝒮 is by definition

𝐫(𝑥, 𝑦) = (𝑥, 𝑦, 𝑥3 + 𝑦3)

for 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1. Accordingly, we use the first row of Table 23 with 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3.
Compute the partial derivatives

𝜕𝑓
𝜕𝑥

= 3𝑥2, 𝜕𝑓
𝜕𝑦

= 3𝑦2.

Then by using the first row of Table 23, if we we get that the cross product at each point is given by

𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

=
(
((
(−3𝑥2

−3𝑦2

1 )
))
).
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At this point we have to check whether this cross product points the direction specified in the problem,

or if we need to negate everything and consider 𝜕𝐫
𝜕𝑦 × 𝜕𝐫

𝜕𝑥 = (
3𝑥2

3𝑦2

−1
) instead. The question wanted the

normal vector to be oriented upwards, and since 1 is positive, the original we had is okay; we use

𝐧 d𝑆 =
(
((
(3𝑥2

3𝑦2

−1)
))
) =

(
((
(−3𝑥2

−3𝑦2

1 )
))
) d𝑥 d𝑦.

Now, the vector field is given at each point (𝑥, 𝑦) by

𝐅(𝐫(𝑥, 𝑦)) =
(
((
( 1

1
𝑥3 + 𝑦3

)
))
).

So we can compute the dot product

𝐅 ⋅ (𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

) = (1)(−3𝑥2) + (1)(−3𝑦2) + (𝑥3 + 𝑦3)(1)

= −3𝑥2 − 3𝑦2 + 𝑥3 + 𝑦3.

Hence the flux requested is given by

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = ∫
1

𝑥=0
∫

1

𝑦=0
(−3𝑥2 − 3𝑦2 + 𝑥3 + 𝑦3) d𝑦 d𝑥

which is straightforward to evaluate:

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = ∫
1

𝑥=0
∫

1

𝑦=0
(𝑥3 − 3𝑥2 + 𝑦3 − 3𝑦2) d𝑦 d𝑥

= ∫
1

𝑥=0
(∫

1

𝑦=0
(𝑥3 − 3𝑥2) d𝑥) d𝑦 + ∫

1

𝑦=0
(∫

1

𝑥=0
(𝑦3 − 3𝑦2) d𝑦) d𝑥

= ∫
1

𝑥=0
(𝑥3 − 3𝑥2 d𝑥) + ∫

1

𝑦=0
(𝑦3 − 3𝑦2 d𝑦)

= [𝑥4

4
− 𝑥3]

1

𝑥=0

+ [𝑦4

4
− 𝑦3]

1

𝑦=0

= −3
4

− 3
4

= −3
2

. □

Sample Question

Consider the upper hemisphere of the sphere defined by 𝑥2 + 𝑦2 + 𝑧2 = 25 with the unit normal

vector oriented downwards towards the 𝑥𝑦-plane. Calculate the flux of the vector field 𝐅 = (
𝑦𝑧
𝑥𝑧
0
)

through this surface.

Solution.  Our parametrization of 𝒮 is going to be
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𝐫(𝑥, 𝑦) = ⟨𝑥2, 𝑦2, √25 − (𝑥2 + 𝑦2)⟩

across 𝑥2 + 𝑦2 ≤ 25. If we wanted to use the first row of the table Table 23, we would use 𝑓(𝑥, 𝑦) =
√25 − (𝑥2 + 𝑦2). However, square roots are annoying and we’ll use the second row instead by
viewing this hemisphere as a chunk of the level surface

𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2

for the value 25. Since ∇𝑔 = ⟨2𝑥, 2𝑦, 2𝑧⟩ and 𝜕𝑔
𝜕𝑧 = 2𝑧, our table gives

𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

= ∇𝑔
𝜕𝑔
𝜕𝑧

= ⟨2𝑥, 2𝑦, 2𝑧⟩
2𝑧

=

(
(((
(

𝑥
𝑧𝑦
𝑧
1)
)))
)

.

Here 𝑧 = √25 − (𝑥2 + 𝑦2).

At this point we have to check whether this cross product points the direction specified in the problem,

or if we need to negate everything and consider 𝜕𝐫
𝜕𝑦 × 𝜕𝐫

𝜕𝑥 = (
−𝑥

𝑧
−𝑦

𝑧
−1

) instead. This time, the question

specified the normal vector should point downwards, towards the 𝑥𝑦-plane. So we had better use the
negative one:

𝐧 d𝑆 = 𝜕𝐫
𝜕𝑦

× 𝜕𝐫
𝜕𝑥

=

(
(((
(−𝑥

𝑧
−𝑦

𝑧
−1)

)))
)

d𝑥 d𝑦.

Meanwhile, the force at each point of the parametrization is given by

𝐅(𝐫)(𝑥, 𝑦) =
(
((
(𝑦𝑧

𝑥𝑧
0 )

))
).

So the dot product is given by

𝐅 ⋅ (𝜕𝐫
𝜕𝑦

× 𝜕𝐫
𝜕𝑥

) = 𝑦𝑧 ⋅ (−𝑥
𝑧
) + 𝑥𝑧 ⋅ (−𝑦

𝑧
) + 0 ⋅ (−1) = −2𝑥𝑦.

Hence the flux we seek is

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = ∬
𝑥2+𝑦2≤25

−2𝑥𝑦 d𝑥 d𝑦.

But notice that the integrand −2𝑥𝑦 is an odd function in both 𝑥 and 𝑦. Since the region 𝑥2 + 𝑦2 ≤ 25
is symmetric with respect to both axes, we don’t even have to bother changing to polar coordinates;
we can just deduce directly that

∬
𝑥2+𝑦2≤25

−2𝑥𝑦 d𝑥 d𝑦 = 0 . □

Sample Question

Consider the plane 𝑥 = 3 with the normal vector oriented in the −𝑥 direction, and the vector
field 𝐅 = ⟨𝑒𝑥, 𝑒𝑦, 𝑒𝑧⟩. Compute the flux of 𝐅 through the portion of the plane with 𝑦2 + 𝑧2 ≤ 25.
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Solution.  Let 𝒮 be the surface of the plane mentioned. We parametrize with the variables 𝑦 and 𝑧;

𝐫(𝑦, 𝑧) = (3, 𝑦, 𝑧)

across 𝑦2 + 𝑧2 ≤ 25.

This cross product is the third (easiest) row of Table 23; you just get

𝜕𝐫
𝜕𝑦

× 𝜕𝐫
𝜕𝑧

=
(
((
(1

0
0)
))
).

Before going on, we again have to check whether the normal vector points the correct way, or we

should negate it and use 𝜕𝐫
𝜕𝑧 × 𝜕𝐫

𝜕𝑦 = (
−1
0
0

) instead. The problem wants the −𝑥 direction, so indeed,

we take the negated one here:

𝐧 d𝑆 = 𝜕𝐫
𝜕𝑧

× 𝜕𝐫
𝜕𝑦

=
(
((
(−1

0
0 )

))
).

Meanwhile, the force vector at each point is just

𝐅(𝐫(𝑦, 𝑧)) =
(
((
(𝑒3

𝑒𝑦

𝑒𝑧
)
))
).

The dot product is then

𝐅 ⋅ (𝜕𝐫
𝜕𝑧

× 𝜕𝐫
𝜕𝑦

) =
(
((
(𝑒3

𝑒𝑦

𝑒𝑧
)
))
) ⋅

(
((
(−1

0
0 )

))
) = −𝑒3.

Hence, the flux we seek is

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = ∬
𝑦2+𝑧2≤25

−𝑒3 d𝑦 d𝑧

= −𝑒3 ⋅ Area(𝑦2 + 𝑧2 ≤ 25) = −25𝜋𝑒3 . □

Sample Question

Let 𝒮 be the portion of the cylinder 𝑥2 + 𝑦2 = 49 where 0 ≤ 𝑧 ≤ 10, with normal vector oriented

outwards. Calculate the flux of 𝐅 = (
3𝑥
5𝑦
𝑒𝑧

) through 𝒮.

Solution.  It’s natural to parametrize this with cylindrical coordinates as

𝐫(𝜃, 𝑧) = ⟨7 cos 𝜃, 7 sin 𝜃, 𝑧⟩

for 0 ≤ 𝜃 ≤ 2𝜋 and 0 ≤ 𝑧 ≤ 10. As this is a cylinder, we use the fourth row of Table 23 to get

𝜕𝐫
𝜕𝜃

× 𝜕𝐫
𝜕𝑧

=
(
((
(7 cos 𝜃

7 sin 𝜃
0 )

))
).
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As before we pause to see whether this points the right way or whether we need to instead use 𝜕𝐫
𝜕𝑧 ×

𝜕𝐫
𝜕𝜃 = (

−7 cos 𝜃
−7 sin 𝜃

0
). The question specifies to orient the normal vector outwards, so we use the former

one:

𝐧 d𝑆 = 𝜕𝐫
𝜕𝜃

× 𝜕𝐫
𝜕𝑧

=
(
((
(7 cos 𝜃

7 sin 𝜃
0 )

))
) d𝜃 d𝑧.

Meanwhile, the force at each point is given by

𝐅(𝐫(𝜃, 𝑧)) =
(
((
(7 ⋅ 3 cos 𝜃

7 ⋅ 5 sin 𝜃
𝑒𝑧

)
))
).

Thus, the dot product 𝐅 ⋅ 𝐧 is:

𝐅 ⋅ (𝜕𝐫
𝜕𝜃

× 𝜕𝐫
𝜕𝑧

) =
(
((
(7 ⋅ 3 cos 𝜃

7 ⋅ 5 sin 𝜃
𝑒𝑧

)
))
) ⋅

(
((
(7 cos 𝜃

7 sin 𝜃
0 )

))
)

= 49(3 cos2 𝜃 + 5 sin2 𝜃).

Hence, the flux we seek is

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = ∫
2𝜋

𝜃=0
∫

10

𝑧=0
(21 cos2 𝜃 + 35 sin2 𝜃) ⋅ 7 d𝑧 d𝜃

= ∫
2𝜋

𝜃=0
490(3 cos2 𝜃 + 5 sin2 𝜃) d𝜃

= 490 ∫
2𝜋

𝜃=0
(3 cos2 𝜃 + 5 sin2 𝜃) d𝜃.

Recall that:

∫
2𝜋

𝜃=0
cos2 𝜃 d𝜃 = ∫

2𝜋

𝜃=0
sin2 𝜃 d𝜃 = 𝜋

by using cos2 𝜃 = 1+ cos(2𝜃)
2  and sin2 𝜃 = 1− cos(2𝜃)

2 . Hence,

490 ∫
2𝜋

𝜃=0
(3 cos2 𝜃 + 5 sin2 𝜃) d𝜃 = 490 ⋅ (3𝜋 + 8𝜋) = 3920𝜋 . □

For the final example, we actually use the same hemisphere again, but this time we use spherical
coordinates, so you can compare the methods. (In my opinion, this is uglier, but some people prefer
spherical coordinates anyway.)

Sample Question

Consider the upper hemisphere of the sphere defined by 𝑥2 + 𝑦2 + 𝑧2 = 25 with the unit normal

vector oriented downwards towards the 𝑥𝑦-plane. Calculate the flux of the vector field 𝐅 = (
𝑦𝑧
𝑥𝑧
0
)

through this surface.
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Solution.  We parametrize with spherical coordinates by writing

𝐫(𝜑, 𝜃) = (5 sin 𝜑 cos 𝜃, 5 sin 𝜑 sin 𝜃, 5 cos 𝜑)

for 0 ≤ 𝜑 ≤ 𝜋
2  and 0 ≤ 𝜃 ≤ 2𝜋. In that case, the cross product according to Table 23 is

( 𝜕𝐫
𝜕𝜑

) × (𝜕𝐫
𝜕𝜃

) = 5 sin 𝜑 ⋅ 𝐫(𝜑, 𝜃).

This points away from the sphere since sin 𝜑 ≥ 0, so we flip the order:

(𝜕𝐫
𝜕𝜃

) × ( 𝜕𝐫
𝜕𝜑

) = −5 sin 𝜑 ⋅ 𝐫(𝜑, 𝜃).

Meanwhile, we have

𝐅(𝐫(𝜑, 𝜃)) =
(
((
(25 sin 𝜑 cos 𝜑 sin 𝜃

25 sin 𝜑 cos 𝜑 cos 𝜃
0 )

))
)

If we expand the entire dot product we now get

𝐅 ⋅ ((𝜕𝐫
𝜕𝜃

) × ( 𝜕𝐫
𝜕𝜑

)) = (25 sin 𝜑 cos 𝜑 sin 𝜃) ⋅ (−5 sin 𝜑) ⋅ (5 sin 𝜑 cos 𝜃)

+(25 sin 𝜑 cos 𝜑 cos 𝜃) ⋅ (−5 sin 𝜑) ⋅ (5 sin 𝜑 sin 𝜃)

= −1250(sin3 𝜑 cos 𝜑 sin 𝜃 cos 𝜃).

In other words, we have

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = −1250 ∫
2𝜋

𝜃=0
∫

𝜋
2

𝜑=0
sin3 𝜑 cos 𝜃 sin 𝜃 d𝜑 d𝜃

= −1250(∫
2𝜋

𝜃=0
sin 𝜃 cos 𝜃 d𝜃)(∫

𝜋
2

𝜑=0
sin3 𝜑 cos 𝜑 d𝜑.)

The latter integral is super annoying to evaluate, but the former integral is zero because sin 𝜃 cos 𝜃 =
1
2 sin(2𝜃), so we don’t have to worry about the d𝜑 integral at all; we just get 0  as the answer. □

§38.6 [TEXT] Another trick: writing as surface area if 𝐅 ⋅ 𝐧 is constant
We give one more trick for avoiding the cross product that only works in certain situations, but when
it does, it makes your life a lot easier. Let 𝒮 be a surface parametrized by 𝐫 : ℛ → ℝ3, and as always
let 𝐧 be shorthand for the unit vector in the direction of ( 𝜕𝑟

𝜕𝑢 × 𝜕𝑟
𝜕𝑣).

Let’s compare the flux and surface area in both longhand and shorthand.

• In longhand, we have

SurfArea(𝒮) = ∬
ℛ

| 𝜕𝑟
𝜕𝑢

× 𝜕𝑟
𝜕𝑣

| d𝑢 d𝑣

Flux = ∬
ℛ

𝐅 ⋅ (𝜕𝑟
𝜕𝑢

× 𝜕𝑟
𝜕𝑣

) d𝑢 d𝑣 = ∬
ℛ

(𝐅 ⋅ 𝐧)| 𝜕𝑟
𝜕𝑢

× 𝜕𝑟
𝜕𝑣

| d𝑢 d𝑣.

(Keep type safety in mind here: the absolute value is a number, and the ⋅ is dot product of vectors
in ℝ3.) What we’ve done for the flux is decompose the cross product ( 𝜕𝑟

𝜕𝑢 × 𝜕𝑟
𝜕𝑣) into 𝐧 times its
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magnitude, which we can do (in general, any vector 𝐰 equals |𝐰| multiplied by its direction unit
vector). In this way you can make flux look a little more like surface area.

• In shorthand, it’s even more obvious:

Flux = ∬
𝒮
(𝐅 ⋅ 𝐧) d𝑆  and SurfArea(𝒮) = ∬

𝒮
d𝑆.

However, this resemblance is mostly useless, except in one really particular circumstance: the case
where it happens 𝐅 ⋅ 𝐧 is always equal to the same constant 𝑐 for every point on the surface. If you
are that lucky, then the resemblance can actually be put to use:

Flux = ∬
ℛ

𝑐 ⋅ | 𝜕𝑟
𝜕𝑢

× 𝜕𝑟
𝜕𝑣

| d𝑢 d𝑣 = 𝑐 ∬
ℛ

| 𝜕𝑟
𝜕𝑢

× 𝜕𝑟
𝜕𝑣

| d𝑢 d𝑣 = 𝑐 ⋅ SurfArea(𝒮).

Then if you know the surface are of 𝒮, you don’t have to do any integration. You just multiply the
surface area by 𝑐.

Again, this particular trick is extremely specific. It will only happen if 𝐅 and 𝒮 have been cherry-
picked so that 𝐅 ⋅ 𝐧 is constant, and if you write down a “random” vector field 𝐅 there is absolutely no
chance this occurs by luck. However, despite the brittleness of the technique, this trick is still popular
for some homework and exam questions because no calculation is needed. Here are two examples of
this with spheres.

Sample Question

Let 𝒮 denote the sphere 𝑥2 + 𝑦2 + 𝑧2 = 172 = 289 of radius 17. Let 𝐅 = (
𝑥
𝑦
𝑧
). Compute the flux

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆.

(Orient 𝐒 outwards.)

Solution.  The normal vector 𝐧 at any point (𝑥, 𝑦, 𝑧) on the surface of the sphere is a unit vector pointing
in the direction of ⟨𝑥, 𝑦, 𝑧⟩. Conveniently, the force vector 𝐅 is a vector of magnitude 17 in the same
direction! That is,

𝐅 ⋅ 𝐧 = (17𝐧) ⋅ (𝐧) = 17.

Consequently,

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = 17 SurfArea(𝒮) = 17 ⋅ (4 ⋅ 289)𝜋 = 4 ⋅ 173𝜋 .

(In general, we know a sphere of radius 𝑅 has surface area 4𝑅2𝜋.) □
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Sample Question

Let 𝒮 denote the sphere 𝑥2 + 𝑦2 + 𝑧2 = 172 = 289 of radius 17. Let 𝐆 be the force of gravity
exerted by a point mass 𝑚 at the origin. Compute the flux

∬
𝒮

𝐆 ⋅ 𝐧 d𝑆.

(Orient 𝐒 outwards.)

Solution.  This is just like the previous example except that the gravity 𝐆 exerted has magnitude 𝐺𝑚
172

and points in the opposite direction as 𝐧. That is,

𝐆 ⋅ 𝐧 = (−(𝐺𝑚
172 )𝐧) ⋅ (𝐧) = −𝐺𝑚

289
.

Consequently,

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = −𝐺𝑚
289

⋅ SurfArea(𝒮) = −𝐺𝑚
172 ⋅ (4 ⋅ 172𝜋) = −4𝜋𝐺𝑚 .

(In general, we know a sphere of radius 𝑅 has surface area 𝑅2𝜋.) □

Note that the answer is independent of the radius! The 17 cancels out.

§38.7 [EXER] Exercises

Exercise 38.1.  Calculate the flux of the vector field

𝐅(𝑥, 𝑦, 𝑧) = ⟨𝑥
3
, 𝑦
4
, 1
5
⟩

across the portion of the surface defined by

𝑥3 + 𝑦4 = 𝑒𝑧, 0 ≤ 𝑥 ≤ 5, 0 ≤ 𝑦 ≤ 5

where the normal vector is oriented upwards.
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Chapter 39. Shortcut for flux: the divergence theorem

§39.1 [TEXT] The divergence theorem
Remember back when we had Green’s theorem, we could transform 2D scalar flux (which was a line
integral) into an area integral:

∮
𝒞
(𝐅 ⋅ 𝐧 d𝑠)

⏟⏟⏟⏟⏟
= ∮

𝒞
(−𝑞 d𝑥+𝑝 d𝑦)

= ∬
ℛ

∇ ⋅ 𝐅 d𝐴
⏟⏟⏟⏟⏟
= ∬

ℛ
(𝜕𝑝

𝜕𝑥+𝜕𝑞
𝜕𝑦) d𝐴

.

This was nice because parametrization was annoying and straight-up area integrals are simpler. In
general, if you still have the poster, the green pictures are easier to deal with.

The divergence theorem will let you do the same thing, transforming a flux surface integral (which is
the horrendous surface integral that has been haunting you for the last couple weeks) into a volume
integral. Which is an even bigger profit — no parametrization, no cross product table, etc.

Figure 94: The highlighted arrow for the divergence theorem in our poster
Figure 75.

Here’s the result:

Memorize: Divergence theorem

Suppose a closed surface 𝒮 encloses a compact solid 𝒯, and 𝐅 is defined everywhere in 𝒯. Then

∯
𝒮

𝐅 ⋅ 𝐧 d𝑆
⏟⏟⏟⏟⏟

= ∬
ℛ

𝐅(𝐫(𝑢,𝑣))⋅( 𝜕𝐫
𝜕𝑢×𝜕𝐫

𝜕𝑣) d𝑢 d𝑣

= ∭
𝒯

∇ ⋅ 𝐅 d𝑉
⏟⏟⏟⏟⏟⏟⏟

= ∭
𝒯

(𝜕𝑝
𝜕𝑥+𝜕𝑞

𝜕𝑦+𝜕𝑟
𝜕𝑧) d𝑉

.

I’ve snuck in a new symbol ∯
𝒮

, but the extra circle is analogous to before. Just like how ∮
𝒞

 was a
reminder that 𝒞 was a closed loop:

Definition of ∯

∯
𝒮

 means “∬
𝒮

 but with an extra optional reminder that 𝒮 is a closed surface”. (The reminder is
optional, i.e. you are not obligated to add it even if 𝒮 is closed.)

Also, note there’s a fine-print requirement that 𝒯 should be compact, i.e. it should not extend infinitely
in any direction.
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Remark: “Closed surface” = “holds water”

If you’re unclear what “closed surface” means, a picture to keep in your head might be “holds
water”, i.e., you could imagine filling the interior of 𝒮 with a water (that’s the volume 𝒯) and it
shouldn’t leak out. So the following are not closed surfaces:

• Curved part of hemisphere (e.g., bowl with no lid)
• Curved part of cylinder (e.g., straw)

But the following are closed surfaces:

• Cylinder including the two caps (e.g., water bottle)
• Sphere
• The six faces of a rectangular prism

We can jump straight into examples now!

Sample Question

Let 𝑅 > 0 be given. Compute the flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = (
𝑥
𝑦
𝑧
) through the closed

surface of the sphere 𝒮 defined by 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 oriented outward, using the Divergence
Theorem.

Solution.  The sphere 𝒮 encloses a ball 𝒯 of radius 𝑅. The divergence is given by

∇ ⋅ 𝐅 = 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

+ 𝜕𝑟
𝜕𝑧

= 1 + 1 + 1 = 3

Then the answer is

∭
𝒯

∇ ⋅ 𝐅 d𝑉 = ∭
𝒯

3 d𝑉 = 3 Vol(𝒮) = 3 ⋅ 4
3
𝜋𝑅3 = 4𝜋𝑅3 . □

Remark: Connection to surface area of sphere

This was also the first example we did with the surface area trick, where we found that the answer
was 𝑅 ⋅ SurfArea(𝒮) which is also 4𝜋𝑅3.

Actually, put another way: if you know the volume of the sphere is 4
3𝜋𝑅3 and the divergence

theorem, then the surface area trick lets you derive the surface area formula of 4𝜋𝑅2.
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Warning: Beware of undefined points of 𝐅

You need to be careful to only apply the divergence theorem if the force is actually defined on
the entire solid 𝒯! Here’s an example of what can go wrong.

Let 𝒮 denote the sphere 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 of radius 𝑅 again. Let 𝐆 be the force of gravity
exerted by a point mass 𝑚 at the origin. In the last chapter we computed

∬
𝒮

𝐆 ⋅ 𝐧 d𝑆 = −4𝜋𝐺𝑚

using the surface area trick.

However, if you compute the divergence ∇ ⋅ 𝐆, you’ll actually find it’s zero at every point
— except the origin, where 𝐆 is undefined because the gravity causes division-by-zero. (See
Exercise 32.1.) If you blindly apply the divergence theorem and don’t notice the issue with the
origin, you would instead get the wrong answer ∭

𝒯
0 d𝑉 = 0, rather than the correct answer

−4𝜋𝐺𝑚. (That said, see Exercise 39.2 for a safe usage.)

Sample Question

Let 𝑎 > 0 be given. Calculate the flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = (
𝑥2

𝑦2

𝑧2
) through the closed

surface of the cube 𝒮 bounded by 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝑎 using the Divergence Theorem.

Solution.  The divergence is

∇ ⋅ 𝐅 = 𝜕
𝜕𝑥

(𝑥2) + 𝜕
𝜕𝑦

(𝑦2) + 𝜕
𝜕𝑧

(𝑧2) = 2𝑥 + 2𝑦 + 2𝑧.

Hence the flux turns into

∭
𝒯
(2𝑥 + 2𝑦 + 2𝑧) d𝑉 = 2 ∭

𝒯
𝑥 d𝑉 + 2 ∭

𝒯
𝑦 d𝑉 + 2 ∭

𝒯
𝑧 d𝑉 .

Due to the symmetry of the cube:

∭
𝒯

𝑥 d𝑉 = ∭
𝒯

𝑦 d𝑉 = ∭
𝒯

𝑧 d𝑉 = 𝑎
2

⋅ Vol(𝒯) = 𝑎4

2
.

If you can’t see it by symmetry, you could also just explicitly calculate

∭
𝒯

𝑥 d𝑉 = (∫
𝑎

𝑥=0
𝑥 d𝑥)(∫

𝑎

𝑦=0
d𝑦)(∫

𝑎

𝑧=0
d𝑧) = 𝑎2

2
⋅ 𝑎 ⋅ 𝑎 = 𝑎4

2
.

In any case, we get an answer of

2 ⋅ 𝑎4

2
+ 2 ⋅ 𝑎4

2
+ 2 ⋅ 𝑎4

2
= 3𝑎4 . □
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Sample Question

Compute the flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = (
𝑦𝑧
𝑥𝑧
𝑥𝑦

) through the closed surface 𝒮 defined by

𝑥4 + (𝑦 − 5)6 + 𝑧8 = 2025.

Solution.  The surface 𝒮 is hard to describe, but it encloses some solid 𝒯. However, if you compute the
divergence, it is

∇ ⋅ 𝐅 = 𝜕
𝜕𝑥

(𝑦𝑧) + 𝜕
𝜕𝑦

(𝑥𝑧) + 𝜕
𝜕𝑧

(𝑥𝑦) = 0 + 0 + 0 = 0.

So it doesn’t even matter what the solid 𝒯 is; the answer is just

∭
𝒯

0 d𝑉 = 0 . □

Sample Question

Compute the flux of the vector field 𝐅(𝑥, 𝑦, 𝑧) = (
𝑥𝑦
𝑦𝑧
𝑧𝑥

) through the closed surface 𝒮 formed by

the paraboloid 𝑧 = 𝑥2 + 𝑦2 and its circular base 𝑧 = 0, where 𝑥2 + 𝑦2 ≤ 1.

Solution.  Let 𝒯 denote the region enclosed by 𝒮. The divergence is given by

∇ ⋅ 𝐅 = 𝜕
𝜕𝑥

(𝑥𝑦) + 𝜕
𝜕𝑦

(𝑦𝑧) + 𝜕
𝜕𝑧

(𝑧𝑥) = 𝑦 + 𝑧 + 𝑥

The region 𝒯 is bounded by 𝑧 = 𝑥2 + 𝑦2 and 𝑧 = 0, within 𝑥2 + 𝑦2 ≤ 1. So the divergence theorem
means we need to calculate

∬
𝑥2+𝑦2≤1

∫
𝑥2+𝑦2

𝑧=0
(𝑥 + 𝑦 + 𝑧) d𝑧 d𝑥 d𝑦.

Naturally, this is best done using cylindrical coordinates. Writing 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, and
remembering that

d𝑥 d𝑦 d𝑧 = d𝑉 = 𝑟 d𝑟 d𝜃 d𝑧

then this becomes

∫
1

𝑟=0
∫

2𝜋

𝜃=0
∫

𝑟2

𝑧=0
𝑟(𝑟 cos 𝜃 + 𝑟 sin 𝜃 + 𝑧) d𝑧 d𝜃 d𝑟.

But the integrals with 𝜃 in them are going to be zero by symmetry. For example, the first term is

∫
1

𝑟=0
∫

2𝜋

𝜃=0
∫

𝑟2

𝑧=0
𝑟2 cos 𝜃 d𝑧 d𝑟 d𝜃 = (∫

1

𝑟=0
∫

𝑟2

𝑧=0
𝑟2 d𝑧 d𝑟)(∫

2𝜋

𝜃=0
cos 𝜃 d𝜃)

⏟⏟⏟⏟⏟⏟⏟
=0

= 0.

Similarly, the contribution of 𝑟 sin 𝜃 is just zero as well. So we are just left with
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∫
1

𝑟=0
∫

2𝜋

𝜃=0
∫

𝑟2

𝑧=0
𝑟𝑧 d𝑧 d𝜃 d𝑟 = (∫

1

𝑟=0
∫

𝑟2

𝑧=0
𝑟𝑧 d𝑧 d𝑟)(∫

2𝜋

𝜃=0
d𝜃).

Obviously ∫2𝜋
𝜃=0

d𝜃 = 2𝜋. The double integral can be evaluated as

∫
1

𝑟=0
𝑟 ∫

𝑟2

𝑧=0
𝑧 d𝑧 d𝑟 = ∫

1

𝑟=0
𝑟 ⋅ [𝑧2

2
]

𝑟2

𝑧=0

d𝑟

= ∫
1

𝑟=0

𝑟5

2
d𝑟

= [𝑟6

12
]

1

𝑟=0

= 1
12

.

Hence the final answer is

1
12

⋅ 2𝜋 =
𝜋
6 . □

§39.2 [SIDENOTE] A picture for why the divergence theorem is true
The picture is actually exactly the same as Figure 90 from Section 35.4, our picture of Green’s theorem
for 2D flux! The divergence is still drawn as green explosions. The only change is in the dimensions:

• For Green’s theorem for flux, we have a 1D path (purple square) enclosing a 2D region broken up
into little grey squares.

• For divergence theorem, we have a 2D surface (purple box) enclosing a 3D regions broken up into
little grey cubes.

And the rest of the analogy carries over: all the interior green arrows cancel except for those pushing
directly against the purple faces of the cube, so there’s the flux integral we wanted.

§39.3 [RECAP] All the methods for flux
Here’s a complete recipe for flux, augmented with the two shortcuts we described.
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Recipe for flux, with shortcuts

Suppose we need to calculate the flux of 𝐅 through a surface 𝒮.

1. If 𝒮 is a closed region, use the divergence theorem to avoid parametrization:

∯
𝒮

𝐅 ⋅ 𝐧 d𝑆 = ∭
𝒯

∇ ⋅ 𝐅 d𝑉
⏟⏟⏟⏟⏟⏟⏟

= ∭
𝒯

(𝜕𝑝
𝜕𝑥+𝜕𝑞

𝜕𝑦+𝜕𝑟
𝜕𝑧) d𝑉

.

2. If 𝐅 ⋅ 𝐧 happens to equal the same constant 𝑐 everywhere (as described in Section 38.6),
then output 𝑐 times the surface area of 𝒮, i.e.

∯
𝒮

𝐅 ⋅ 𝐧 d𝑆 = 𝑐 SurfArea(𝒮).

3. Otherwise, fall back to the parametrization recipe described in Section 38.5. To describe it
again here briefly:

1. Get the cross product 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣  by either looking it up from Table 23 or by computing
it by hand, for a parametrization 𝐫 : ℛ → ℝ3 of the surface 𝒮.

2. If necessary, negate the cross product to match the orientation of the surface specified
in the question.

3. Compute the dot product 𝐅 ⋅ ( 𝜕𝐫
𝜕𝑢 × 𝜕𝐫

𝜕𝑣).
4. Integrate over the region ℛ using any method for double integrals.

§39.4 [TEXT] Advanced technique: sealing regions
This is the 3D analog of Section 34.6: in some situations if you have a surface 𝒮 which isn’t closed, you
can seal it by adding some part to the surface. The picture you can have in your head is that you have
a bowl or something, and then you add a layer of plastic wrap on the bowl.

Sample Question

Let 𝐅 be the vector field defined by:

𝐅(𝑥, 𝑦, 𝑧) = ⟨𝑥 + tan 𝑧, 𝑦 + 𝑒𝑧, 1⟩.

Consider the hemisphere 𝒮 defined by the equation:

𝑥2 + 𝑦2 + 𝑧2 = 1 with 𝑧 ≥ 0

oriented outward. Compute the flux of 𝐅 through 𝒮.

343



Linear Algebra and Multivariable Calculus — Evan Chen

Figure 95: Sealing a bowl with a lid. Like microwaving food, though the bowl is
upside-down.

Solution.  Our picture is that 𝒮 looks like an upside-down bowl. So we add a lid 𝒮lid consisting of the
disk 𝑧 = 0 and 𝑥2 + 𝑦2 ≤ 1. This encloses a solid region 𝒯, half a solid ball of radius 1, as in Figure 95.

The divergence of 𝐅 is:

∇ ⋅ 𝐅 = 𝜕
𝜕𝑥

(𝑥 + tan 𝑧) + 𝜕
𝜕𝑦

(𝑦 + 𝑒𝑧) + 𝜕
𝜕𝑧

(1) = 1 + 1 + 0 = 2

which is constant. So the integral of the divergence over 𝒯 is just

∭
𝒯

∇ ⋅ 𝐅 d𝑉 = 2 ⋅ Vol(𝒯) = 2 ⋅ (1
2

⋅ 4
3
𝜋 ⋅ 13) = 4

3
𝜋.

Meanwhile, 𝒮lid (which we orient downwards) is a flat surface, so its flux integral is easy to calculate:
from Table 23 we choose 𝐧 d𝑆 = ⟨0, 0, −1⟩ and hence

∬
𝒮lid

𝐅 ⋅ 𝐧 d𝑆 = ∬
𝑥2+𝑦2≤1

⟨𝑥 + tan 0, 𝑦 + 𝑒0, 1⟩ ⋅ ⟨0, 0, −1⟩ d𝑥 d𝑦 = ∬
𝑥2+𝑦2≤1

(−1) d𝑥 d𝑦 = −𝜋.

So when we apply the divergence theorem, we get that

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆
⏟⏟⏟⏟⏟

Answer

+ ∬
𝒮lid

𝐅 ⋅ 𝐧 d𝑆
⏟⏟⏟⏟⏟

=−𝜋

= ∭
𝒯

∇ ⋅ 𝐅 d𝑉
⏟⏟⏟⏟⏟⏟⏟

=4
3𝜋

.

Hence, we get the answer

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = 4
3
𝜋 − (−𝜋) = 7

3
𝜋 . □

§39.5 [EXER] Exercises

Exercise 39.1.  Let 𝒮 be the part of the surface 𝑧 = 𝑒𝑥2+𝑦2  where 𝑧 ≤ 𝑒, with normal vector oriented
downwards. Let 𝐅(𝑥, 𝑦, 𝑧) = ⟨cos(𝑧2) − 𝑥, sin(𝑧2) − 𝑦, 2𝑧⟩. Compute the flux of 𝐅 through 𝒮.
(Recommended approach: sealing.)
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Exercise 39.2.  Suppose 𝒮1 and 𝒮2 are two closed surfaces that don’t intersect and such that 𝒮2 is
contained inside 𝒮1. Orient both surfaces outwards. Let 𝑂 be a point contained inside 𝒮2. Consider
the force of gravity 𝐆 exerted by a point mass of mass 𝑚 at 𝑂. Show that

∯
𝒮1

𝐆 ⋅ 𝐧 d𝑆 = ∯
𝒮2

𝐆 ⋅ 𝐧 d𝑆.

Exercise 39.3 (*).  Prove Green’s theorem for flux by quoting the divergence theorem.

That is, suppose 𝐅 = (𝑝
𝑞) is a vector field in ℝ2 and 𝒞 is a closed loop enclosing a region ℛ

counterclockwise. Find a way to use the divergence theorem to prove

∮
𝒞

𝐅 ⋅ 𝐧 d𝐬 = ∬
ℛ

(𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

) d𝐴.
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Chapter 40. Classical Stokes’ Theorem
This topic was excluded from the final exam for 18.02 in Fall 2024, so this chapter is just a brief summary
for interest.

All the red arrows in Figure 75 are special cases of what mathematicians refer to as generalized Stokes’
theorem. Despite this, we confusingly call the final red arrow “Stokes’ theorem” as well. I’ll use the
phrase “classical” to indicate this came first historically.

§40.1 [TEXT] The classical Stokes’ theorem
Here’s the statement of the result:

Definition of compatible orientations

Suppose 𝒞 is a closed loop in ℝ3 which is the boundary of an oriented surface 𝒮. The orientation
of 𝒞 and 𝒮 are compatible if, when walking along 𝒞 in the chosen direction, with 𝒮 to the left, the
normal vector 𝐧 is pointing up.

Classical Stokes’ theorem

Let 𝒞 be a closed loop in ℝ3 parametrized by 𝐫1(𝑡). Suppose 𝒮 is the boundary of an oriented
surface 𝒮 parametrized by 𝐫2(𝑢, 𝑣). Assume the orientation of 𝒞 and 𝒮 are compatible. Then

∮
𝒞

𝐅 ⋅ d𝐫1
⏟⏟⏟⏟⏟

= ∫stop
𝑡=start

𝐅⋅𝐫′
1(𝑡) d𝑡

= ∬
𝒮
(∇ × 𝐅) ⋅ 𝐧 d𝑆.

⏟⏟⏟⏟⏟⏟⏟⏟⏟
= ∬

𝑢,𝑣
(curl 𝐅)⋅(𝜕𝐫2

𝜕𝑢 ×𝜕𝐫2
𝜕𝑣 ) d𝑢 d𝑣

For a picture of why this theorem is true, one should just refer to Figure 90 again (from Section 35.4),
which we used when explaining Green’s theorem for flux. The classical Stokes theorem is the same
picture, except that one should imagine the grid is superimposed onto the surface 𝒮 (rather than laying
flat in 2D). The same explanation should then carry over verbatim.

§40.2 [TEXT] Reasons to not be stoked about classical Stokes’ theorem
Unlike the other big-name theorems we’ve seen (FTC, Green, and divergence theorem), the classical
Stokes’ theorem does not make for good exam questions, for a few reasons:

• Both sides require parametrization, so it’s not as slick as FTC, Green, or divergence theorem,
which were powerful because they let you skip the parametrization step.

• Surface integrals are more painful than line integrals, but there’s no “anti-curl” procedure analo-
gous to anti-gradient, so it doesn’t help with surface integrals of a “random” vector field.

In other words, it doesn’t provide a nice shortcut like the other theorems do.
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Digression

A really clever student might imagine that maybe there’s a situation where you have a line
integral over a closed loop 𝒞, you use classical Stokes theorem to change it to a surface integral,
and then you use the divergence theorem to convert it to a volume integral, so maybe classical
Stokes’ theorem is good for something after all? But that kite won’t fly: this could only work if 𝒮
is a closed surface, but if 𝒮 is a closed surface it’s impossible for it to have a (nonempty) boundary
𝒞. Hence this situation will never apply.

Similarly, imagine you have a surface integral of a vector field 𝐅. Maybe you can try to find an
anti-curl for it (i.e. a vector field 𝐅′ such that ∇ × 𝐅′ = 𝐅), and then if 𝐅′ is conservative hope
you can use FTC? But that kite won’t fly either: the curl of a conservative vector field is always 𝟎,
so this would only work if 𝐅 was the zero vector field to begin with, and in that case you certainly
don’t need any help integrating it.

§40.3 [EXER] Exercises

Exercise 40.1.  Prove Green’s theorem for work by quoting classical Stokes’ theorem.

That is, suppose 𝐅 = (𝑝
𝑞) is a vector field in ℝ2 and 𝒞 is a closed loop enclosing a region ℛ

counterclockwise. Find a way to use classical Stokes’ theorem to prove

∮
𝒞

𝐅 ⋅ d𝐫 = ∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴.
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Part Kilo: Practice questions
Chapter 41. Practice questions
Some practice questions from topics through the entire course. Solutions are in Chapter 52.

§41.1 Practice half-final
This was a cumulative practice exam given on December 18, 2024 covering the whole course. It was
about half the length of the final exam (which was 14 questions long).

Exercise 41.1.  Give an example of a complex number 𝑧 whose real and imaginary part are both
negative such that 𝑧3 = −1000𝑖. Write your answer in rectangular form.

Exercise 41.2.  Compute the unique real number 𝑎 for which the matrix 𝑀 = (1
𝑎

1
6) has an eigen-

value of 2. For this value of 𝑎, compute the other eigenvalue of 𝑀 , and a (nonzero) eigenvector for
that eigenvalue.

Exercise 41.3.  The four points (𝑏, 0, 0), (0, 𝑏, 0), (0, 0, 𝑏), and (2, 3, 6) lie on a plane 𝒫. Compute 𝑏,
and compute the distance from (1, 2, 3) to 𝒫.

Exercise 41.4.  Let 𝑓(𝑥, 𝑦) = cos(𝑥) + sin(𝑦). Give an example of a saddle point of 𝑓 , and an
example of a local maximum of 𝑓 . Pick either of these two points and sketch the level curve of 𝑓
passing through it.

Exercise 41.5.  Compute the maximum and minimum value of 𝑥2 + 2𝑦2 + 4𝑥 over the region 𝑥2 +
𝑦2 ≤ 9.

Exercise 41.6.  Use any method (recommended approach: change order of integration) to compute

∫
1

𝑥=0
∫

1

𝑦=𝑥
∫

1

𝑧=𝑦
𝑒𝑧3 d𝑧 d𝑦 d𝑥.

Exercise 41.7.  Compute the real number 𝑐 for which

𝐅(𝑥, 𝑦, 𝑧) = ⟨7 cos(𝑥), cos(𝑦) cos(2𝑧), 𝑐 sin(𝑦) sin(2𝑧)⟩

is conservative. For that 𝑐, compute the maximum possible value of a line integral ∫
𝒞

𝐅 ⋅ d𝐫 across
all possible choices of some curve 𝒞 in ℝ3.

Exercise 41.8.  Let

𝐅(𝑥, 𝑦, 𝑧) = ⟨𝑥 + 𝑒𝑦 + 𝑧3, 𝑒𝑥 + 𝑦 + 𝑧3, 𝑧⟩.

Let 𝒮 be the surface defined by 𝑥2 + 𝑦2 = 100 and 7 ≤ 𝑧 ≤ 9, with normal vector oriented outwards
(thus 𝒮 is the curved part of a cylinder). Compute the divergence of 𝐅. Then compute the flux of 𝐅
through 𝒮. (Recommended approach: add two “lids” to 𝒮, calculate flux through the lids by hand,
then use the divergence theorem.)
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§41.2 Miscellaneous practice questions without solutions

Exercise 41.9.  Let 𝐯 = (
8
9
10

). Suppose that

proj𝐰(𝐯) =
(
((
(3

5
𝑡)
))
)

for some real number 𝑡. Compute 𝑡, and compute all possibilities for the vector 𝐰.

Exercise 41.10.  Compute the unique 2 × 2 matrix 𝐴 for which (1
1) is an eigenvector with eigen-

value 3 and (2
1) is an eigenvector with eigenvalue 4.

Exercise 41.11.  Let 𝐴 = (4
4

3
8).

• Compute the eigenvalues and eigenvectors for 𝐴.
• Compute the eigenvalues and eigenvectors for 𝐴2.
• Compute the eigenvalues and eigenvectors for 𝐴100.

Exercise 41.12.  Let 𝒮 be the level surface of 𝑓(𝑥, 𝑦, 𝑧) = 𝑒𝑥 + 𝑒2𝑦 + 𝑒3𝑧 that passes through the
origin. Compute all real numbers 𝑡 such that the vector ⟨𝑡 + 4, 𝑡 + 5, 𝑡 + 6⟩ is tangent to 𝒮 at the
origin.

Exercise 41.13.  Let 𝑓(𝑥, 𝑦, 𝑧) be a differentiable function, and let 𝑔(𝑥, 𝑦, 𝑧) = 𝑒𝑓(𝑥,𝑦,𝑧). Let 𝑃  be
any point in ℝ3. Suppose 𝑓(𝑃 ) = 2, and ∇𝑓(𝑃) is a unit vector. Compute the magnitude of ∇𝑔(𝑃).

Exercise 41.14.  Show that

𝑓(𝑥, 𝑦) = (𝑥 + 𝑦)100 − (𝑥 − 𝑦)100

has exactly one critical point, and that critical point is a saddle point.

Exercise 41.15.  Let ℛ denote the region in the 𝑥𝑦-plane cut out by 𝑦 = 𝑥 + 2, 𝑦 = 𝑥 + 20, and 𝑦 =
𝑥2. Compute the area of ℛ.

Exercise 41.16.  Compute

∫
+∞

𝑥=−∞
∫

+∞

𝑦=−∞
𝑒−𝑥2−𝑦2 d𝑦 d𝑥

by changing to polar coordinates. Then determine the value of ∫+∞
𝑥=−∞

𝑒−𝑥2 d𝑥.
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Part Lima: Solutions
Chapter 42. Solutions to Part Alfa

§42.1 Solution to Exercise 2.1 (type safety)

Exercise 2.1.  Let 𝐮, 𝐯, 𝐰 be vectors in ℝ3. By using Table 1 (or skimming Section 4.1 briefly),
determine whether each of the following expressions is a real number, a vector, or nonsense (type-
error); there should be one of each.

• (𝐮 ⋅ 𝐯) ⋅ 𝐰
• 𝐮 ⋅ 𝐯 + 𝐰 (here order of operations is ⋅ before +)
• 𝐮 ⋅ (𝐯 + 𝐰)

(The symbol ⋅ confusingly can refer to three different things: grade-school multiplication, scalar
multiplication, or the dot product.)

• The expression (𝐮 ⋅ 𝐯) ⋅ 𝐰 is a vector, since

𝐮 ⋅ 𝐯 = scalar
scalar ⋅ 𝐰 = vector

• The expression 𝐮 ⋅ 𝐯 + 𝐰 is a type-error since

𝐮 ⋅ 𝐯 = scalar
scalar + 𝐰 = undefined (cannot add scalar and vector).

• The expression 𝐮 ⋅ (𝐯 + 𝐰) is a real number since

𝐯 + 𝐰 = vector
𝐮 ⋅ vector = scalar

§42.2 Solution to Exercise 3.1 (direction)

Exercise 3.1.  Compute the unit vector along the direction of the vector

(
((
(−0.0008𝜋

−0.0009𝜋
−0.0012𝜋)

))
).

The point of this example is to emphasize that you can scale out weird positive constants like 0.0001𝜋;
the vector

𝐰 =
(
((
( −8

−9
−12)

))
)

points in the same direction. So it’s enough to find the unit vector in the direction of 𝐰 which is
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1
|𝐰|

𝐰 = 1
√(−8)2 + (−9)2 + (−12)2

(
((
( −8

−9
−12)

))
) = 1√

64 + 81 + 144
(
((
( −8

−9
−12)

))
) = 1√

289
(
((
( −8

−9
−12)

))
)

= 1
17

(
((
( −8

−9
−12)

))
) =

(
((
( −8/17

−9/17
−12/17)

))
) .

(Note that ⟨8/17, 9/17, 12/17⟩ is not a correct answer: that vector points in the opposite direction.)

§42.3 Solution to Exercise 3.2 (det(10𝐴))

Exercise 3.2.  If 𝐴 is a 3 × 3 matrix with determinant 2, what values could det(10𝐴) take?

I claim the answer is

det(10𝐴) = 103 ⋅ det 𝐴 = 2000 .

Here are two ways to see this:

• To see it geometrically, consider the parallelepiped formed by the column vectors of 𝐴. If we scale
each of its side lengths by 10, then the volume should increase by a factor of 103 = 1000.

• To see it algebraically, in the formula for the determinant the point is that every term scales up
by a factor of 10, and the products are three at a time.

This might be easier to see from an example, so let’s take

𝐴 =
(
((
(3

5
0

5
9
0

0
0
1)
))
)

as an example of a matrix with determinant 2:

det(𝐴) = 3 ⋅ 9 ⋅ 1 − 5 ⋅ 5 ⋅ 1 = 2.

Then

10𝐴 =
(
((
(30

50
0

50
90
0

0
0
10)

))
)

so

det(𝐴) = 30 ⋅ 90 ⋅ 10 − 50 ⋅ 50 ⋅ 10 = 2000.

§42.4 Solution to Exercise 3.3 (coplanar)

Exercise 3.3.  Compute the real number 𝑎 for which the points (0, 0, 0), (1, 0, 1), (0, 1, 2) and
(1, 2, 𝑎) all lie on one plane.

Call the points 𝑃1 = (0, 0, 0), 𝑃2 = (1, 0, 1), 𝑃3 = (0, 1, 2), 𝑃4 = (1, 2, 𝑎).

There are several approaches to this (including ones that use later material); the one using the material
in this chapter is the following:
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Idea

Four points are coplanar if the volume of the parallelepiped formed by the vectors connecting
one point to the other three is zero. This condition is equivalent to the determinant of the matrix
formed by these three vectors being zero.

Choose 𝑃1 = (0, 0, 0) as the reference point. Then, the vectors from 𝑃1 to the other points are:

𝐯1 = 𝑃2 − 𝑃1 =
(
((
(1

0
1)
))
)

𝐯2 = 𝑃3 − 𝑃1 =
(
((
(0

1
2)
))
)

𝐯3 = 𝑃4 − 𝑃1 =
(
((
(1

2
𝑎)
))
)

Then construct a 3 × 3 matrix using these vectors as columns:

𝑀 =
(
((
(1

0
1

0
1
2

1
2
𝑎)
))
).

The determinant of 𝑀  is:

det(𝑀) = 1 ⋅ |12
2
𝑎| − 0 ⋅ |01

2
𝑎| + 1 |01

1
2|.

Compute each minor determinant:

|12
2
𝑎| = (1)(𝑎) − (2)(2) = 𝑎 − 4

|01
2
𝑎| = (0)(𝑎) − (2)(1) = −2

|01
1
2| = (0)(2) − (1)(1) = −1.

Substituting back:

det 𝑀 = 1 ⋅ (𝑎 − 4) − 0 ⋅ (−2) + 1 ⋅ (−1) = 𝑎 − 4 − 1 = 𝑎 − 5.

Hence det 𝑀 = 0 ⟺ 𝑎 = 5 .

§42.5 Solution to Exercise 4.1 (4d vectors)

Exercise 4.1.  In four-dimensional space ℝ4, the vectors ⟨1, 2, 3, 4⟩ and ⟨5, 6, 7, 𝑡⟩ are perpendicular.
Compute 𝑡.

We need the dot product to be zero:

352



Linear Algebra and Multivariable Calculus — Evan Chen

0 = ⟨1, 2, 3, 4⟩ ⋅ ⟨5, 6, 7, 𝑡⟩
= 1 ⋅ 5 + 2 ⋅ 6 + 3 ⋅ 7 + 4 ⋅ 𝑡

= 38 + 4𝑡 ⟹ 𝑡 = −19
2

.

§42.6 Solution to Exercise 4.2 (projection)

Exercise 4.2.
• Compute the vector projection of ⟨123, 456, 789⟩ in the direction of 𝐞1.
• Compute the scalar component and vector projection of 𝐯 = ⟨1, 2, 3⟩ along the direction of

𝐰 = ⟨−3000, −4000, 0⟩.

The first part asks to compute the vector projection of ⟨123, 456, 789⟩ in the direction of 𝐞1. The
answer is just

⟨123, 0, 0⟩ .

You could get this using the recipe if you wanted, but if you draw a picture the point is you’re just
projecting the vector ⟨123, 456, 789⟩ to the 𝑥-axis, which gives you its 𝑥-component.

For the second part, let

𝐯 =
(
((
(1

2
3)
))
)

𝐰 =
(
((
(−3000

−4000
0 )

))
).

Note that the factor of −1000 in 𝐰 doesn’t matter, since scaling 𝐰 doesn’t matter. We’ll keep the
−1000 around just for illustration reasons, but in practice an experienced student would just use 𝐰 =
⟨3, 4, 0⟩ instead.

We just follow the recipe in Section 4.4 directly. We first compute the dot product:

𝐯 ⋅ 𝐰 = (1)(−3000) + (2)(−4000) + (3)(0) = −3000 − 8000 + 0 = −11000

The magnitude is

|𝐰| = √(−3000)2 + (−4000)2 + 02 = 5000.

The scalar component of 𝐯 along 𝐰 is given by:

comp𝐰(𝐯) = 𝐯 ⋅ 𝐰
|𝐰|

= −11000
5000

= −11
5

.

The vector projection of 𝐯 along 𝐰 is given by:
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proj𝐰(𝐯) = 𝐯 ⋅ 𝐰
|𝐰|

( 𝐰
|𝐰|

) = −11
5

⋅
(

−3000
−4000

0
)

5000

= −11
5

⋅
(
((
(−3/5

−4/5
0 )

))
)

=
(
((
(33/25

44/25
0 )

))
) .

§42.7 Solution to Exercise 4.3 (dot product 3)

Exercise 4.3.  Let 𝐰 = ⟨3, 4⟩. Compute all unit vectors 𝐯 in ℝ2 for which 𝐯 ⋅ 𝐰 = 3.

Geometrically, we expect there to be two solutions: if 𝜃 is the angle between the two vectors, we need
cos 𝜃 = 3

5 , and so there should be two vectors that work. See Figure 96 for a picture. (You might already
guess one of the solutions — 𝐰 = ⟨1, 0⟩ obviously works — but we’ll pretend we didn’t notice that.)

Translating the givens algebraically, we have the following system of equations:

𝐯 ⋅ 𝐰 = 3 ⟹ 3𝑥 + 4𝑦 = 3
|𝐯| = 1 ⟹ 𝑥2 + 𝑦2 = 1

From the dot product condition, solve for 𝑥:

3𝑥 + 4𝑦 = 3 ⟹ 𝑥 = 3 − 4𝑦
3

.

Substitute 𝑥 = 3−4𝑦
3  into 𝑥2 + 𝑦2 = 1 and solve:

(3 − 4𝑦
3

)
2

+ 𝑦2 = 1

⟺ 25𝑦2 − 24𝑦 + 9
9

= 1

⟺ 𝑦(25𝑦 − 24) = 0.

Hence either 𝑦 = 0 or 𝑦 = 24
25 .

• If 𝑦 = 0 we get 𝑥 = 3−4(0)
3 = 1. Thus, the first unit vector is: 𝐯1 = ⟨1, 0⟩.

• If 𝑦 = 24
25  we get 𝑥 = 3−4(24

25)
3 = − 7

25 . Thus, the second unit vector is: 𝐯2 = ⟨− 7
25 ,

24
25⟩.

In conclusion the answer is

⟨1, 0⟩  and ⟨− 7
25

, 24
25

⟩ .

See Figure 96 for a picture of the two answers.
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Figure 96: The two answers to Exercise 4.3, which are two unit vectors spaced at
an equal angle away from ⟨3, 4⟩.

§42.8 Solution to Exercise 4.4 (2 and 5)

Exercise 4.4 (*).  Determine all possible values of 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 over real numbers 𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧
satisfying 𝑎2 + 𝑏2 + 𝑐2 = 2 and 𝑥2 + 𝑦2 + 𝑧2 = 5.

Construct vectors 𝐯 = ⟨𝑎, 𝑏, 𝑐⟩ and 𝐰 = ⟨𝑥, 𝑦, 𝑧⟩ in ℝ3. Then the problem statement is saying that
|𝐯| =

√
2, |𝐰| =

√
5, and asks for all possible values of 𝐯 ⋅ 𝐰. But the geometric definition of the dot

product says that

𝐯 ⋅ 𝐰 = |𝐯| |𝐰| cos 𝜃 =
√

10 cos 𝜃

where 𝜃 is the angle between 𝐯 and 𝐰.

Since 𝜃 could be any angle at all (as 𝐯 and 𝐰 are arbitrary ℝ3 vectors), the possible values of 
√

10 cos 𝜃
will range from in the interval [−

√
10,

√
10]  as cos 𝜃 ranges from −1 to 1.

§42.9 Solution to Exercise 5.1 (faces of a cube)

Exercise 5.1.  A cube is drawn somewhere in ℝ3 (its faces are not parallel to the coordinate axes).
Two of the faces of the cube are contained in the planes 𝑥 + 2𝑦 + 3𝑧 = 4 and 5𝑥 + 6𝑦 + 𝑘𝑧 = 7,
respectively, for some real number 𝑘. Given this information, compute 𝑘.

The main observation is this:
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Idea

The faces of the cube have orthogonal normal vectors.

And the normal vectors to the two planes are:

𝐧1 = ⟨1, 2, 3⟩𝐧2 = ⟨5, 6, 𝑘⟩.

For the planes to be perpendicular, their normal vectors must satisfy:

0 = 𝐧1 ⋅ 𝐧2

= (1)(5) + (2)(6) + (3)(𝑘) = 5 + 12 + 3𝑘 = 17 + 3𝑘.

Solving for 𝑘 gives 𝑘 = −17
3

.

§42.10 Solution to Exercise 5.2 (distance to two planes)

Exercise 5.2.  The distance from a certain point 𝑃  to the plane 3𝑥 + 4𝑦 + 12𝑧 = −1 is 42. What
are the possible distances from 𝑃  to the plane 3𝑥 + 4𝑦 + 12𝑧 = 1000?

Figure 97: A cartoon showing the planes Π1 and Π2 and couple possible locations
for the point 𝑃 .

Denote the planes

Plane Π1 : 3𝑥 + 4𝑦 + 12𝑧 = −1
Plane Π2 : 3𝑥 + 4𝑦 + 12𝑧 = 1000.

See Figure 97. Let 𝑑 be the desired distance.

The idea is that the planes are parallel, so there really should just be two possible answers. To do the
algebra, first observe that (parallel) planes Π1 and Π2 have the same normal vector:

356



Linear Algebra and Multivariable Calculus — Evan Chen

𝐧 = ⟨3, 4, 12⟩

which has |𝐧| =
√

32 + 42 + 122 = 13.

Now to compute the distance between Π1 and Π2, we consider an arbitrary point (𝑥0, 𝑦0, 𝑧0) on Π2
(meaning 3𝑥0 + 4𝑦0 + 12𝑧0 = 1000) and find the distance from it to Π1. According to the recipe in
Section 5.6, it equals

distance from (𝑥0, 𝑦0, 𝑧0) to Π1 = |3𝑥0 + 4𝑦0 + 12𝑧0 + 1|
|𝐧|

= |1000 + 1|
13

= 77.

Hence the answers are 𝑑 = 77 ± 42, that is 𝑑 = 35  or 𝑑 = 119 .

Remark

If you don’t have the idea of looking at the distance between Π1 and Π2, you can still solve the
problem by applying the recipe in Section 5.6 directly to 𝑃 . Indeed, suppose 𝑃 = (𝑥1, 𝑦1, 𝑧1).
Then

42 = dist(𝑃 , Π1) = |3𝑥1 + 4𝑦1 + 12𝑧1 + 1|
|𝐧|

𝑑 = dist(𝑃 , Π2) = |3𝑥1 + 4𝑦1 + 12𝑧1 − 1000|
|𝐧|

The first equation tells us that

3𝑥1 + 4𝑦1 + 12𝑧1 = ±42 ⋅ 13 − 1.

The second equation tells us that

𝑑 = |(±42 ⋅ 13 − 1) − 1000|
13

= | ± 42 ⋅ 13 − 1001|
13

= | ± 42 − 77|

and this gives the same answers.

§42.11 Solution to Exercise 6.1 (cross product 0)

Exercise 6.1.  Suppose real numbers 𝑎 and 𝑏 satisfy

(
((
(1

2
3)
))
) ×

(
((
(100

𝑎
𝑏 )

))
) = 𝟎.

Compute 𝑎 and 𝑏.

Two nonzero vectors have cross product 0 if and only if they’re multiples of each other. Hence we get
𝑎 = 200  and 𝑏 = 300 .

§42.12 Solution to Exercise 6.2 (5𝐰 × 4𝐯)

Exercise 6.2.  Let 𝐯 and 𝐰 be vectors in ℝ3 for which 𝐯 × 𝐰 = (
1
2
3
). Compute 5𝐰 × 4𝐯.
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Using properties of the cross product:

5𝐰 × 4𝐯 = 20(𝐰 × 𝐯) = −20(𝐯 × 𝐰) = −20
(
((
(1

2
3)
))
) =

(
((
(−20

−40
−60)

))
) .

The fact that 5𝐰 × 4𝐯 = 20(𝐰 × 𝐯) follows either directly from the geometric definition (the paral-
lelogram has 20 times the area) or from looking at the algebraic definition (where the 4 and 5 factor
out). Whereas the fact that 𝐰 × 𝐯 = −𝐯 × 𝐰 also follows directly from the right-hand rule.

§42.13 Solution to Exercise 6.3 (|𝐯 × 𝐰|2 + (𝐯 ⋅ 𝐰)2)

Exercise 6.3.  Let 𝐯 and 𝐰 be unit vectors in ℝ3. Compute all possible values of

|𝐯 × 𝐰|2 + (𝐯 ⋅ 𝐰)2.

Let 𝜃 be the angle between the vectors. Then the geometric definitions of the cross and dot products
gives

|𝐯 × 𝐰| = |𝐯| |𝐰| |sin 𝜃| = 1 ⋅ 1 ⋅ |sin 𝜃| = |sin 𝜃|
𝐯 ⋅ 𝐰 = |𝐯| |𝐰| cos 𝜃 = 1 ⋅ 1 ⋅ cos 𝜃 = cos 𝜃.

Hence the answer is

|sin 𝜃|2 + (cos 𝜃)2 = 1

by the Pythagorean theorem: there is only one possible value.

§42.14 Solution to Exercise 6.4 (solving for 𝑘)

Exercise 6.4.  Suppose 𝐯 is a vector in ℝ3 and 𝑘 is a real number such that

(
((
(1

2
3)
))
) × 𝐯 =

(
((
(4

5
𝑘)
))
).

Compute 𝑘.

The point is that (
1
2
3
) and (

4
5
𝑘
) are supposed to be perpendicular; the vector 𝐯 is otherwise completely

irrelevant. For them to be perpendicular we need

0 =
(
((
(1

2
3)
))
) ⋅

(
((
(4

5
𝑘)
))
) = 1 ⋅ 4 + 2 ⋅ 5 + 3𝑘 = 3𝑘 + 14 ⟹ 𝑘 = −14

3

.
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Chapter 43. Solutions to Part Bravo

§43.1 Solution to Exercise 7.2 (rotate and reflect)

Exercise 7.2.  Let 𝑇 : ℝ2 → ℝ2 be the linear map that rotates each vector in ℝ2 by 30° counter-
clockwise about the origin, then reflects around the line 𝑦 = 𝑥. Write 𝑇  as a 2 × 2 matrix.

We calculate the outputs of 𝑇  on the basis vectors 𝐞1 = ⟨1, 0⟩ and 𝐞2 = ⟨0, 1⟩.

For 𝐞1, we first end up with

𝐞1 = ⟨1, 0⟩ ⟶ ⟨cos 30°, sin 30°⟩ = ⟨
√

3
2

, 1
2
⟩ ⟶ ⟨1

2
,
√

3
2

⟩ = 𝑇(𝐞1)

(with the first arrow being the rotation and the second arrow being reflection).

For 𝐞2, we end up with

𝐞2 = ⟨0, 1⟩ ⟶ ⟨cos 120°, sin 120°⟩ = ⟨−1
2
,
√

3
2

⟩ ⟶ ⟨
√

3
2

, −1
2
⟩ = 𝑇(𝐞2).

Hence, the answer is

𝑇 = ( 1/2√
3/2

√
3/2

−1/2
) .

Alternatively, one could obtain the same answer by multiplying the matrices corresponding to coun-
terclockwise rotation and reflection around 𝑦 = 𝑥, that is

𝑇 = (0
1

1
0)(cos 30°

sin 30°
cos 120°
sin 120°)

would work out to the same thing. This is just an affirmation that Section 7.3 holds true: applying two
transformations is the same as multiplying their corresponding matrices.

§43.2 Solution to Exercise 8.1 (birthday)

Exercise 8.1.  Take your birthday and write it in eight-digit 𝑌1𝑌2𝑌3𝑌4-𝑀1𝑀2-𝐷1𝐷2 format. Con-
sider the two vectors

𝐯1 = (𝑀1𝑀2
𝐷1𝐷2

)  and 𝐯2 = (𝑌1𝑌2
𝑌3𝑌4

).

For example, if your birthday was May 17, 1994 you would take 𝐯1 = ( 5
17) and 𝐯2 = (19

94).

• Compute the span of those two vectors in ℝ2.
• Find a current or former K-pop idol who gets a different answer from you when they use their

birthday.

Neither 𝐯1 nor 𝐯2 is zero, and for almost everyone the two vectors won’t be a multiple of each other.
So for most people the answer is that the span is all of ℝ2 .
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In order to find a K-pop idol whose two vectors are linearly dependent (to get the answer “line” instead),
we need to find a database of K-pop birthdays, and we need to know where to look in it. There are
roughly two strategies you can adopt:

• For idols born before 2000, the only year that’s viable is 1995 (because 19 is a prime greater than
12, the last two digits need to be a multiple of 19). The two days that work here are January 5
and February 10. As an example, Jo Sangho from former boy group Snuper was born on February
10, 1995:

𝐯1 = (02
10)  and 𝐯2 = (19

95).

• For idols born after 2000, good years to try would be 2004 or 2005. (The year 2004 has May 1 and
October 2; the year 2005 has April 1, October 2, December 3.) As an example, Machida Riku from
KJRGL was born on October 2, 2004:

𝐯1 = (10
02)  and 𝐯2 = (20

04).

§43.3 Solution to Exercise 8.2 (maximum perpendicular vectors)

Exercise 8.2.  In ℝ5, consider the vector 𝐯 = ⟨1, 2, 3, 4, 5⟩. Compute the maximum possible number
of linearly independent vectors one can find which are all perpendicular to 𝐯.

These vectors all need to lie in a hyperplane perpendicular to 𝐯, which is a 4 -dimensional space.
(The entries of the vector 𝐯 are irrelevant besides 𝐯 not being the zero vector.)

§43.4 Solution to Exercise 9.1 (four 2-by-2 matrices)

Exercise 9.1.  Compute the eigenvalues and eigenvectors for the following matrices:

𝐴 = (1
1

1
1), 𝐵 = (5

2
1
4), 𝐶 = (9

0
0
9), 𝐷 = (6

0
1
6).

This is done just by following the recipe. Here are the answers.

Matrix 𝐴 = (11
1
1) To find the eigenvalues 𝜆, we solve the characteristic equation:

det(𝐴 − 𝜆𝐼) = 0

Where 𝐼  is the identity matrix.

𝐴 − 𝜆𝐼 = (1 − 𝜆
1

1
1 − 𝜆)

det(𝐴 − 𝜆𝐼) = (1 − 𝜆)2 − (1)(1) = 𝜆2 − 2𝜆 = 𝜆(𝜆 − 2).

Thus, the eigenvalues are:

𝜆1 = 0, 𝜆2 = 2

Now we compute the eigenvectors:

• For 𝜆1 = 0:
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(𝐴 − 0𝐼)𝐯 = 𝐴𝐯 = (1
1

1
1)(𝑥

𝑦) = (𝑥 + 𝑦
𝑥 + 𝑦) = 𝟎

𝑥 + 𝑦 = 0 ⟹ 𝑦 = −𝑥

Thus, the eigenvectors corresponding to 𝜆1 = 0 are all the multiples of

𝐯1 = ( 1
−1).

• For 𝜆2 = 2:

(𝐴 − 2𝐼)𝐯 = (−1
1

1
−1)(𝑥

𝑦) = (−𝑥 + 𝑦
𝑥 − 𝑦 ) = 𝟎

−𝑥 + 𝑦 = 0 ⟹ 𝑦 = 𝑥

Thus, the eigenvector corresponding to 𝜆2 = 2 are all the multiples of

𝐯2 = (1
1).

Matrix 𝐵 = (52
1
4) Solve

0 = det(𝐵 − 𝜆𝐼) = |5 − 𝜆
2

1
4 − 𝜆| = 𝜆2 − 9𝜆 + 18 = (𝜆 − 6)(𝜆 − 3).

Thus, the eigenvalues are:

𝜆1 = 6, 𝜆2 = 3.

Now we compute the eigenvectors:

• For 𝜆1 = 6:

(𝐵 − 6𝐼)𝐯 = (−1
2

1
−2)(𝑥

𝑦) = (−𝑥 + 𝑦
2𝑥 − 2𝑦) = 𝟎

−𝑥 + 𝑦 = 0 ⟹ 𝑦 = 𝑥

Thus, the eigenvectors corresponding to 𝜆1 = 6 are the multiples of

𝐯1 = (1
1).

• For 𝜆2 = 3:

(𝐵 − 3𝐼)𝐯 = (2
2

1
1)(𝑥

𝑦) = (2𝑥 + 𝑦
2𝑥 + 𝑦) = 𝟎

2𝑥 + 𝑦 = 0 ⟹ 𝑦 = −2𝑥

Thus, the eigenvectors corresponding to 𝜆2 = 3 are the multiples of

𝐯2 = ( 1
−2).

Matrix 𝐶 = (90
0
9) Note the matrix 𝐶 is actually 9 times the identity matrix: hence the only eigenvalue

is 9, and in fact every vector in ℝ2 is an eigenvector.
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Matrix 𝐷 = (60
1
6) Solve

det(𝐷 − 𝜆𝐼) = |6 − 𝜆
0

1
6 − 𝜆| = (6 − 𝜆)2 − (1)(0) = (6 − 𝜆)2 = 0

Thus, the unique eigenvalue is:

𝜆 = 6.

To find the eigenvector, solve

(𝐷 − 6𝐼)𝐯 = (0
0

1
0)(𝑥

𝑦) = (𝑦
0) = 𝟎

𝑦 = 0

Thus, the eigenvectors satisfy 𝑦 = 0. Therefore, the eigenvectors are all non-zero vectors of the
form:

𝐯 = (𝑥
0).

§43.5 Solution to Exercise 9.2 (eigenvectors 5 and 7)

Exercise 9.2.  Give an example of a 2 × 2 matrix 𝑇  with four nonzero entries whose eigenvalues
are 5 and 7. Then compute the corresponding eigenvectors.

We arbitrarily pick two vectors with nonzero entries to be the eigenvectors, say:

𝐯 = (1
1)

𝐰 = ( 1
−1).

Then we seek a matrix 𝑇  such that

𝑇(1
1) = (5

5)

𝑇( 1
−1) = ( 7

−7).

At this point one could brute-force solve a system of equations with 𝑇 = (𝑎
𝑐

𝑏
𝑑) in four unknowns.

On the other hand, it’s more economical to add the two equations and get

𝑇(2
0) = (12

−2) ⟹ 𝑇(𝐞1) = ( 6
−1)

whereas if we subtract instead we get

𝑇(0
2) = (−2

12) ⟹ 𝑇(𝐞2) = (−1
6 ).

This gives us one valid matrix:
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𝑇 = ( 6
−1

−1
6 ) .

And we already know the eigenvectors by construction: they are the multiples of 𝐯 (for 𝜆 = 5) and
the multiples of 𝐰 (for 𝜆 = 7).

§43.6 Solution to Exercise 9.3 (6-by-6 matrix eigenvectors)

Exercise 9.3 (*).  Compute the eigenvectors and eigenvalues of the 6 × 6 matrix

(
((
((
((
((
((
(5

0
0
0
0
0

0
−9
0
0
0
0

0
0
5
0
0
0

0
0
0
0
0
0

0
0
0
0
8
1

0
0
0
0
0
8)
))
))
))
))
))
)

.

(You can do this question without using any determinants.)

The basic idea is that we can basically work with bare hands, not needing to resort to the
determinants we saw before. Specifically, suppose we have a proposed nonzero eigenvector 𝐯 =
⟨𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6⟩, with eigenvalue 𝜆. Then we are hoping for

𝑀𝐯 =

(
((
((
((
((
((
( 5𝑥1

−9𝑥2
5𝑥3
0

8𝑥5
𝑥5 + 8𝑥6)

))
))
))
))
))
)

=

(
((
((
((
((
((
(𝜆𝑥1

𝜆𝑥2
𝜆𝑥3
𝜆𝑥4
𝜆𝑥5
𝜆𝑥6)

))
))
))
))
))
)

= 𝜆𝐯.

Setting each component equal, we get six equations that say the following, in order:

1. Either 𝑥1 = 0 or 𝜆 = 5.
2. Either 𝑥2 = 0 or 𝜆 = −9.
3. Either 𝑥3 = 0 or 𝜆 = 5.
4. Either 𝑥4 = 0 or 𝜆 = 0.
5. Either 𝑥5 = 0 or 𝜆 = 8.
6. We have (𝜆 − 8)𝑥6 = 𝑥5. In particular, if 𝑥6 ≠ 0 then either 𝜆 = 8 or 𝑥5 ≠ 0, but the previous

item tells 𝑥5 ≠ 0 forces 𝜆 = 8 anyway.

Since at least one of 𝑥𝑖 should be nonzero (since we always ignore 𝐯 = 𝟎), it follows

𝜆 = −9, 0, 5, 8

are the eigenvalues possible. And we can read off the corresponding eigenvectors from the above six
numbered items:

• For 𝜆 = −9, the eigenvectors are ⟨0, 𝑥2, 0, 0, 0, 0⟩ for any choice of 𝑥2.
• For 𝜆 = 0, the eigenvectors are ⟨0, 0, 0, 𝑥4, 0, 0⟩ for any choice of 𝑥4.
• For 𝜆 = 5, the eigenvectors are ⟨𝑥1, 0, 𝑥3, 0, 0, 0⟩ for any choice of 𝑥1 and 𝑥3.
• For 𝜆 = 8, the eigenvectors are ⟨0, 0, 0, 0, 0, 𝑥6⟩ for any choice of 𝑥6. (The last equation above,

when 𝜆 = 8, implies 𝑥5 = 0.)
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§43.7 Solution to Exercise 9.4 (computing 𝑀20)

Exercise 9.4 (*).  Using the procedure described in Section 9.8, show that

(4
6

3
7)

20

= (33333333333333333334
66666666666666666666

33333333333333333333
66666666666666666667).

(Each number on the right-hand side is 20 digits.)

We’ll follow the idea in Section 9.8: find a basis of eigenvectors of 𝑀  and use that to compute powers
of 𝑀 .

As usual, to find the eigenvalues for 𝑀  we work with

0 = det 𝑀 = |4 − 𝜆
6

3
7 − 𝜆| = (4 − 𝜆)(7 − 𝜆) − 18 = 𝜆2 − 11𝜆 + 10 = (𝜆 − 1)(𝜆 − 10)

so the eigenvalues are 𝜆1 = 1 and 𝜆2 = 10. Let’s find the corresponding eigenvectors again.

• For the eigenvalue 𝜆1 = 1, we need

(4 − 1
6

3
7 − 1)(𝑥

𝑦) = (0
0) ⟺ 𝑥 + 𝑦 = 0 ⟺ 𝑦 = −𝑥

so the eigenvectors are all the multiples of 𝐯1 = ( 1
−1).

• For the eigenvalue 𝜆2 = 10, we need

(4 − 10
6

3
7 − 10)(𝑥

𝑦) = (0
0) ⟺ −2𝑥 + 𝑦 = 0 ⟺ 𝑦 = 2𝑥

so the eigenvectors are all the multiples of 𝐯2 = (1
2).

Hence, when raising to the 20th power, we should have

𝑀20𝐯1 = 120𝐯1 ⟹ 𝑀20( 1
−1) = ( 1

−1)

𝑀20𝐯2 = 1020𝐯2 ⟹ 𝑀20(1
2) = ( 1020

2 ⋅ 1020).

Hence, we’ve found 𝑀20 on two linearly independent vectors! As we showed in Section 9.8, this means
we should be able to recover 𝑀20 on the basis vectors too.

To get the first column of 𝑀20, we write

𝑀20(𝐞1) = 𝑀20(2
3
( 1

−1) + 1
3
(1

2)) = 2
3
𝑀20( 1

−1) + 1
3
𝑀20(1

2) = ( (2 + 1020)/3
(−2 + 2 ⋅ 1020)/3)

= (100000000000000000002/3
199999999999999999998/3) = (33333333333333333334

66666666666666666666)

as needed for the first column.

To get the second column of 𝑀20, we write
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𝑀20(𝐞2) = 𝑀20(1
3
(1

2) − 1
3
( 1

−1)) = 1
3
𝑀20(1

2) − 1
3
𝑀20( 1

−1) = ( (1020 − 1)/3
(2 ⋅ 1020 + 1)/3)

= ( 99999999999999999999/3
200000000000000000001/3) = (33333333333333333333

66666666666666666667)

as needed for the second column. This completes the solution.
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Chapter 44. Solutions to Part Charlie

§44.1 Solution to Exercise 10.1 (101 ⋅ 401 ⋅ 901)

Exercise 10.1 (*).  Without a calculator, give an example of an ordered pair (𝑎, 𝑏) of integers
satisfying

𝑎2 + 𝑏2 = 101 ⋅ 401 ⋅ 901.

The idea is to consider the complex number

(10 + 𝑖)(20 + 𝑖)(30 + 𝑖) = (199 + 30𝑖)(30 + 𝑖) = 5940 + 1099𝑖.

Hence one possible choice is

(𝑎, 𝑏) = (5940, 1099).

§44.2 Solution to Exercise 11.1 (projection onto plane)

Exercise 11.1.  In ℝ3, compute the projection of the vector (
4
5
6
) onto the plane 𝑥 + 𝑦 + 2𝑧 = 0.

Answer: (
1
2
3
2

−1
).

Figure 98: Projection onto a plane.

First approach using vector projection

Previously you had to calculate the distance from a vector to a plane. This problem only requires one
step on top of that: you need to then translate by that multiple of the normal vector. See Figure 98,
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where 𝐚 denotes the answer. To execute the calculation, let 𝐯 = (
4
5
6
) and 𝐧 = (

1
1
2
). The scalar

component is

comp𝐧(𝐯) = 𝐯 ⋅ 𝐧
|𝐧|

= 21√
6
.

The vector projection is then

(comp𝐧(𝐯)) 𝐧
|𝐧|

= 21√
6

(
1
1
2
)

√
6

=

(
((
((

7
2
7
2
7)
))
)).

Then the desired projection is

𝐯 − proj𝐧(𝐯) =

(
((
((

1
2
3
2

−1)
))
)).

Second approach using normal vectors only (no projection stuff)

A lot of you don’t find vector projection natural (I certainly don’t). So it might be easier to imagine

shifting 𝐯 by some multiple of 𝐧 = (
1
1
2
) and then work out which multiple it is.

Specifically, we’re looking for²⁶ a real number 𝑡 ∈ ℝ such that the vector

𝐚 = 𝐯 − 𝑡𝐧 =
(
((
( 4 − 𝑡

5 − 𝑡
6 − 2𝑡)

))
)

lies on the plane 𝑥 + 𝑦 + 2𝑧 = 0. But we can actually solve for 𝑡 just by plugging this 𝐚 into the
equation of the plane:

(4 − 𝑡) + (5 − 𝑡) + 2(6 − 2𝑡) = 0 ⟹ 21 − 6𝑡 = 0 ⟹ 𝑡 = 7
2
.

Hence the answer

𝐚 =

(
((
((
( 4 − 7

2
5 − 7

2
6 − 2(7

2))
))
))
)

=

(
((
((

1
2
3
2

−1)
))
)).

§44.3 Solution to Exercise 11.2 (geometric interpretation)

²⁶In comparison to the first solution, the value of 𝑡 is exactly

𝑡 = comp𝐧(𝐯)
|𝐧|

.

But the idea behind the second solution is that you don’t need to know what the geometric formula of 𝑡 is. You can just
solve for 𝑡 indirectly by asserting that 𝐚 lies on 𝑥 + 𝑦 + 2𝑧 = 0.
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Exercise 11.2 (*).  Suppose 𝐴, 𝐵, 𝐶 , 𝐷 are points in ℝ3. Give a geometric interpretation for this
expression:

1
6

| ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐴 ⋅ ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐵 × ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐶)|.

Answer: The quantity

1
6

| ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐴 ⋅ ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐵 × ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐶)|.

equals the volume of the tetrahedron 𝐴𝐵𝐶𝐷.

In general, the volume of the tetrahedron is 16  the area of the parallelepiped formed by ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐴, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐵, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐶 .
Se we will prove that

| ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐴 ⋅ ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐵 × ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐶)|

gives the volume of that parallelepiped. Here are two approaches for proving it.

First approach using coordinates

Let 𝐷 = (0, 0, 0), 𝐴 = (𝑥𝐴, 𝑦𝐴, 𝑏𝐴), 𝐵 = (𝑥𝐵, 𝑦𝐵, 𝑧𝐵), 𝐶 = (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶). Then expanding the cross
product gives

(𝑥𝐴𝐞1 + 𝑦𝐴𝐞2 + 𝑧𝐴𝐞𝟑) ⋅
|
||
|𝐞1
𝑥𝐵
𝑥𝐶

𝐞2
𝑦𝐵
𝑦𝐶

𝐞3
𝑧𝐵
𝑧𝐶|

||
|
.

If you think about what evaluating the determinant using the formula together with the dot product
would give, you should find it’s actually just

|
||
|𝑥𝐴
𝑥𝐵
𝑥𝐶

𝑦𝐴
𝑦𝐵
𝑦𝐶

𝑧𝐴
𝑧𝐵
𝑧𝐶|

||
|

which is the volume of the parallelepiped.

Second approach using geometric picture

The cross product ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐵 × ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐶 is a vector whose area is equal to the parallelogram formed by ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐵 and
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐶 . The dot product of that cross product against ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐴 is equal to the height of 𝐴 to plane 𝐵𝐶𝐷 times
this area, and the volume is the height times the area. See the following picture from https://en.
wikipedia.org/wiki/Triple_product (in the Wikipedia figure, 𝐚 denotes our ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐷𝐴, etc.).
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Figure 99: Triple product image taken from Wikipedia.

§44.4 Solution to Exercise 11.3 (determinant of projection)

Exercise 11.3 (*).  Fix a plane 𝒫 in ℝ3 which passes through the origin. Consider the linear trans-
formation 𝑓 : ℝ3 → ℝ3 where 𝑓(𝐯) is the projection of 𝐯 onto 𝒫. Let 𝑀  denote the 3 × 3 matrix
associated to 𝑓 . Compute the determinant of 𝑀 .

Answer: 0, no matter which plane 𝒫 is picked.

First approach using basis vectors

Let 𝐞1, 𝐞2, 𝐞3 be the three basis vectors. Then:

• The matrix 𝑀  is formed by gluing 𝑓(𝐞1), 𝑓(𝐞2), 𝑓(𝐞3) together.
• I claim the vectors 𝑓(𝐞1), 𝑓(𝐞2), 𝑓(𝐞3) are linearly dependent. After all, they are all contained

in the two-dimensional plane 𝒫 by definition, and so three vectors in a plane can’t be linearly
independent.

• So the determinant is equal to zero (this theorem is one of the criteria we use to check whether
vectors are linearly independent or not).

Second approach using eigenvectors

Let 𝐧 be any nonzero normal vector to 𝒫. Then 𝑓(𝐧) = 𝟎, so 𝐧 is an eigenvector with eigenvalue 0.
Since the determinant is the product of the eigenvalues, the determinant must be 0 too.

Third approach using coordinate change

This approach requires you to know the fact that the determinant doesn’t change if you rewrite the
matrices in a new basis.

Let 𝐧 be any nonzero normal vector to 𝒫. Pick two more unit vectors 𝐛1 and 𝐛2 perpendicular to 𝐧
that span 𝒫. Then 𝐛1, 𝐛2 and 𝐧 are linearly independent and spanning, i.e. a basis of ℝ3. So we can
change coordinates to use these instead.

We know that

𝑀(𝐛1) = 𝐛1

𝑀(𝐛2) = 𝐛2

𝑀(𝐧2) = 𝟎.

If we wrote 𝑀  as a matrix in this new basis ⟨𝐛1, 𝐛2, 𝐧⟩ (rather than the usual basis), we would get the
matrix
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𝑀 =
(
((
(1

0
0

0
1
0

0
0
0)
))
)

which has determinant 0.

Remark

In fact, if you also know that the trace doesn’t change when you rewrite 𝑀  in a different basis,
this approach shows the trace 𝑀  is always exactly 1 + 1 + 0 = 2 as well, no matter which plane
𝒫 is picked.

§44.5 Solution to Exercise 11.4 (perpendicular unit vectors)

Exercise 11.4 (*).  Let 𝐚 and 𝐛 be two perpendicular unit vectors in ℝ3. A third vector 𝐯 in ℝ3 lies
in the span of 𝐚 and 𝐛. Given that 𝐯 ⋅ 𝐚 = 2 and 𝐯 ⋅ 𝐛 = 3, compute the magnitudes of the cross
products 𝐯 × 𝐚 and 𝐯 × 𝐛.

Answer: |𝐚 × 𝐯| = 3 and |𝐛 × 𝐯| = 2.

Since 𝐯 is contained in the span of 𝐚 and 𝐛, we can just pay attention to the plane spanned by these
two perpendicular unit vectors. So the geometric picture is that 𝐯 can be drawn in a rectangle with 𝐚
and 𝐛 as a basis, as shown. Because 𝐯 ⋅ 𝐚 = 2 and 𝐯 ⋅ 𝐛 = 3, this rectangle is 2 by 3.

Figure 100: Plotting 𝐯 in the span of 𝐚 and 𝐛.

Now the magnitude of the cross product 𝐚 × 𝐯 is supposed to be equal to the area of the parallelogram
formed by 𝐚 and 𝐯, which is 3 (because this parallelogram has base |𝐚| = 1 and height |𝐯 ⋅ 𝐛| = 3).
Similarly, 𝐛 × 𝐯 has magnitude 2.

§44.6 Solution to Exercise 11.5 (trace of matrix)

Exercise 11.5.  Compute the trace of the 2 × 2 matrix 𝑀  given the two equations

𝑀(4
7) = (5

9)  and 𝑀(5
9) = (4

7).

Answer: 0.
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There are several approaches possible. The first two show how to find the four entries of the matrix
𝑀 . The latter sidestep this entirely and show that the matrix is actually always trace 0.

First approach: brute force

Like in the pop quiz in my R04 notes, we will try to work out 𝑀(1
0) and 𝑀(0

1). We’re looking for
constants 𝑐1 and 𝑐2 such that 𝑐1(

4
7) + 𝑐2(

5
9) = (1

0).

• Solving the system of equations 4𝑐1 + 5𝑐2 = 1 and 7𝑐1 + 9𝑐2 = 0 using your favorite method
gives coefficients 𝑐1 = 9 and 𝑐2 = −7, i.e.

9(4
7) − 7(5

9) = (1
0).

This lets us get

𝑀((1
0)) = 9𝑀((4

7)) − 7𝑀((5
9)) = 9(5

9) − 7(4
7) = (17

32).

• By solving the analogous system we can find the identity

−5(4
7) + 4(5

9) = (0
1),

and hence:

𝑀((0
1)) = −5𝑀((4

7)) + 4𝑀((5
9)) = −5(5

9) + 4(4
7) = ( −9

−17).

Gluing these together

𝑀 = (17
32

−9
−17).

The trace is thus 17 + (−17) = 0.

Second approach: inverse matrices

We can collate the two given equations into saying that

𝑀(4
7

5
9) = (5

9
4
7).

Hence one could also recover 𝑀  by multiplying by the inverse matrix:

𝑀 = (5
9

4
7)(4

7
5
9)

−1

= (5
9

4
7) 1

4 ⋅ 9 − 7 ⋅ 5
( 9

−7
−5
4 ) = (17

32
−9
−17).

(Of course, we get the same entries for 𝑀  as the last approach.) Again the trace is 17 + (−17) = 0.

Third approach: Guessing eigenvectors and eigenvalues

Let 𝐛1 = (4
7) and 𝐛2 = (5

9). Adding and subtracting the given equations gives

𝑀(𝐛1 + 𝐛2) = 𝐛1 + 𝐛2

𝑀(𝐛1 − 𝐛2) = −(𝐛1 − 𝐛2).
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So 𝐛1 ± 𝐛2 are eigenvectors with eigenvalues ±1. Since 𝑀  is a 2 × 2 matrix there are at most two
eigenvalues: we found them all!

The trace of 𝑀  is the sum of the eigenvalues. Call in the answer 1 + (−1) = 0.

Fourth approach: Change coordinates

This approach requires you to know the fact that the trace doesn’t change if you rewrite the matrices
in a new basis.

Since 𝐛1 = (4
7) and 𝐛2 = (5

9) are a basis of ℝ2, we can change coordinates to use the 𝐛𝑖. In that case,

𝑀(𝐛1) = 𝐛2  and 𝑀(𝐛2) = 𝐛1.

If we wrote 𝑀  as a matrix in this new basis ⟨𝐛1, 𝐛2⟩ (rather than the usual basis), we would get the
matrix

𝑀 = (0
1

1
0)

which has trace 0 + 0 = 0.

§44.7 Solution to Exercise 11.6 (complex triangle)

Exercise 11.6.  There are three complex numbers 𝑧 satisfying 𝑧3 = 5 + 6𝑖. Suppose we plot these
three numbers in the complex plane. Compute the area of the triangle they enclose.

Answer: 3
√

3
4

3
√

61.

Figure 101: Three solutions to 𝑧3 = 5 + 6𝑖

We start by converting the complex number 5 + 6𝑖 into polar form. The modulus 𝑟 of 5 + 6𝑖 is:

𝑟 = |5 + 6𝑖| = √52 + 62 =
√

25 + 36 =
√

61.
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The argument 𝜃 is some random angle we won’t use the exact value of: 𝜃 = arg(5 + 6𝑖) = tan−1(6
5).

Now to find the cube roots of 𝑧3 = 5 + 6𝑖, we use the polar form:

𝑧 = 6√61(cos(𝜃 + 2𝑘𝜋
3

) + 𝑖 sin(𝜃 + 2𝑘𝜋
3

))

for 𝑘 = 0, 1, 2. This gives us three roots corresponding to the different values of 𝑘.

This looks like an equilateral triangle centered around the origin, where each spoke coming from the
origin has magnitude 𝑠, where

𝑠 = 6√61.

See Figure 101.

If we cut up the equilateral triangle by the three arrows above, we get three small isosceles triangles
with a 120° angle at the apex. The area of each triangle is going to be 𝑠2

2 sin(120°).

So this gives a final answer of

3 ⋅
3
√

61
2

⋅ sin(120°) = 3
√

3
4

3√61.
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Chapter 45. Solutions to Part Delta

§45.1 Solution to Exercise 12.1 (parabola arc length)

Exercise 12.1.  Compute the arc length of the part of the parabola 𝑦 = 𝑥2 − 𝑥 − 12 between (−3, 0)
and (4, 0).

You will probably need the following antiderivative fact not commonly seen in 18.01:

∫ √𝑢2 + 1 d𝑢 = 𝑢
2
√𝑢2 + 1 +

log(𝑢 +
√

𝑢2 + 1)
2

+ 𝐶.

We take the parametrization

𝐫(𝑡) = (𝑡, 𝑡2 − 𝑡 − 12) −3 ≤ 𝑡 ≤ 4.

The derivative is

𝐫′(𝑡) = ⟨1, 2𝑡 − 1⟩ −3 ≤ 𝑡 ≤ 4.

Hence, the arc length in the problem is given by

𝐿 = ∫
4

𝑡=−3
√1 + (2𝑡 − 1)2 d𝑡.

To use the hint in the exercise, we perform the 𝑢-substitution

𝑢 = 2𝑡 − 1 = 2(𝑡 − 1
2
) ⟹ d𝑢 = 2 d𝑡 ⟹ d𝑡 = 𝑑𝑢

2
.

When 𝑡 = −3 we get 𝑢 = −7 and when 𝑡 = 4 we get 𝑢 = 7. Thus we get

𝐿 = 1
2

∫
7

𝑢=−7

√𝑢2 + 1 d𝑢.

Now using the hint we get that

𝐿 = 1
4
[𝑢√𝑢2 + 1 + log(𝑢 + √𝑢2 + 1)]

7

𝑢=−7

= 1
4
(14

√
50 + log(7 +

√
50) − log(−7 +

√
50)))

= 35
2

√
2 + 1

4
log( 7 + 5

√
2

−7 + 5
√

2
)

= 35
2

√
2 + 1

4
log

(
((
( (7 + 5

√
2)

2

(7 + 5
√

2)(−7 + 5
√

2)
)
))
)

= 35
2

√
2 + 1

4
log((7 + 5

√
2)

2
)

= 35
2

√
2 + 1

2
log(7 + 5

√
2) .
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§45.2 Solution to Exercise 12.2 (teacups)

Exercise 12.2.  At an amusement park, a teacup ride consists of teacups rotating clockwise around
a fixed center while each individual teacup rotates counterclockwise. (See Figure 27 if you’ve never
seen one of these before.) The teacup ride is specified in ℝ2 as follows:

• The teacup ride revolves around (0, 0) with radius 𝑅 and angular velocity 𝜔ride clockwise.
• Each individual teacup rotates counterclockwise with angular velocity 𝜔cup and radius 𝑟.
• Initially, at 𝑡 = 0, the center of the teacup is at (𝑅, 0), and a toddler is positioned at the rightmost

point on the edge of the teacup relative to its center.

Compute the velocity vector of the toddler at time 𝑡.

We will first parametrize the motion of the toddler and then compute the distance traveled after one
full revolution of the ride.

1. The teacup center rotates clockwise with angular velocity 𝜔ride in a circular path of radius 𝑅
around a fixed center. The position of the teacup center as a function of time 𝑡 is:

𝐂(𝑡) = ( 𝑅 cos(𝜔ride𝑡)
−𝑅 sin(𝜔ride𝑡)

).

This describes the circular motion of the teacup center around the fixed center of the ride, with
the negative sign on the sine term indicating clockwise rotation.

2. The toddler is sitting on the edge of the teacup, which rotates counterclockwise with angular
velocity 𝜔cup and radius 𝑟. Initially, at 𝑡 = 0, the toddler is positioned at (𝑟, 0) relative to the
center of the teacup. The position of the toddler relative to the center of the teacup is:

𝐓relative(𝑡) = (
𝑟 cos(𝜔cup𝑡)
𝑟 sin(𝜔cup𝑡)

).

This describes the counterclockwise circular motion of the toddler relative to the center of the
teacup.

3. To find the total position of the toddler as a function of time, we sum the position of the teacup
center 𝐂(𝑡) and the position of the toddler relative to the teacup 𝐓relative(𝑡). The total position
of the toddler is:

𝐓(𝑡) = 𝐂(𝑡) + 𝐓relative(𝑡).

Substituting the expressions for 𝐂(𝑡) and 𝐓relative(𝑡), we get:

𝐓(𝑡) = ( 𝑅 cos(𝜔ride𝑡)
−𝑅 sin(𝜔ride𝑡)

) + (
𝑟 cos(𝜔cup𝑡)
𝑟 sin(𝜔cup𝑡)

).

Simplifying, we have:

𝐓(𝑡) = (
𝑅 cos(𝜔ride𝑡) + 𝑟 cos(𝜔cup𝑡)
−𝑅 sin(𝜔ride𝑡) + 𝑟 sin(𝜔cup𝑡)

).

This gives the parametrization of the toddler’s position as a function of time.

The velocity vector 𝐓′(𝑡) is the derivative of the position vector 𝐓(𝑡) with respect to time:
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𝐓′(𝑡) = (
−𝑅𝜔ride sin(𝜔ride𝑡) − 𝑟𝜔cup sin(𝜔cup𝑡)
−𝑅𝜔ride cos(𝜔ride𝑡) + 𝑟𝜔cup cos(𝜔cup𝑡)

) .

§45.3 Solution to Exercise 12.3 (helicopter)

Exercise 12.3.  A helicopter in ℝ3 is moving upward with constant speed 5 in the +𝑧 direction
while its rotor blades are spinning with clockwise angular velocity 𝜋

3  and radius 2 in the horizontal
plane. Let 𝑃  be a point on the tip of the blade, initially at (𝑟, 0, 0).

• Parametrize the motion of a point on the tip of one of the blades as a function of time, assuming
the helicopter starts at height 𝑧 = 0 and the blade points along the positive 𝑥-axis at 𝑡 = 0.

• Calculate the distance traveled by 𝑃  from time 𝑡 = 0 to time 𝑡 = 18.

Let’s first parametrize 𝐏(𝑡):
1. Since the helicopter is moving upward with constant speed 𝑣 = 5, the height of the helicopter at

time 𝑡 is given by:

𝑧(𝑡) = 𝑣𝑡 = 5𝑡.
2. The point 𝑃  is on the tip of the rotor blade, which is spinning clockwise with angular velocity

𝜔 = 𝜋
3 . In the horizontal plane, the position of 𝑃  relative to the center of the rotor can be

parametrized as:

𝐯(𝑡) = ( 𝑟 cos(𝜔𝑡)
−𝑟 sin(𝜔𝑡)),

where 𝑟 = 2 is the radius of the blade, and the negative sign in the 𝑦-coordinate reflects the
clockwise rotation. Thus, the position of 𝑃  in the 𝑥𝑦-plane is:

𝐯(𝑡) = (
2 cos(𝜋

3 𝑡)
−2 sin(𝜋

3 𝑡)
).

3. The total position of the point 𝑃  as a function of time is the combination of the upward motion
in the 𝑧-direction and the rotational motion in the 𝑥𝑦-plane. Thus, the position of 𝑃  is:

𝐏(𝑡) =

(
((
((

2 cos(𝜋
3 𝑡)

−2 sin(𝜋
3 𝑡)

5𝑡 )
))
)) .

As for the distance, we first compute the velocity vector by differentiating:

𝐏′(𝑡) = 𝑑
d𝑡

(
((
((

2 cos(𝜋
3 𝑡)

−2 sin(𝜋
3 𝑡)

5𝑡 )
))
)) =

(
((
((

−2𝜋
3 sin(𝜋

3 𝑡)
−2𝜋

3 cos(𝜋
3 𝑡)

5 )
))
)).

The speed is the magnitude of the velocity vector:

|𝐏′(𝑡)| = √(−2𝜋
3

sin(𝜋
3
𝑡))

2
+ (−2𝜋

3
cos(𝜋

3
𝑡))

2
+ 52.

Using the trigonometric identity sin2(𝜃) + cos2(𝜃) = 1, this simplifies to:
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|𝐏′(𝑡)| = √(2𝜋
3

)
2

+ 52 = √4𝜋2

9
+ 25

= √4𝜋2

9
+ 225

9
= √4𝜋2 + 225

9
=

√
4𝜋2 + 225

3

which is a constant! Hence the total distance traveled is simply

Distance = ∫
18

0

√
4𝜋2 + 225

3
d𝑡 = 18 ⋅

√
4𝜋2 + 225

3
= 6√4𝜋2 + 225 .

§45.4 Solution to Exercise 12.4 (clock)

Exercise 12.4 (*) (AMC 10A 2015).  In Figure 28, there’s a circular clock with radius 20 cm and a
circular disk of radius 10 cm externally tangent at the 12 o’clock position. The disk has an arrow
painted that points directly up and rolls clockwise. At what point on the clock face will the disk be
tangent when the arrow is next pointing in the upward vertical direction?

The answer is 4 o’clock ! In other words, the red disk makes three complete revolutions around the
blue block when it goes all the way around, not just two.

This is a variation on what’s called the coin rotation paradox (see Wikipedia), where 𝑅 = 20 and
𝑟 = 10. See the description there for details and an animation (when 𝑅 = 𝑟 and 𝑅 = 3𝑟).
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Chapter 46. Solutions to Part Echo

§46.1 Solution to Exercise 13.1 (five level curve drawings)

Exercise 13.1.  Draw 2D level curves for some values for the following functions:

• 𝑓(𝑥, 𝑦) = 3
2𝑥 + 𝑦

• 𝑓(𝑥, 𝑦) = 𝑥𝑦
• 𝑓(𝑥, 𝑦) = sin(𝑥2 + 𝑦2)
• 𝑓(𝑥, 𝑦) = 𝑒𝑦−𝑥2

• 𝑓(𝑥, 𝑦) = max(𝑥, 𝑦) (i.e. 𝑓  outputs the larger of its two inputs, so 𝑓(3, 5) = 5 and 𝑓(2, −9) =
2, for example).

In what follows, 𝑐 always denotes the value we’re drawing the level curve.

For 𝑓(𝑥, 𝑦) = 3
2𝑥+ 𝑦 The level curves of 3

2𝑥 + 𝑦 will be straight lines with slope −3
2  whose 𝑦-

intercept is the point (0, 𝑐). See Figure 102.

For 𝑓(𝑥, 𝑦) = 𝑥𝑦 When 𝑐 ≠ 0, the shape of 𝑥𝑦 = 𝑐 is a hyperbola 𝑦 = 𝑐
𝑥 . For the exceptional value

𝑐 = 0, the shape 𝑥𝑦 = 0 is the union of the axes. See Figure 103.

For 𝑓(𝑥, 𝑦) = sin(𝑥2 +𝑦2) The level curve is only nonempty when −1 ≤ 𝑐 ≤ 1. For these 𝑐, we
obtain a bunch of concentric circles whose radii 𝑟 satisfy sin

√
𝑟 = 𝑐. For example, when 𝑐 = 0,

we get circles of radius 0, 
√

𝜋, 
√

2𝜋, and so on. See Figure 104.

For 𝑓(𝑥, 𝑦) = 𝑒𝑦−𝑥2 The level curve is only nonempty when 𝑐 > 0. The level curve is the parabola
𝑦 = 𝑥2 + log(𝑐). See Figure 105.

For 𝑓(𝑥, 𝑦) = max(𝑥, 𝑦) The curve consists of what look like rotated L-shapes, as shown in the
figure. See Figure 106.

Figure 102: Level curves of 𝑓(𝑥, 𝑦) = 3
2𝑥 + 𝑦
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Figure 103: Level curves of 𝑓(𝑥, 𝑦) = 𝑥𝑦

Figure 104: Level curves of 𝑓(𝑥, 𝑦) = sin(𝑥2 + 𝑦2)
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Figure 105: Level curves of 𝑓(𝑥, 𝑦) = 𝑒𝑦−𝑥2

Figure 106: Level curves of 𝑓(𝑥, 𝑦) = max(𝑥, 𝑦)

§46.2 Solution to Exercise 13.2 (level curve with seven points)

Exercise 13.2 (*).  Give an example of a polynomial function 𝑓(𝑥, 𝑦) for which the level curve for
the value 100 consists of exactly seven points.

This is quite tricky. The following function should work:
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𝑓(𝑥, 𝑦) = 100 + (𝑥2 + (𝑦 − 1)2)(𝑥2 + (𝑦 − 2)2)…(𝑥2 + (𝑦 − 7)2).

Then 𝑓 = 100 if only if the product of the seven quadratics we gave was zero, i.e. we have 𝑥2 +
(𝑦 − 𝑘)2 = 0 for some 𝑘 = 1, …, 7. But that can only happen when (𝑥, 𝑦) = (0, 𝑘).

In other words, this level curve for 100 consists of only seven points: (0, 1), (0, 2), (0, 3), (0, 4), (0, 5),
(0, 6), and (0, 7).

§46.3 Solution to Exercise 14.1 (partial derivative practice)

Exercise 14.1.  Compute all the partial derivatives of the following functions, defined for 𝑥, 𝑦, 𝑧 > 0:

• 𝑓(𝑥, 𝑦, 𝑧) = 𝑥
𝑦 + 𝑦

𝑧 + 𝑧
𝑥

• 𝑓(𝑥, 𝑦, 𝑧) = sin(𝑥𝑦𝑧)
• 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥.

This is direct calculation and doesn’t require any trick.

• For 𝑓(𝑥, 𝑦, 𝑧) = 𝑥
𝑦 + 𝑦

𝑧 + 𝑧
𝑥  we compute 𝑓𝑥:

𝑓𝑥 = 1
𝑦

− 𝑧
𝑥2 .

For the same reason:

𝑓𝑦 = 1
𝑧

− 𝑥
𝑦2 , 𝑓𝑧 = 1

𝑥
− 𝑦

𝑧2 .

• For 𝑓(𝑥, 𝑦, 𝑧) = sin(𝑥𝑦𝑧) we compute 𝑓𝑥:

𝑓𝑥 = 𝑦𝑧 cos(𝑥𝑦𝑧).

For the same reason:

𝑓𝑦 = 𝑥𝑧 cos(𝑥𝑦𝑧), 𝑓𝑧 = 𝑥𝑦 cos(𝑥𝑦𝑧).

• For 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 we compute 𝑓𝑥:

𝑓𝑥 = 𝑦𝑥𝑦−1 + (log 𝑧)𝑧𝑥.

For the same reason:

𝑓𝑦 = 𝑧𝑦𝑧−1 + (log 𝑥)𝑥𝑦, 𝑓𝑧 = 𝑥𝑧𝑥−1 + (log 𝑦)𝑦𝑧.

§46.4 Solution to Exercise 15.1 (tangent to sphere)

Exercise 15.1.  Compute the equation of the tangent plane to the sphere 𝑥2 + 𝑦2 + 𝑧2 = 14 at the
point (1, 2, 3).

The equation of the given sphere is:

𝑥2 + 𝑦2 + 𝑧2 = 14.

To find the equation of the tangent plane at the point (1, 2, 3), we first compute the gradient of the
function

𝐹(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 14.

381



Linear Algebra and Multivariable Calculus — Evan Chen

The gradient is:

∇𝐹 = ⟨2𝑥, 2𝑦, 2𝑧⟩.

Evaluating at (1, 2, 3):

∇𝐹(1, 2, 3) = ⟨2, 4, 6⟩.

Hence the tangent plane should be given by

2𝑥 + 4𝑦 + 6𝑧 = 𝑐

for some number 𝑐. In order for this to pass through (1, 2, 3), we take

𝑐 = 2 ⋅ 1 + 4 ⋅ 2 + 6 ⋅ 3 = 28.

Hence the answer is

2𝑥 + 4𝑦 + 6𝑧 = 28

. Or one could write this as 𝑥 + 2𝑦 + 3𝑧 = 14 if you don’t like the unneeded factor of 2.

§46.5 Solution to Exercise 15.2 (given level curve is a circle)

Exercise 15.2.  The level curve of a certain differentiable function 𝑓(𝑥, 𝑦) for the value −7 turns
out to be a circle of radius 2 centered at (0, 0).

• Give an example of one such function 𝑓 .
• What are all possible vectors that ∇𝑓(1.2, −1.6) could be?
• Do linear approximation to estimate 𝑓(1.208, −1.594) starting from the point (1.2, −1.6).

Examples of functions

For an example, one natural choice for 𝑓(𝑥, 𝑦) is:

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 11.

This satisfies:

𝑓(𝑥, 𝑦) = −7 if and only if 𝑥2 + 𝑦2 = 4,

which defines a circle of radius 2 centered at the origin. There are other examples, such as

𝑓(𝑥, 𝑦) = 100(𝑥2 + 𝑦2) − 407

or

𝑓(𝑥, 𝑦) = 𝑒𝑥2+𝑦2 − (𝑒4 + 7)

and so on.

Possible gradients

For the second part, let 𝑃  denote the point (1.2, −1.6). Then 𝑃  lies on this circle. However, from high
school geometry (no calculus involved), the tangent to the circle at 𝑃  is the line 3(𝑥 − 1.2) + 4(𝑦 −
1.6) = 0. (See Figure 107.) The gradient needs to be some perpendicular to this line, so it must be
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some vector in the direction of (1.2, −1.6). That is, ∇𝑓(1.2, −1.6) could be²⁷ any vector in the same
direction as (3, 4).

Figure 107: The gradient should be perpendicular to the tangent line (green) to
the red circle at 𝑃 .

Linear approximation

For the linear approximation step, we have

𝑓(1.208, −1.594) ≈ 𝑓(1.2, −1.6) + (0.08, 0.06) ⋅ ∇𝑓(1.2, −1.6).

But the vectors (0.08, 0.06) and ∇𝑓(1.2, −1.6) are perpendicular.

§46.6 Solution to Exercise 15.3 (preview of anti-gradients)

Exercise 15.3.  For each part, either give an example of 𝑓 : ℝ2 → ℝ or show that none exist.

• Can you find a function 𝑓 : ℝ2 → ℝ such that ∇𝑓(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩?
• Can you find a function 𝑓 : ℝ2 → ℝ such that ∇𝑓(𝑥, 𝑦) = ⟨100𝑥, 𝑦⟩?
• Can you find a function 𝑓 : ℝ2 → ℝ such that ∇𝑓(𝑥, 𝑦) = ⟨𝑦, 𝑥⟩?
• Can you find a function 𝑓 : ℝ2 → ℝ such that ∇𝑓(𝑥, 𝑦) = ⟨100𝑦, 𝑥⟩?

For the first three exercises, one just takes the following:

𝑓1(𝑥, 𝑦) = 𝑥2

2
+ 𝑦2

2

𝑓2(𝑥, 𝑦) = 50𝑥2 + 𝑦2

2
𝑓3(𝑥, 𝑦) = 𝑥𝑦.

The fourth task is impossible: no such function could exist. One will see this more clearly in later
chapters, but even directly now, one might be able to realize that from 𝑓𝑥 = 100𝑦 one should have

𝑓(𝑥, 𝑦) = 100𝑥𝑦 + (stuff with only 𝑦 in it)

²⁷Technically, one ought to show that every vector could occur for some function, but for 18.02 I won’t dwell on that.
Anyone who knows what I’m talking about should be able to fill in this step for me :P
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and there’s no way one can differentiate that with respect to 𝑦 and get just 𝑥. Again, read Chapter 16
for more details.

§46.7 Solution to Exercise 15.4 (level curve through (0, 𝑑))

Exercise 15.4 (*).  Let 𝑎, 𝑏, 𝑐, 𝑑 be nonzero real numbers and let

𝑓(𝑥, 𝑦) = 𝑎𝑒𝑥+𝑦 + 𝑏𝑒𝑥−𝑦.

Suppose the level curve of 𝑓  for the value 𝑐 is tangent to the line 𝑦 = 5𝑥 at the origin, and also
passes through (0, 𝑑). Compute 𝑑.

The gradient of 𝑓  is given by

∇𝑓 = (𝑎𝑒𝑥+𝑦 + 𝑏𝑒𝑥−𝑦

𝑎𝑒𝑥+𝑦 − 𝑏𝑒𝑥−𝑦).

At the origin (𝑥, 𝑦) = (0, 0) we get

∇𝑓(0, 0) = (𝑎 + 𝑏
𝑎 − 𝑏).

The condition that the level curve is tangent to the line 𝑦 = 5𝑥 at the origin means the gradient vector
∇𝑓(0, 0) must be a multiple of the normal vector to −5𝑥 + 𝑦 = 0, which is (−5

1 ). In other words, we
should have

𝑎 + 𝑏
𝑎 − 𝑏

= −5 ⟹ 3𝑎 = 2𝑏 ⟹ 𝑏 = 3
2
𝑎.

We also know that 𝑐 = 𝑓(0, 0) = 𝑓(0, 𝑑). We compute

𝑓(0, 0) = 𝑎𝑒0+0 + 𝑏𝑒0−0 = 𝑎 + 𝑏 = 𝑎 + 3
2
𝑎 = 5

2
𝑎

𝑓(0, 𝑑) = 𝑎𝑒𝑑 + 𝑏𝑒−𝑑 = (𝑒𝑑 + 3
2
𝑒−𝑑)𝑎.

As 𝑎 ≠ 0, we conclude

𝑒𝑑 + 3
2
𝑒−𝑑 = 5

2
⟺ (𝑒𝑑 − 1)(𝑒𝑑 − 3

2
) = 0

and so 𝑑 = log(3
2
) .

§46.8 Solution to Exercise 16.1 (anti-gradient practice)

Exercise 16.1.  Suppose 𝑓(𝑥, 𝑦) is a differentiable function and that

∇𝑓(𝑥, 𝑦) = (𝑥2 + 𝑎𝑥𝑦 + 2𝑦2 + 𝑦 + 1
𝑥2 + 𝑥 + 𝑏𝑥𝑦 + 𝑦2 + 2 )

for some constants 𝑎 and 𝑏. Compute the constants 𝑎 and 𝑏, and determine 𝑓 .

We are given the gradient of a function 𝑓(𝑥, 𝑦):
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∇𝑓(𝑥, 𝑦) = (𝑥2 + 𝑎𝑥𝑦 + 2𝑦2 + 𝑦 + 1
𝑥2 + 𝑥 + 𝑏𝑥𝑦 + 𝑦2 + 2 ).

To compute 𝑎 and 𝑏, we compute

𝜕
𝜕𝑦

(𝑥2 + 𝑎𝑥𝑦 + 2𝑦2 + 𝑦 + 1) = 𝑎𝑥 + 4𝑦 + 1

𝜕
𝜕𝑥

(𝑥2 + 𝑥 + 𝑏𝑥𝑦 + 𝑦2 + 2) = 2𝑥 + 1 + 𝑏𝑦.

These need to be equal for all (𝑥, 𝑦) so we require (𝑎, 𝑏) = (2, 4) .

To recover 𝑓 , we write

𝑓(𝑥, 𝑦) = ∫ 𝜕𝑓
𝜕𝑥

d𝑥 = ∫(𝑥2 + 2𝑥𝑦 + 2𝑦2 + 𝑦 + 1) d𝑥

= 𝑥3

3
+ 𝑥2𝑦 + 2𝑥𝑦2 + 𝑥𝑦 + 𝑥 + 𝐶1(𝑦).

𝑓(𝑥, 𝑦) = ∫ 𝜕𝑓
𝜕𝑦

d𝑦 = ∫(𝑥2 + 𝑥 + 4𝑥𝑦 + 𝑦2 + 2) d𝑦

= 𝑥2𝑦 + 𝑥𝑦 + 2𝑥𝑦2 + 𝑦3

3
+ 2𝑦 + 𝐶2(𝑥).

Stitching these together to get the final expression for 𝑓(𝑥, 𝑦) as:

𝑓(𝑥, 𝑦) = 𝑥3

3
+ 𝑥2𝑦 + 2𝑥𝑦2 + 𝑦3

3
+ 𝑥𝑦 + 𝑥 + 2𝑦 + 𝐶

for any constant 𝐶 .
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Chapter 47. Solutions to Part Foxtrot

§47.1 Solution to Exercise 17.1 (critical points of a 2-variable function)

Exercise 17.1.  Compute the critical point(s) of 𝑓(𝑥, 𝑦) = 𝑥3 + 2𝑦3 − 6𝑥𝑦 and classify them as local
minimums, local maximums, or saddle points.

Finding the critical points

The first-order partial derivatives are:

𝑓𝑥 = 𝜕𝑓
𝜕𝑥

= 3𝑥2 − 6𝑦, 𝑓𝑦 = 𝜕𝑓
𝜕𝑦

= 6𝑦2 − 6𝑥.

To find the critical points, we solve the system:

3𝑥2 − 6𝑦 = 0, 6𝑦2 − 6𝑥 = 0.

Rewriting the equations:

𝑥2 = 2𝑦, 𝑦2 = 𝑥.

From 𝑦2 = 𝑥, substitute into 𝑥2 = 2𝑦:

(𝑦2)2 = 2𝑦 ⟹ 0 = 𝑦(𝑦3 − 2).

Hence either 𝑦 = 0 or 𝑦 = 3
√

2. These correspond to 𝑥 = 0 and 𝑥 = 3
√

4.

Classifying the critical points

Hence the two critical points are

(𝑥, 𝑦) = (0, 0)  and (𝑥, 𝑦) = ( 3√4, 3√2).

To classify them, compute the second-order derivatives. Then in the notation of Section 17.6,

𝐴 = 𝑓𝑥𝑥 = 6𝑥, 𝐶 = 𝑓𝑦𝑦 = 12𝑦, 𝐵 = 𝑓𝑥𝑦 = −6.

• At (0, 0), we have

𝐴𝐶 − 𝐵2 = 72(0)(0) − 36 = −36 < 0.

So (0, 0) is a saddle point .

• At ( 3
√

4, 3
√

2), we have

𝐴𝐶 − 𝐵2 = 72( 3√4)( 3√2) − 36 = 108 > 0.

Since 𝐴, 𝐶 > 0, and 𝐴𝐶 − 𝐵2 > 0, it follows ( 3
√

4, 3
√

2) is a local minimum .

§47.2 Solution to Exercise 17.2 (critical points of a 3-variable function)

Exercise 17.2.  Compute the critical point(s) of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦3 + 𝑧4 and classify them as local
minimums, local maximums, or saddle points.
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Finding the critical points

The first-order partial derivatives are:

𝑓𝑥 = 𝜕𝑓
𝜕𝑥

= 2𝑥, 𝑓𝑦 = 𝜕𝑓
𝜕𝑦

= 3𝑦2, 𝑓𝑧 = 𝜕𝑓
𝜕𝑧

= 4𝑧3.

To find the critical points, we solve the system:

2𝑥 = 0, 3𝑦2 = 0, 4𝑧3 = 0.

Solving for each variable:

𝑥 = 0, 𝑦2 = 0 ⇒ 𝑦 = 0, 𝑧3 = 0 ⇒ 𝑧 = 0.

Thus, the only critical point is:

(0, 0, 0).

Classifying the critical points

Since this is a 3-variable function, we cannot classify it using the second derivative test. However, one
can tell just by looking at the function that it is neither a local minimum or maximum. One simple
way to do so is to note that for any small 𝜀 > 0 we have

𝑓(0, 𝜀, 0) = 𝜀3 > 0

𝑓(0, −𝜀, 0) = −𝜀3 < 0

In other words, there are always points near the origin (0, 0, 0) which are both larger than 𝑓(0, 0, 0) =
0 and smaller than 𝑓(0, 0, 0) = 0. Hence (0, 0, 0) is a saddle point .

§47.3 Solution to Exercise 17.3 (every point is a saddle point)

Exercise 17.3 (*).  Does there exist a differentiable function 𝑓 : ℝ2 → ℝ such that every point in ℝ2

is a saddle point?

No, it’s not possible.

We will prove that the following result:

Theorem 47.1.  Suppose 𝑓 : ℝ2 → ℝ is a function for which every point is a critical point. Then 𝑓
must be the constant function.

In particular, every point of 𝑓  will be both a local minimum or local maximum. This means that 𝑓  has
no saddle points at all.

Proof.  Consider any two points 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2). We prove that 𝑓(𝑥1, 𝑦1) = 𝑓(𝑥2, 𝑦2).

Define the function 𝑔 : [0, 1] → ℝ along the line segment from (𝑥1, 𝑦1) to (𝑥2, 𝑦2) by

𝑔(𝑡) = 𝑓(𝑥1 + 𝑡(𝑥2 − 𝑥1), 𝑦1 + 𝑡(𝑦2 − 𝑦1)).

This function 𝑔 represents 𝑓  restricted to the straight-line path between the two points.

Since 𝑓  is differentiable, 𝑔 is also differentiable on (0, 1), and the derivative of 𝑔 can be computed using
the chain rule:
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𝑔′(𝑡) = 𝜕𝑓
𝜕𝑥

𝑑𝑥
d𝑡

+ 𝜕𝑓
𝜕𝑦

𝑑𝑦
d𝑡

.

Since 𝑥 = 𝑥1 + 𝑡(𝑥2 − 𝑥1) and 𝑦 = 𝑦1 + 𝑡(𝑦2 − 𝑦1), we have

𝑑𝑥
d𝑡

= 𝑥2 − 𝑥1,
𝑑𝑦
d𝑡

= 𝑦2 − 𝑦1.

Thus,

𝑔′(𝑡) = 𝜕𝑓
𝜕𝑥

(𝑥2 − 𝑥1) + 𝜕𝑓
𝜕𝑦

(𝑦2 − 𝑦1).

By assumption, every point is a critical point, meaning 𝜕𝑓
𝜕𝑥 = 0 and 𝜕𝑓

𝜕𝑦 = 0 everywhere. Therefore,

𝑔′(𝑡) = 0 for all 𝑡 ∈ (0, 1).

Hence, 𝑔 must be a constant function. So 𝑔(0) = 𝑔(1) implies 𝑓(𝑥1, 𝑦1) = 𝑓(𝑥2, 𝑦2) as needed. □

§47.4 Solution to Exercise 17.4 (every lattice point is a saddle point)

Exercise 17.4 (*).  Give an example of a differentiable function 𝑓 : ℝ2 → ℝ with the following
property: every lattice point (𝑥, 𝑦) (i.e. a point where both 𝑥 and 𝑦 are integers) is a saddle point,
and there are no other saddle points. For example, (2, −7), (100, 100), and (−42, −13) should be
saddle points, but (1

2 , 0), (𝜋, −
√

2), and (
√

7,
√

11) should not be.

Inventing the function

The function

𝑓(𝑥, 𝑦) = cos((𝑥 − 𝑦)𝜋) − cos((𝑥 + 𝑦)𝜋) = sin(𝜋𝑥) sin(𝜋𝑦)

works. The idea is that a saddle point occurs if and only if one of these two conditions holds:

• when the cosines reach their maximum value, meaning 𝑥 − 𝑦 and 𝑥 + 𝑦 are even integers;
• when the cosines reach their minimum value, meaning 𝑥 − 𝑦 and 𝑥 + 𝑦 are odd integers.

Verifying the function works

Inventing the example above (which is one of many) is the main difficulty of the exercise. For
completeness, let’s just verify that the guess above does in fact work. From now on, use

𝑓(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦).

The first-order partial derivatives are:

𝑓𝑥 = 𝜕𝑓
𝜕𝑥

= 𝜋 cos(𝜋𝑥) sin(𝜋𝑦),

𝑓𝑦 = 𝜕𝑓
𝜕𝑦

= 𝜋 sin(𝜋𝑥) cos(𝜋𝑦).

To find critical points, we set 𝑓𝑥 = 0 and 𝑓𝑦 = 0:

𝜋 cos(𝜋𝑥) sin(𝜋𝑦) = 0, 𝜋 sin(𝜋𝑥) cos(𝜋𝑦) = 0.

Since 𝜋 ≠ 0, the equations reduce to:
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cos(𝜋𝑥) sin(𝜋𝑦) = 0, sin(𝜋𝑥) cos(𝜋𝑦) = 0.

Solving these equations:

• cos(𝜋𝑥) = 0 when 𝑥 = 𝑚 + 1
2  for 𝑚 ∈ ℤ.

• sin(𝜋𝑦) = 0 when 𝑦 = 𝑛 for 𝑛 ∈ ℤ.
• sin(𝜋𝑥) = 0 when 𝑥 = 𝑚 for 𝑚 ∈ ℤ.
• cos(𝜋𝑦) = 0 when 𝑦 = 𝑛 + 1

2  for 𝑛 ∈ ℤ.

A critical point must satisfy both conditions simultaneously. The only common solutions occur in
two cases.

• Each lattice point (𝑚, 𝑛), where 𝑚, 𝑛 are integers, is a critical point.
• Each point (𝑚 + 1

2 , 𝑛 + 1
2), where 𝑚, 𝑛 are integers, is a critical point.

We classify with the second derivative test. Compute

𝐴 = 𝑓𝑥𝑥 = −𝜋2 sin(𝜋𝑥) sin(𝜋𝑦)

𝐶 = 𝑓𝑦𝑦 = −𝜋2 sin(𝜋𝑥) sin(𝜋𝑦)

𝐵 = 𝑓𝑥𝑦 = 𝜋2 cos(𝜋𝑥) cos(𝜋𝑦).

Now we check the cases:

• At any lattice point (𝑚, 𝑛), we have 𝐴 = 𝐶 = 0 and 𝐵 = ±𝜋2, so 𝐴𝐶 − 𝐵2 = −𝜋4 < 0. So every
lattice point is indeed a saddle point.

• At any point of the form (𝑚 + 1
2 , 𝑛 + 1

2), we have 𝐴 = 𝐶 = ±𝜋2 and 𝐵 = 0, so 𝐴𝐶 − 𝐵2 =
𝜋4 < 0. Hence there are no saddle points here.

§47.5 Solution to Exercise 19.1 (geometry optimization)

Exercise 19.1.  Let 𝐴𝐵𝐶 be the triangle in the 𝑥𝑦-plane with vertices 𝐴 = (0, 12), 𝐵 = (−5, 0),
𝐶 = (9, 0). For what point 𝑃  in the plane is the sum

𝑃𝐴2 + 𝑃𝐵2 + 𝑃𝐶2

as small as possible?

For 𝑃 = (𝑥, 𝑦) we let

𝑓(𝑥, 𝑦) = 𝑃𝐴2 + 𝑃𝐵2 + 𝑃𝐶2.

See Figure 108.

Figure 108: A triangle 𝐴𝐵𝐶 and a point 𝑃  connected to its three vertices
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We first want to change 𝑓  into an expression like we’re used to. We do this using the Pythagorean
theorem as follows:

𝑃𝐴2 = (𝑥 − 0)2 + (𝑦 − 12)2 = 𝑥2 + 𝑦2 − 24𝑦 + 144,

𝑃𝐵2 = (𝑥 + 5)2 + (𝑦 − 0)2 = 𝑥2 + 10𝑥 + 25 + 𝑦2,

𝑃𝐶2 = (𝑥 − 9)2 + (𝑦 − 0)2 = 𝑥2 − 18𝑥 + 81 + 𝑦2.

Summing these expressions:

𝑓(𝑥, 𝑦) = (𝑥2 + 𝑦2 − 24𝑦 + 144) + (𝑥2 + 10𝑥 + 25 + 𝑦2) + (𝑥2 − 18𝑥 + 81 + 𝑦2)

= 3𝑥2 + 3𝑦2 − 8𝑥 − 24𝑦 + 250.

We are optimizing 𝑓  over the entire space ℛ = ℝ2. Let’s follow the recipe in Section 19.2:

0. There is no boundary, but we have limit cases if 𝑥 → ±∞ or 𝑦 → ±∞.
1. To find the critical points, we compute the partial derivatives:

𝑓𝑥 = 𝜕𝑓
𝜕𝑥

= 6𝑥 − 8 = 0 ⟹ 𝑥 = 4
3
.𝑓𝑦 = 𝜕𝑓

𝜕𝑦
= 6𝑦 − 24 = 0 ⟹ 𝑦 = 4.

Thus, the only critical point is:

𝑃 = (4
3
, 4).

2. There are no boundary points to consider.
3. If either 𝑥 → ±∞ or 𝑦 → ±∞, then the quadratic terms 3𝑥2 + 3𝑦2 dominate and cause

𝑓(𝑥, 𝑦) → +∞. Hence 𝑓  can take arbitrarily large values.

Putting this together, the point 𝑃 = (4
3 , 4) is the unique point minimizing 𝑃𝐴2 + 𝑃𝐵2 + 𝑃𝐶2.

Remark

If 𝐴𝐵𝐶 is replaced by a different triangle, it turns out that the best point 𝑃  is the center of mass of
the three points 𝐴, 𝐵, 𝐶 . In other words, if 𝐴 = (𝑥1, 𝑦1), 𝐵 = (𝑥2, 𝑦2), 𝐶 = (𝑥3, 𝑦3) the answer
will work out to

𝑃 = (𝑥1 + 𝑥2 + 𝑥3
3

, 𝑦1 + 𝑦2 + 𝑦3
3

).

(This point is called the centroid or gravity center of 𝐴𝐵𝐶 and is often denoted by the letter 𝐺.)

§47.6 Solution to Exercise 19.2 (sine optimization)

Exercise 19.2.  Compute the minimum possible value of 𝑥 + 𝑦 given that sin(𝑥) + sin(𝑦) = 1 and
𝑥, 𝑦 ≥ 0.

0. The region ℛ has boundary whenever 𝑥 = 0 or 𝑦 = 0. It also has limit cases when 𝑥 → +∞ or
𝑦 → +∞.

1. We find the LM-critical points. The gradients are

∇𝑓 = (1
1)
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and

∇𝑔 = (cos(𝑥)
cos(𝑦)).

From the first two equations, we have:

𝜆 = 1
cos(𝑥)

and 𝜆 = 1
cos(𝑦)

.

Equating these expressions for 𝜆, we get:

1
cos(𝑥)

= 1
cos(𝑦)

⟹ cos(𝑥) = cos(𝑦).

Thus, we get an LM-critical point whenever

cos(𝑥) = cos(𝑦)
sin(𝑥) + sin(𝑦) = 1

Note that sin(𝑥)2 = 1 − cos(𝑥)2 = 1 − cos(𝑦)2 = sin(𝑦)2. Since sin(𝑥) + sin(𝑦) = 1 ≠ 0, we
conclude sin(𝑥) = sin(𝑦) = 1

2 . Together with cos(𝑥) = cos(𝑦), that means 𝑥 and 𝑦 must differ
by a multiple of 2𝜋.

Since we want 𝑥 + 𝑦 to be as small as possible, we might as well take 𝑥 = 𝑦. The smallest 𝑥 for
which sin(𝑥) = 1

2  is 𝑥 = 𝜋
6 . So of all the LM-critical points, the lowest value occurs when

𝑓(𝜋
6
, 𝜋
6
) = 𝜋

6
+ 𝜋

6
= 𝜋

3
.

2. In the limit cases if either 𝑥 → +∞ or 𝑦 → +∞ then 𝑓 → +∞.

3. Suppose 𝑥 = 0. Then sin(𝑦) = 1. So this part of the boundary consists of the points (0, 𝜋), (0, 3𝜋),
(0, 5𝜋), …. All of these have 𝑥 + 𝑦 ≥ 𝜋, so they do worse than the point (𝜋

6 , 𝜋
6) from before.

Similarly, if 𝑦 = 0, we get boundary points (𝜋, 0), (3𝜋, 0), (5𝜋, 0), …. Again all of these have 𝑥 +
𝑦 ≥ 𝜋, so they do worse than the point (𝜋

6 , 𝜋
6) from before.

In conclusion the minimum possible value occurs at

𝑓(𝜋
6
, 𝜋
6
) = 𝜋

3
.

§47.7 Solution to Exercise 19.3 (optimization with absolute value)

Exercise 19.3 (Suggested by Ting-Wei Chao).  Compute the global minimum of the function

𝑓(𝑥, 𝑦) = |𝑥2 + 𝑦2 − 25| − 3𝑥 − 4𝑦.

This problem shows a case where ∇𝑓  does not exist at certain points: the derivative of |𝑥| only exists
when 𝑥 ≠ 0.

To avoid this issue, we split into cases based on the sign of the term inside the absolute value. We will
split²⁸ into two cases 𝑥2 + 𝑦2 ≤ 25 and 𝑥2 + 𝑦2 ≥ 25. In each case we execute the procedure.

²⁸If you wanted to, you could split the cases a bit differently. For example, you could do 𝑥2 + 𝑦2 ≤ 25 and 𝑥2 + 𝑦2 > 25
so the cases don’t overlap. Or you could split into three cases with 𝑥2 + 𝑦2 < 25, 𝑥2 + 𝑦2 = 25, 𝑥2 + 𝑦2 > 25. However,
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Case where 𝑥2 + 𝑦2 ≤ 25

We follow Section 19.2.

0. The region 𝑥2 + 𝑦2 ≤ 25 is a two-dimensional region with no limit cases but whose boundary is
𝑥2 + 𝑦2 = 25.

1. We seek all points with ∇𝑓 = 𝟎. In the region 𝑥2 + 𝑦2 ≤ 25, we have

𝑓(𝑥, 𝑦) = 25 − 𝑥2 − 𝑦2 − 3𝑥 − 4𝑦.

Solving ∇𝑓 = 𝟎 gives

𝜕𝑓
𝜕𝑥

= −2𝑥 − 3 = 0,

𝜕𝑓
𝜕𝑦

= −2𝑦 − 4 = 0.

Therefore, it gives the critical point (𝑥, 𝑦) = (−3
2 , −2). This point is indeed in the region 𝑥2 +

𝑦2 < 25, so this is a critical point.
2. We apply Lagrange multipliers (Section 19.4) on the boundary 𝑥2 + 𝑦2 = 25. Let 𝑔(𝑥, 𝑦) = 𝑥2 +

𝑦2.
0. This is a one-dimensional region with no boundary and no limit cases.
1. We search for all LM-critical points. First note that ∇𝑔 is never zero on this boundary. The

system of equations is

−3 = 𝜆 ⋅ 2𝑥,
−4 = 𝜆 ⋅ 2𝑦

𝑥2 + 𝑦2 = 25.

It’s clear that 𝜆, 𝑥, 𝑦 must be nonzero. Hence, the first two equations together imply 𝑥
𝑦 =

3
4 . Hence, we get two critical points (3, 4) and (−3, −4) in this case.

2. There are no boundary points to consider.
3. There are no limit points to consider.

3. There are no limit cases.

Case where 𝑥2 + 𝑦2 ≥ 25

We follow Section 19.2 again.

0. The region 𝑥2 + 𝑦2 ≥ 25 is a two-dimensional region with limit cases when 𝑥 → ±∞ and 𝑦 →
±∞ but whose boundary is 𝑥2 + 𝑦2 = 25.

1. In the region 𝑥2 + 𝑦2 ≥ 25, we have

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 25 − 3𝑥 − 4𝑦.

Solving ∇𝑓 = 𝟎 gives

𝜕𝑓
𝜕𝑥

= 2𝑥 − 3 = 0,

𝜕𝑓
𝜕𝑦

= 2𝑦 − 4 = 0.

I think doing it with 𝑥2 + 𝑦2 ≤ 25 and 𝑥2 + 𝑦2 ≥ 25 is cleanest, so you do not need to consider limit cases when 𝑥2 +
𝑦2 approaches 25. The boundary 𝑥2 + 𝑦2 = 25 is shared, so you only need to do it once.
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This gives the point (3
2 , 2), but this point doesn’t lie inside 𝑥2 + 𝑦2 ≥ 25, so we don’t need to

consider it.
2. We need to apply Lagrange multipliers (Section 19.4) on the boundary 𝑥2 + 𝑦2 = 25. However,

we did this already in the earlier case where 𝑥2 + 𝑦2 ≤ 25. So we can just repeat the same
calculation verbatim here.

3. When |𝑥| → +∞ or |𝑦| → +∞, the square terms dominate and 𝑓 → +∞. Hence we get that 𝑓
is bounded above.

Putting things together

We are searching for the global minimum of 𝑓 . Aggregating the critical points, we check

𝑓(3
2
, 2) = 25

4
,

𝑓(3, 4) = −25,
𝑓(−3, −4) = 25.

Therefore, the global minimum is 𝑓(3, 4) = −25 .

§47.8 Solution to Exercise 20.1 (butterfly)

Exercise 20.1.  A butterfly is fluttering in the 𝑥𝑦 plane with position given by 𝐫(𝑡) = ⟨cos(𝑡), cos(𝑡)⟩,
starting from time 𝑡 = 0 at 𝐫(0) = ⟨1, 1⟩.

• Compute the speed of the butterfly at 𝑡 = 𝜋
3 .

• Compute the arc length of the butterfly’s trajectory from 𝑡 = 0 to 𝑡 = 2𝜋.
• Sketch the butterfly’s trajectory from 𝑡 = 0 to 𝑡 = 2𝜋 in the 𝑥𝑦 plane.

Sketch of the trajectory

We start actually by sketching the trajectory first (even though this was the last part), since that will
make it easier to see what’s going on in future parts. See Figure 109. The trajectory described by 𝐫(𝑡) =
⟨cos(𝑡), cos(𝑡)⟩ traces out a straight line in the 𝑥𝑦-plane because both the 𝑥- and 𝑦-coordinates are
equal for all 𝑡. Specifically, the butterfly’s motion follows the line 𝑦 = 𝑥, with 𝑡 ∈ [0, 2𝜋] producing
oscillations between 𝑥 = 1 and 𝑥 = −1.
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Figure 109: Butterfly fluttering along the plane. A few more examples of points
in the trajectory are marked in green for illustration, but the blue endpoints are
the important ones. The green points are a little offset to show both parts of the
trajectory, e.g. 𝐫(𝜋

2 ) = (0, 0) is drawn a little bit left of where it should be.

The trajectory is a straight line from (1, 1) to (−1, −1) and back following the line 𝑦 = 𝑥.

Speed of the butterfly at 𝑡 = 𝜋
3

The speed of the butterfly is given by the magnitude of its velocity vector, which is the derivative of
𝐫(𝑡) with respect to time 𝑡.

First, compute the velocity 𝐫′(𝑡):

𝐫′(𝑡) = 𝑑
d𝑡

⟨cos(𝑡), cos(𝑡)⟩ = ⟨− sin(𝑡), − sin(𝑡)⟩.

(This has direction along the line 𝑦 = 𝑥, which is what we expect.)

The speed at any time 𝑡 is the magnitude of the velocity vector:
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Speed = |𝐫′(𝑡)| = √(− sin(𝑡))2 + (− sin(𝑡))2 = √2 sin2(𝑡) =
√

2|sin(𝑡)|.

At 𝑡 = 𝜋
3 , we have:

sin(𝜋
3
) =

√
3

2
.

Thus, the speed at 𝑡 = 𝜋
3  is:

Speed =
√

2 ⋅
√

3
2

=
√

6
2

.

Arc length of the butterfly’s trajectory from 𝑡 = 0 to 𝑡 = 2𝜋

Note that from the sketch of the trajectory, we can actually find the arc length with no calculus at all.
Indeed, “arc length” is a misnomer because the “arc” is just two line segments!

From the Pythagorean theorem, distance from (1, 1) to (−1, −1) is

√(1 − (−1))2 + (1 − (−1))2 =
√

4 + 4 = 2
√

2.

So the total distance is

2
√

2 + 2
√

2 = 4
√

2.

Of course, one could also use the arc length formula, and we show how to do so. The arc length of the
trajectory is given by the integral of the speed:

𝐿 = ∫
stop time

𝑡=start time
|𝐫′(𝑡)| d𝑡.

We just saw that |𝐫′(𝑡)| =
√

2|sin(𝑡)|. Therefore, the arc length from 𝑡 = 0 to 𝑡 = 2𝜋 is:

𝐿 = ∫
2𝜋

0

√
2|sin(𝑡)| d𝑡.

Warning

Don’t forget about the absolute value! In general, for real 𝑋, we have 
√

𝑋2 = |𝑋|. If you forget
the absolute value here, you’ll end up getting 0 as the answer, which doesn’t make sense because
the butterfly certainly traveled more than 0 distance. Remember, speed (absolute value of velocity
vector) should always be nonnegative.

Because of the absolute value, we can break the integral into two parts. On the interval [0, 𝜋], sin(𝑡) ≥
0, and on the interval [𝜋, 2𝜋], sin(𝑡) ≤ 0, so

𝐿 =
√

2(∫
𝜋

0
sin(𝑡) d𝑡 + ∫

2𝜋

𝜋
− sin(𝑡) d𝑡).

See Figure 110 for an illustration of this integral.
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Figure 110: The integral ∫2𝜋
0

| sin(𝑡)| d𝑡 is two copies of the first hump ∫𝜋
0

sin(𝑡) d𝑡
(which doesn’t have an absolute value on it).

Both integrals are the same, so we compute one and multiply by 2:

∫
𝜋

0
sin(𝑡) d𝑡 = [− cos(𝑡)]𝜋0 = − cos(𝜋) + cos(0) = 1 + 1 = 2.

Thus, the total arc length is:

𝐿 =
√

2 ⋅ 2 ⋅ 2 = 4
√

2.

§47.9 Solution to Exercise 20.2 (tangent to level curve)

Exercise 20.2.  Let 𝑘 > 0 be a fixed real number and let 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑘𝑦2. Assume that the level
curve of 𝑓  for the value 21 passes through the point 𝑃 = (1, 2). Compute the equation of the tangent
line to this level curve at the point 𝑃 .

The first task is to recover the value of 𝑘 which wasn’t given in the statement. First, substitute the
point (1, 2) into the function 𝑓(𝑥, 𝑦):

𝑓(1, 2) = 13 + 𝑘(22) = 1 + 4𝑘.

We are told that 𝑓(1, 2) = 21, so we set the equation equal to 21:

1 + 4𝑘 = 21 ⟹ 4𝑘 = 20 ⟹ 𝑘 = 5.

Thus, the function is:

𝑓(𝑥, 𝑦) = 𝑥3 + 5𝑦2.

Now that we know 𝑓 , we can compute the gradient by taking the partial derivatives:

∇𝑓 =
(
((

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦)

)) = (3𝑥2

10𝑦).

Now evaluate the gradient at 𝑃 = (1, 2):

∇𝑓(1, 2) = (3(1)2

10(2)) = ( 3
20).

The gradient is always normal to the tangent line, so the tangent line must be of the form

3𝑥 + 20𝑦 = 𝑡

for some number 𝑡. This line passes through (1, 2) so we can get

𝑡 = 3 ⋅ 1 + 20 ⋅ 2 = 43.
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Hence the line requested is

3𝑥 + 20𝑦 = 43.

§47.10 Solution to Exercise 20.3 (approximation of 𝑓 = 𝑥5𝑦)

Exercise 20.3.  Let 𝑓(𝑥, 𝑦) = 𝑥5𝑦 for 𝑥, 𝑦 > 0. Use linear approximation to estimate 𝑓(1.001, 3.001)
starting from the point (1, 3).

We are given the function:

𝑓(𝑥, 𝑦) = 𝑥5𝑦

and are asked to estimate 𝑓(1.001, 3.001) using linear approximation, starting from the point (1, 3),
at which

𝑓(1, 3) = 1.

We start by computing ∇𝑓 .
• To get the partial derivative with respect to 𝑥, use the power rule and chain rule:

𝜕𝑓
𝜕𝑥

= 5𝑦𝑥5𝑦−1.

• For the partial derivative with respect to 𝑦, we treat 𝑥 as a constant:

𝜕𝑓
𝜕𝑦

= 𝑥5𝑦 log(𝑥) ⋅ 5.

Thus, the gradient of 𝑓(𝑥, 𝑦) is:

∇𝑓(𝑥, 𝑦) = ⟨5𝑦𝑥5𝑦−1, 5𝑥5𝑦 log(𝑥)⟩.

The gradient at (1, 3) is thus

∇𝑓(1, 3) = (15
0 ).

The linear approximation of 𝑓(1.001, 𝑦) near the point (1, 3) can be expressed in terms of the gradient
dot the displacement:

𝑓(1.001, 3.001) ≈ 𝑓(1, 3) + ∇𝑓(1, 3) ⋅ (0.001
0.001) = 1 + (15

0 ) ⋅ (0.001
0.001) = 1.015.

§47.11 Solution to Exercise 20.4 (cosine-quartic critical points)

Exercise 20.4.  Consider the function 𝑓 : ℝ2 → ℝ defined by

𝑓(𝑥, 𝑦) = cos(𝜋𝑥) + 𝑦4

4
− 𝑦3

3
− 𝑦2.

• Compute all the critical points and classify them as saddle point, local minimum, or local
maximum.

• Compute the global minimums and global maximums of 𝑓 , if they exist.
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Although this is stated as an 18.02 problem, it can actually be solved basically only using 18.01 methods.
We’ll still present the solution from an 18.02 perspective, but we’ll comment many times on places
where just 18.01 methods would have been sufficient.

Finding the critical points

To find the critical points, we first compute the gradient. The partial derivatives are

𝑓𝑥(𝑥, 𝑦) = 𝜕
𝜕𝑥

(cos(𝜋𝑥) + 𝑦4

4
− 𝑦3

3
− 𝑦2) = −𝜋 sin(𝜋𝑥).

𝑓𝑦(𝑥, 𝑦) = 𝜕
𝜕𝑦

(cos(𝜋𝑥) + 𝑦4

4
− 𝑦3

3
− 𝑦2) = 𝑦3 − 𝑦2 − 2𝑦.

Hence

∇𝑓(𝑥, 𝑦) = ( −𝜋 sin(𝜋𝑥)
𝑦3 − 𝑦2 − 2𝑦).

Setting this equal to 𝟎 lets us solve each equation individually:

• −𝜋 sin(𝜋𝑥) = 0 is true whenever 𝑥 is an integer.
• To solve 𝑦3 − 𝑦2 − 2𝑦 = 0, factor the equation:

0 = 𝑦(𝑦2 − 𝑦 − 2) = 𝑦(𝑦 − 2)(𝑦 + 1) = 0.

So there are infinitely many critical points! The critical points occur when 𝑥 is any integer and 𝑦 =
−1, 𝑦 = 0, 𝑦 = 2. See Figure 111.

Figure 111: Plot of the critical points of the function in the 𝑥𝑦-plane as red dots.

Classification using second derivative test

We now classify each of the points using the second derivative test. Calculate the second derivatives
needed:
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𝐴 = 𝑓𝑥𝑥(𝑥, 𝑦) = 𝜕2𝑓
𝜕𝑥2 = −𝜋2 cos(𝜋𝑥),

𝐵 = 𝑓𝑥𝑦(𝑥, 𝑦) = 𝜕2𝑓
𝜕𝑥𝜕𝑦

= 0,

𝐶 = 𝑓𝑦𝑦(𝑥, 𝑦) = 𝜕2𝑓
𝜕𝑦2 = 3𝑦2 − 2𝑦 − 2.

• We have 𝐴 = −𝜋2 if 𝑥 is odd and 𝐴 = 𝜋2 if 𝑥 is even.
• We always have 𝐵 = 0.
• We have

𝐶 =
{{
{
{{3(−1)2 − 2(−1) − 2 = 3  if 𝑦 = −1

3(0)2 − 2(0) − 2 = −2  if 𝑦 = 0
3(2)2 − 2(2) − 2 = 6  if 𝑦 = 2.

We summarize all six cases in the table below. For each entry in the table we also compute 𝐴𝐶 − 𝐵2

and then specify the answer based on the second derivative test.

𝑥 = …, −4, −2, 0, 2, 4… is even 𝑥 = …, −3, −1, 1, 3… is odd
𝑦 = −1 (𝐴, 𝐵, 𝐶) = (−𝜋2, 0, 3)

𝐴𝐶 − 𝐵2 = −3𝜋2 < 0 gives saddle pt
(𝐴, 𝐵, 𝐶) = (𝜋2, 0, 3)
𝐴𝐶 − 𝐵2 = 3𝜋2 > 0 gives local min

𝑦 = 0 (𝐴, 𝐵, 𝐶) = (−𝜋2, 0, −2)
𝐴𝐶 − 𝐵2 = 2𝜋2 > 0 gives local max

(𝐴, 𝐵, 𝐶) = (𝜋2, 0, −2)
𝐴𝐶 − 𝐵2 = −2𝜋2 < 0 gives saddle pt

𝑦 = 2 (𝐴, 𝐵, 𝐶) = (−𝜋2, 0, 6)
𝐴𝐶 − 𝐵2 = −6𝜋2 < 0 gives saddle pt

(𝐴, 𝐵, 𝐶) = (𝜋2, 0, 6)
𝐴𝐶 − 𝐵2 = 6𝜋2 > 0 gives local min

Another approach without the second derivative test

You can get the same classification by just looking at the given function too. The point is that the
function splits nicely into two halves: if define the one-variable functions

𝑎(𝑥) ≔ cos(𝜋𝑥)

𝑏(𝑦) ≔ 𝑦4

4
− 𝑦3

3
− 𝑦2

then

𝑓(𝑥, 𝑦) = 𝑎(𝑥) + 𝑏(𝑦).

In that case, the following result is true:

• A point 𝑃 = (𝑥, 𝑦) is a critical point of 𝑓(𝑥, 𝑦) if 𝑥 is a critical point of 𝑎(𝑥) and 𝑦 is a critical
point of 𝑏(𝑦).

• If so then, the point 𝑃  is…
‣ a local minimum of 𝑓  if 𝑥 is a local minimum of 𝑎(𝑥) and 𝑦 is a local minimum of 𝑏(𝑦).
‣ a local maximum of 𝑓  if 𝑥 is a local maximum of 𝑎(𝑥) and 𝑦 is a local maximum of 𝑏(𝑦).
‣ a saddle point otherwise.

If you have a good conceptual understanding of saddle points, this should be obvious. It’s essentially
Figure 38 from Section 17.3.
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Figure 112: The function 𝑓  is just the sum of two independent functions, which
can be optimized independently.

This gives us the same table as above, since:

• The critical points of 𝑎(𝑥) = cos(𝜋𝑥) are 𝑥 = −2, −1, 0, 1, 2, …. The minimums are the odd
integers when the cos value reaches −1, the maximums are the even integers when the cos value
reaches +1.

• The critical points of 𝑏(𝑦) = 𝑦4

4 − 𝑦3

3 − 𝑦2 are the roots of 𝑏′(𝑦) = 𝑦3 − 𝑦2 − 2𝑦 = 𝑦(𝑦 + 1)(𝑦 −
2), which are the same 𝑦 = −1, 0, 2 we saw before. See Figure 112. There are local minimums at
𝑦 = −1 and 𝑦 = 2 and a local maximum at 𝑦 = 0.

The global minimums and maximums

First, we evaluate 𝑓  on every critical point. This is easiest to do if we use the 𝑎 and 𝑏 notation from
before and compute

𝑎(even) = cos(𝜋 ⋅ even) = 1
𝑎(odd) = cos(𝜋 ⋅ odd) = −1

𝑏(−1) = (−1)4

4
− (−1)3

3
− (−1)2 = − 5

12

𝑏(0) = (0)4

4
− (0)3

3
− (0)2 = 0

𝑏(2) = (2)4

4
− (2)3

3
− (2)2 = −8

3

Then we get the six values shown in Table 25.

𝑥 = …, −4, −2, 0, 2, 4… is even 𝑥 = …, −3, −1, 1, 3… is odd
𝑦 = −1 𝑓(even, −1) = 1 − 5

12 = 7
12 𝑓(odd, −1) = −1 − 5

12 = −17
12

𝑦 = 0 𝑓(even, 0) = 1 + 0 = 1 𝑓(odd, 0) = −1 + 0 = −1
𝑦 = 2 𝑓(even, 2) = 1 − 8

3 = −5
3 𝑓(odd, 2) = −1 − 8

3 = −11
3

Table 25: Values of 𝑓  at the critical points

There are no inequality constraints at all, so we just think about limit cases 𝑥 → ±∞ or 𝑦 → ±∞.
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When 𝑦 → ±∞, the quartic 𝑏(𝑦) = 𝑦4

4 − 𝑦3

3 − 𝑦2 explodes to infinity. This implies already there
cannot be any global maximum.

In the case where 𝑥 → ±∞, the cosine term of 𝑓(𝑥, 𝑦) will oscillate between −1 and 1, with period
2𝜋. So there are no new smaller values of 𝑓  that can be obtained here.

Another way to see the global minimums and maximums

Because

𝑓(𝑥, 𝑦) = 𝑎(𝑥) + 𝑏(𝑦)

the global minimum of 𝑓  should be the sum of the global minimums of 𝑎 and 𝑏, and likewise the global
maximum of 𝑓  should be the sum of the global maximums of 𝑎 and 𝑏. So we could have also just used
18.01 methods on 𝑎 and 𝑏 individually, as in Figure 112. That is:

• Because min 𝑎(𝑥) = −1 and min 𝑏(𝑦) = −8
3 , the global minimum is −11

3 .
• Because max 𝑎(𝑥) = 1 and min 𝑏(𝑦) = +∞, there is no global maximum.

Remember, this only works because we could easily divorce 𝑓(𝑥, 𝑦) into a function in 𝑥 plus a function
in 𝑦. For most functions 𝑓(𝑥, 𝑦) like 𝑥𝑦 or 𝑒𝑥 sin(𝑦), this approach is not going to fly.

§47.12 Solution to Exercise 20.5 (LM practice)

Exercise 20.5.  Compute the minimum and maximum possible value of 𝑥 + 2𝑦 + 2𝑧 over real
numbers 𝑥, 𝑦, 𝑧 satisfying 𝑥2 + 𝑦2 + 𝑧2 ≤ 100.

Let 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 2𝑦 + 2𝑧. Let ℛ denote the region 𝑥2 + 𝑦2 + 𝑧2 ≤ 100 (a ball of radius 10) and let
𝒮 denote the boundary 𝑥2 + 𝑦2 + 𝑧2 = 100 (a sphere of radius 10). We follow the steps we described
in the recipe in Section 19.2 and Section 19.4.

0. ℛ is three-dimensional and has no limit cases but a two-dimensional boundary 𝒮. (Because of
the condition 𝑥2 + 𝑦2 + 𝑧2 ≤ 100 and all the squares being nonnegative, none of the variables
can go to ±∞.)

1. We calculate all the critical points of the objective function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 2𝑦 + 2𝑧. The
gradient is

∇𝑓 =
(
((
(1

2
2)
))
)

So there are no critical points, because this gradient is never 0.

2. The boundary in 𝒮 is a sphere, and it cannot easily be handled. We pull out Lagrange multipliers
and follow the recipe all the way through again.

0. 𝒮 is two-dimensional and has no limit cases or boundary.

1. We search for LM-critical points by letting 𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2, so 𝒮 is the level
surface 𝑔 = 100. Calculate the gradient of 𝑔:

∇𝑔 =
(
((
(2𝑥

2𝑦
2𝑧)

))
).

Recall that an LM-critical point is one for which 𝑔(𝑃 ) = 100 and either
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∇𝑓(𝑃) = 𝜆∇𝑔(𝑃)  OR ∇(𝑃) = 0.

This gradient ∇𝑔 could be 𝟎 at (𝑥, 𝑦, 𝑧) = (0, 0, 0), but this point does not lie on 𝒮, so we
disregard it.

In the main case ∇𝑓 = 𝜆𝑔, we seek points such that

1 = 𝜆 ⋅ 2𝑥
2 = 𝜆 ⋅ 2𝑦
2 = 𝜆 ⋅ 2𝑧.

Our strategy is to kill every variable except 𝜆, by writing

𝑥 = 1
2𝜆

𝑦 = 1
𝜆

𝑧 = 1
𝜆

.

Plugging this back into the constraint equation 𝑥2 + 𝑦2 + 𝑧2 = 100 and simplifying gives

( 1
2𝜆

)
2

+ (1
𝜆

)
2

+ (1
𝜆

)
2

= 100

⟺ 9
4𝜆2 = 100

⟺ 𝜆2 = 9
400

⟺ 𝜆 = ± 3
20

.

Putting these two values of 𝜆 in gives (𝑥, 𝑦, 𝑧) = (10
𝑙 , 20

3 , 20
3 )  and (𝑥, 𝑦, 𝑧) =

(−10
3 , −20

3 , −20
3 ) These are the two LM-critical points. Evaluating this gives

𝑓(10
3

, 20
3

, 20
3

) = 10
3

+ 2 ⋅ 20
3

+ 2 ⋅ 20
3

= 30

𝑓(−10
3

, −20
3

, −20
3

) = −10
3

+ 2 ⋅ −20
3

+ 2 ⋅ −20
3

= −30.

2. There are no boundary cases to consider for 𝒮.

3. There are no limit cases to consider for 𝒮.

In conclusion, the maximum value is 30 and the minimum value is −30, at the points (10
3 , 20

3 , 20
3 )

and (−10
3 , −20

3 , −20
3 ) we found earlier.

3. There are no limit cases to consider for ℛ.
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Digression

Note that in fact one can note a priori that any maximum or minimum should occur on the sphere.
One way to see this is that if one takes a point strictly inside ℛ like 𝑃 = (6, 8, 0), one can always
increase the absolute value of 𝑓  by scaling 𝑃  until it lies on the sphere (e.g. (60, 80, 0)). Hence
there is no loss of generality in assuming maximums and minimums lie on 𝒮. So if one is observant
enough they can skip straight to the LM on 𝒮, ignoring the region ℛ entirely.

§47.13 Solution to Exercise 20.6 (tangent plane)

Exercise 20.6.  Consider the level surface of 𝑓(𝑥, 𝑦, 𝑧) = (𝑥 − 1)2 + (𝑦 − 1)3 + (𝑧 − 1)4 that
passes through the origin 𝑂 = (0, 0, 0). Let ℋ denote the tangent plane to this surface at 𝑂. Give
an example of two nonzero tangent vectors to this surface at 𝑂 whose span is ℋ.

The gradient of the function 𝑓

∇𝑓 =
(
((
( 2(𝑥 − 1)

3(𝑦 − 1)2

4(𝑧 − 1)3
)
))
)

and so the gradient at the origin is

∇𝑓(0, 0, 0) =
(
((
(−2

3
−4)

))
).

The tangent plane ℋ consists of those vectors which are normal to (
−2
3

−4
). This plane is two-dimen-

sional. So, to find two vectors spanning ℋ, according to the “buy two get one free” result from we
just need to give any two linearly independent (i.e. not multiples of each other) vectors which are both

perpendicular to (
−2
3

−4
).

There are many valid choices. One such example might be (
3
2
0
) and (

0
4
3
). These two vectors are

clearly not multiples of each other, and

(
((
(−2

3
−4)

))
) ⋅

(
((
(3

2
0)
))
) = (−2) ⋅ 3 + 3 ⋅ 2 + (−4) ⋅ 0 = 0

(
((
(−2

3
−4)

))
) ⋅

(
((
(0

4
3)
))
) = (−2) ⋅ 0 + 3 ⋅ 4 + (−4) ⋅ 3 = 0

so they are indeed tangent vectors contained in ℋ.
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Chapter 48. Solutions to Part Golf

§48.1 Solution to Exercise 22.1 (practice with slicing)

Exercise 22.1.  Let ℛ be the region between the curves 𝑦 =
√

𝑥 and 𝑦 = 𝑥3. Compute
∬

ℛ
𝑥100𝑦200 d𝑥 d𝑦 using both horizontal and vertical slicing.

Let ℛ be the region bounded by the curves 𝑦 =
√

𝑥 and 𝑦 = 𝑥3. We wish to compute the integral

𝐼 = ∬
ℛ

𝑥100𝑦200 d𝑥 d𝑦.

To determine the limits of integration, we find the intersection points by solving 
√

𝑥 = 𝑥3 Squaring
both sides gives 𝑥 = 𝑥6 ⟹ 𝑥(𝑥5 − 1) = 0, so 𝑥 = 0 or 𝑥 = 1. That is, the intersection points are
(0, 0) and (1, 1). A sketch of the region is shown in Figure 113.

Figure 113: The region between 𝑦 =
√

𝑥 and 𝑦 = 𝑥3.

From the figure, we can describe the region ℛ with the inequalities

0 ≤ 𝑥3 ≤ 𝑦 ≤
√

𝑥 ≤ 1.

Integrating with 𝑥 inside and 𝑦 outside

The values of 𝑦 go from 0 to 1. For each fixed 𝑦, the values of 𝑥 range from

𝑦2 ≤ 𝑥 ≤ 𝑦1/3

so the integral is:

𝐼 = ∫
1

𝑦=0
∫

𝑦1/3

𝑥=𝑦2

𝑥100𝑦200 d𝑥 d𝑦.

Evaluating the inner integral:

∫
𝑦1/3

𝑥=𝑦2

𝑥100 d𝑥 = [𝑥101

101
]

𝑦1/3

𝑥=𝑦2

= 𝑦101/3

101
− 𝑦202

101
.
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Now, integrating over 𝑦:

𝐼 = ∫
1

𝑦=0
(𝑦101/3

101
− 𝑦202

101
)𝑦200 d𝑦

= 1
101

(∫
1

𝑦=0
𝑦701/3 d𝑦 − ∫

1

𝑦=0
𝑦402 d𝑦)

= 1
101

( 3
704

− 1
403

) = 5
283712

.

Integrating with 𝑦 inside and 𝑥 outside

The values of 𝑥 go from 0 to 1. For a fixed 𝑥, the values of 𝑦 range from

𝑥3 ≤ 𝑦 ≤ 𝑥1/2

so the integral is

𝐼 = ∫
1

𝑥=0
∫

𝑥1/2

𝑦=𝑥3

𝑥100𝑦200 d𝑦 d𝑥.

Evaluating the inner integral:

∫
√

𝑥

𝑦=𝑥3

𝑦200 d𝑦 = [𝑦201

201
]

𝑦=
√

𝑥

𝑦=𝑥3

= 𝑥201/2

201
− 𝑥603

201
.

Now, integrating over 𝑥:

𝐼 = ∫
1

𝑥=0
𝑥100(𝑥201/2

201
− 𝑥603

201
) d𝑥

= 1
201

(∫
1

𝑥=0
𝑥4012 d𝑥 − ∫

1

𝑥=0
𝑥703 d𝑥)

= 1
201

( 2
403

− 1
704

) = 5
283712

.

§48.2 Solution to Exercise 22.2 (center of mass of a region)

Exercise 22.2.  Let ℛ be the region between the curves 𝑦 =
√

𝑥 and 𝑦 = 𝑥2. Assume ℛ has constant
density. Calculate its center of mass.

The region is really similar to the one in the preceding exercise, and can be described as

0 ≤ 𝑥2 ≤ 𝑦 ≤
√

𝑥 ≤ 1

for the same reason, as shown in Figure 114. (It’s exactly the same as the last exercise except 𝑥3 was
changed to 𝑥2, so one just replaces all the 3’s with 2’s.) Note that the region is symmetric around the
line 𝑦 = 𝑥, so a priori we should expect our answer to lie on 𝑦 = 𝑥 as well.
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Figure 114: The region between 𝑦 =
√

𝑥 and 𝑦 = 𝑥2.

First, to compute the area of ℛ, we can write

Area(ℛ) = ∫
1

𝑥=0
∫

√
𝑥

𝑦=𝑥2

1 d𝑦 d𝑥 = ∫
1

𝑥=0
(
√

𝑥 − 𝑥2) d𝑥 = [2
3
𝑥3/2 − 1

3
𝑥3]

1

𝑥=0
= 1

3
.

The 𝑥-coordinate of the center of mass is therefore given by

̅𝑥 = 1
Area(ℛ)

∫
ℛ

𝑥 d𝐴 = 1
1/3

∫
1

𝑥=0
∫

√
𝑥

𝑦=𝑥2

𝑥 d𝑦 d𝑥

= 3 ∫
1

𝑥=0
𝑥(

√
𝑥 − 𝑥2) d𝑥

= 3[2
5
𝑥5

2 − 1
4
𝑥4]

1

𝑥=0
= 9

20
.

As for the 𝑦-coordinate, we expect ̅𝑦 = ̅𝑥 from the symmetry of the region, and indeed

̅𝑦 = 1
Area(ℛ)

∫
ℛ

𝑦 d𝐴 = 1
1/3

∫
1

𝑥=0
∫

√
𝑥

𝑦=𝑥2

𝑦 d𝑦 d𝑥

= 3 ∫
1

𝑥=0
[𝑦2

2
]

√
𝑥

𝑦=𝑥2

d𝑥

= 3
2

∫
1

𝑥=0
(𝑥 − 𝑥4) d𝑥

= 3
2
[1
2
𝑥2 − 1

5
𝑥5]

1

𝑥=0
= 9

20
.

Thus, the center of mass of the region is:

( 9
20

, 9
20

) .
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§48.3 Solution to Exercise 22.3 (double integral with 5th root)

Exercise 22.3.  Evaluate the double integral:

∫
1

𝑦=0
∫

5√𝑦

𝑥=𝑦

𝑥𝑦2

1 − 𝑥12 d𝑥 d𝑦.

Writing as a region, this is

ℛ = {0 ≤ 𝑦 ≤ 1
𝑦 ≤ 𝑥 ≤ 5

√𝑦.

The values of 𝑥 could range anywhere in 0 ≤ 𝑥 ≤ 1. For a fixed 𝑥, the value 𝑦 needs to satisfy four
conditions: 0 ≤ 𝑦 ≤ 1 and also 𝑥5 ≤ 𝑦 ≤ 𝑥. But in fact

0 ≤ 𝑥5 ≤ 𝑦 ≤ 𝑥 ≤ 1

so we can compress this to just:

ℛ = {0 ≤ 𝑥 ≤ 1
𝑥5 ≤ 𝑦 ≤ 𝑥.

Thus, the new limits of integration become:

∫
1

𝑥=0
∫

𝑥

𝑦=𝑥5

𝑥𝑦2

1 − 𝑥12 d𝑦 d𝑥

We now compute the inner integral with respect to 𝑦:

∫
𝑥

𝑦=𝑥5

𝑦2 d𝑦 = [𝑦3

3
]

𝑦=𝑥

𝑦=𝑥5

Substituting the limits of integration:

1
3
(𝑥3 − (𝑥5)3) = 1

3
(𝑥3 − 𝑥15)

Now substitute this result into the outer integral:

∫
1

𝑥=0

𝑥
1 − 𝑥12 ⋅ 1

3
(𝑥3 − 𝑥15) d𝑥

Simplifying:

1
3

∫
1

𝑥=0

𝑥
1 − 𝑥12 (𝑥3 − 𝑥15) d𝑥 = 1

3
∫

1

𝑥=0

𝑥4 − 𝑥16

1 − 𝑥12 d𝑥

= 1
3

∫
1

𝑥=0
𝑥4 d𝑥

= 1
3
(1

5
− 0) = 1

15
.

§48.4 Solution to Exercise 22.4 (rational integral)
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Exercise 22.4 (*).  Prove that

∫
9995

𝑥=0

3√ 5
√

𝑥 + 1

is a rational number.

For brevity, let 𝑁 ≔ 9995.

At face value, this looks like an 18.01 integral, but we know from 18.01 that this integral is actually
measuring the area under some curve. The idea is that, to avoid having to deal with the hideous roots,
we are going to use horizontal slicing for the region under the curve shown in the figure.

Figure 115: The region 0 ≤ 𝑦 ≤ 5√ 3
√

𝑥 + 1 for 0 ≤ 𝑥 ≤ 𝑁 . Not at all to scale.

Let’s first convert the region into inequality format: we have 0 ≤ 𝑥 ≤ 𝑁 , 𝑦 ≥ 0 and

𝑦 ≤ 3√ 5
√

𝑥 + 1 ⟺ 𝑥 ≥ (𝑦3 − 1)5.

Hence, the area under the curve can be split into two parts. In the range 0 ≤ 𝑦 ≤ 1 we get the light
blue rectangle shown above (bottom half of figure), which goes from 0 ≤ 𝑥 ≤ 𝑁  to 0 ≤ 𝑦 ≤ 1, and
has area 𝑁 . Then from 1 ≤ 𝑦 ≤ 10 the bounds on 𝑥 are instead given by

(𝑦3 − 1)5 ≤ 𝑥 ≤ 𝑁.

This is the dark blue region (top half of figure) and it has area

∫
2

𝑦=1
∫

𝑁

𝑥=(𝑦3−1)5
1 d𝑥 d𝑦 = ∫

𝑁

𝑦=1
(𝑁 − (𝑦3 − 1)5) d𝑦.

The total area is thus
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𝑁 + ∫
10

𝑦=1
(𝑁 − (𝑦3 − 1)5) d𝑦 = 𝑁 + 𝑁(𝑁 − 1) − ∫

10

𝑦=1
(𝑦3 − 1)5 d𝑦.

This is a easily seen to be a rational number.

Remark

Using a calculator, one could explicitly compute

∫
10

𝑦=1
(𝑦3 − 1)5 d𝑦 = ∫

10

𝑦=1
(𝑦15 − 5𝑦12 + 10𝑦9 − 10𝑦6 + 5𝑦3 − 1) d𝑦 = 904414539218186169

1456

if one is so inclined.

Digression

It is possible to evaluate the integral using 18.01 methods by making the 𝑢-substitution 𝑢 =
√√

𝑥 + 1, but this is extremely tedious.

§48.5 Solution to Exercise 23.1 (integral over triangle)

Exercise 23.1.  Let ℛ be all the points on or inside the triangle with vertices (0, 0), (1, 2) and (2, 1).
Compute

∬
ℛ

(𝑥 + 𝑦)2

𝑥𝑦
d𝑥 d𝑦.

(Recommended approach: use change of variables with 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥
𝑦 .)

We use the transformation:

𝑢 = 𝑥 + 𝑦, 𝑣 = 𝑥
𝑦
.

The region under (𝑢, 𝑣) coordinates can be expressed as

0 ≤ 𝑢 ≤ 3, 1
2

≤ 𝑣 ≤ 2.

This is drawn in Figure 116.
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Figure 116: The triangle with vertices (0, 0), (1, 2), and (2, 1), with a change of
variables suggested using 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥

𝑦

This is a case where we want to use the inverse Jacobian

det(𝐽𝐓−1) = |
𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑥

𝜕𝑢
𝜕𝑦
𝜕𝑣
𝜕𝑦

| = |
1
1
𝑦

1
− 𝑥

𝑦2
| = −𝑥 + 𝑦

𝑦2 .

So

1
| det(𝐽𝐓−1)|

= 𝑦2

𝑥 + 𝑦
.

Hence, the transformed integral becomes

∫
3

𝑢=0
∫

2

𝑣=1
2

(𝑥 + 𝑦)2

𝑥𝑦
⋅ 𝑦2

𝑥 + 𝑦
d𝑣 d𝑢 = ∫

3

𝑢=0
∫

2

𝑣=1
2

𝑦
𝑥

⋅ (𝑥 + 𝑦) d𝑣 d𝑢

= ∫
3

𝑢=0
∫

2

𝑣=1
2

1
𝑣

⋅ 𝑢 d𝑣 d𝑢

= (∫
3

𝑢=0
𝑢 d𝑢)

(
((∫

2

𝑣=1
2

1
𝑣

d𝑣
)
))

= [𝑢2

2
]

3

𝑢=0

⋅ [log 𝑣]2𝑣=1
2

= 9
2

⋅ (log 2 − log(1
2
)) = 9 log 2 .
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§48.6 Solution to Exercise 24.1 (polar integral 1)

Exercise 24.1.  Compute

∫
1

𝑥=0
∫

√
1−𝑥2

𝑦=0
𝑥𝑦 d𝑦 d𝑥.

The limits of integration describe the region bounded by:
• 0 ≤ 𝑥 ≤ 1,
• 0 ≤ 𝑦 ≤

√
1 − 𝑥2.

This corresponds to the quarter-circle in the first quadrant of the unit disk, given by 𝑥2 + 𝑦2 ≤ 1 with
𝑥 ≥ 0.

Using the polar coordinate transformations:

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, d𝑥 d𝑦 = 𝑟 d𝑟 d𝜃.

The given region corresponds to:
• 0 ≤ 𝑟 ≤ 1,
• 0 ≤ 𝜃 ≤ 𝜋

2 .

Rewriting the integrand:

𝑥𝑦 = (𝑟 cos 𝜃)(𝑟 sin 𝜃) = 𝑟2 cos 𝜃 sin 𝜃.

Hence the integral transforms into:

𝐼 = ∫
𝜋/2

𝜃=0
∫

1

𝑟=0
𝑟2 cos 𝜃 sin 𝜃 ⋅ 𝑟 d𝑟 d𝜃

= (∫
1

𝑟=0
𝑟3 d𝑟)(∫

𝜋/2

𝜃=0

sin(2𝜃)
2

d𝜃)

= [𝑟4

4
]

1

𝑟=0

[−cos(2𝜃)
4

]
𝜋/2

𝜃=0

= 1
4

⋅ 1
2

= 1
8

.

§48.7 Solution to Exercise 24.2 (polar integral 2)

Exercise 24.2.  Compute

∬
(𝑥−1)2+𝑦2≤1

1
√𝑥2 + 𝑦2

d𝑥 d𝑦.

In Section 24.3, we have already established that the given region in polar coordinates is described by:

0 ≤ 𝑟 ≤ 2 cos 𝜃, −𝜋
2

≤ 𝜃 ≤ 𝜋
2
.

Using the standard polar transformations:

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, d𝑥 d𝑦 = 𝑟 d𝑟 d𝜃,
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the given integrand is just 𝑟.

1
√𝑥2 + 𝑦2

= 1√
𝑟2

= 1
𝑟
.

Thus, the integral becomes:

𝐼 = ∫
𝜋/2

𝜃=−𝜋/2
∫

2 cos 𝜃

𝑟=0

1
𝑟

⋅ 𝑟 d𝑟 d𝜃

= ∫
𝜋/2

𝜃=−𝜋/2
∫

2 cos 𝜃

𝑟=0
d𝑟 d𝜃

= ∫
𝜋/2

𝜃=−𝜋/2
2 cos 𝜃 d𝜃

= [2 sin 𝜃]𝜋/2
𝜃=−𝜋/2

= 4 .

§48.8 Solution to Exercise 24.3 (polar integral 3)

Exercise 24.3 (*).  Compute

∬
𝑥2+𝑦2≤1

√(𝑥 + 3
5
)

2
+ (𝑦 + 4

5
)

2

d𝑥 d𝑦.

This is actually a disguised version of the example in Section 24.3! That is, the answer is also 32
9 .

To repeat, in Section 24.3 the example can be thought of as showing

𝐼1 = ∬
(𝑥−1)2+𝑦2≤1

√𝑥2 + 𝑦2 d𝑥 d𝑦 = 32
9

.

Our goal is to argue that

𝐼2 = ∬
𝑥2+𝑦2≤1

√(𝑥 + 3
5
)

2
+ (𝑦 + 4

5
)

2

d𝑥 d𝑦 = 32
9

.

Note that:
• The first integral 𝐼1 is taken over the disk centered at (1, 0) with radius 1. We call this disk ℛ1.
• The second integral 𝐼2 is taken over the unit disk centered at (0, 0). We call this disk ℛ2.

Observe that the disks ℛ1 and ℛ2 are congruent. Moreover,

• The integrand in 𝐼1 is √𝑥2 + 𝑦2. This measures the distance of each point in ℛ1 from the origin
𝑂 = (0, 0). Note that 𝑂 is a point on the boundary of ℛ1.

• The integrand in 𝐼2 is √(𝑥 + 3
5)2 + (𝑦 + 4

5)2. This measures the distance of each point in ℛ2
from the origin 𝑃 = (−3

5 , −4
5). Note that 𝑃  is a point on the boundary of ℛ2.

See the illustration in Figure 117.
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Figure 117: Illustration of the integrals 𝐼1 and 𝐼2 of from Section 24.3 and Exer-
cise 24.3, showing they’re computing the same thing.

Since both integrals effectively compute the same function over congruent regions, the results must
be equal.
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Chapter 49. Solutions to Part Hotel

§49.1 Solution to Exercise 26.1 (the napkin-ring problem)

Exercise 26.1 (Napkin-ring problem).  Let 𝑅 > 𝑎 > 0 be given real numbers, and let ℎ ≔
2
√

𝑅2 − 𝑎2. A cylindrical hole of radius 𝑎 is drilled through the center of a wooden ball of radius
𝑅 to get a bead of height ℎ, as shown in Figure 59. Compute the volume of the resulting bead as a
function of ℎ.

This is a famous exercise with its own page on Wikipedia at https://w.wiki/CarU. We give one
solution using spherical coordinates below, but this is far from the only possible solution.

Using cylindrical coordinates the equation of the sphere is:

𝑥2 + 𝑦2 + 𝑧2 = 𝑅2.

Since the hole is along the 𝑧-axis with radius 𝑎, we impose

𝑎 ≤ 𝑟 ≤ 𝑅

that is, the bead consists of those points whose distance from the 𝑧-axis is at least 𝑎.

As for 𝑧, we require 𝑟2 + 𝑧2 ≤ 𝑅2. That is, for each given 𝑟, the possible values of 𝑧 are those with

−
√

𝑅2 − 𝑟2 ≤ 𝑧 ≤
√

𝑅2 − 𝑟2.

The volume element in cylindrical coordinates is:

d𝑉 = 𝑟 d𝑟 d𝜃 d𝑧.

Putting this all together, the volume integral is:

𝑉 = ∫
2𝜋

𝜃=0
∫

𝑅

𝑟=𝑎
∫

√
𝑅2−𝑟2

𝑧=−
√

𝑅2−𝑟2

𝑟 d𝑧 d𝑟 d𝜃.

Evaluating the inner integral gives:

∫

√
𝑅2−𝑟2

𝑧=−
√

𝑅2−𝑟2

d𝑧 = 2
√

𝑅2 − 𝑟2.

Thus, the volume integral simplifies to:

𝑉 = ∫
2𝜋

𝜃=0
∫

𝑅

𝑟=𝑎
2𝑟

√
𝑅2 − 𝑟2 d𝑟 d𝜃

= (∫
2𝜋

𝜃=0
d𝜃)(∫

𝑅

𝑟=𝑎
2𝑟

√
𝑅2 − 𝑟2 d𝑟)

= 2𝜋(∫
𝑅

𝑟=𝑎
2𝑟

√
𝑅2 − 𝑟2 d𝑟).

To evaluate the integral, we substitute 𝑢 = 𝑅2 − 𝑟2, so that d𝑢 = −2𝑟 d𝑟, we rewrite:
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∫
𝑅

𝑟=𝑎
2𝑟

√
𝑅2 − 𝑟2 d𝑟 = ∫

𝑅2−𝑎2

𝑢=𝑅2−𝑅2

√
𝑢(− d𝑢)

= ∫
𝑅2−𝑎2

𝑢=0

√
𝑢 d𝑢

= [2
3
𝑢3/2]

𝑅2−𝑎2

𝑢=0

= 2
3
(𝑅2 − 𝑎2)

3
2 .

Multiplying by 2𝜋, we obtain:

𝑉 = 2𝜋 ⋅ 2
3
(𝑅2 − 𝑎2)3/2 = 4𝜋

3
(𝑅2 − 𝑎2)3/2.

Since ℎ = 2
√

𝑅2 − 𝑎2, we have: 𝑅2 − 𝑎2 = ℎ2

4 , so

𝑉 =
𝜋
6
ℎ3 .

§49.2 Solution to Exercise 27.1 (average distance of sphere to line)

Exercise 27.1.  Consider a solid ball of radius 1 and a line ℓ through its center. Across all points 𝑃
inside the ball, compute the average value of the distance from 𝑃  to ℓ. (The average is defined as

1
Vol(𝒯) ∭

𝒯
𝑑(𝑃) d𝑉 , where 𝑑(𝑃) is the distance from 𝑃  to ℓ.)

We choose the 𝑧-axis to be aligned with the line ℓ. Hence the distance from a point 𝑃 = (𝑟, 𝜃, 𝜑) to ℓ
is simply the perpendicular distance from 𝑃  to the 𝑧-axis, which is:

𝑑(𝑃) = 𝑟 sin 𝜑.

We integrate over the entire sphere with coordinates

0 ≤ 𝑟 ≤ 1, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜑 ≤ 𝜋.

The total volume of the ball is:

Vol(𝒯) = 4
3
𝜋(1)3 = 4𝜋

3
.

We now set up the integral ∭
𝒯

𝑑(𝑃) d𝑉 . The volume element is:

d𝑉 = 𝑟2 sin 𝜑 d𝑟 d𝜑 d𝜃.

Hence

∭
𝒯

𝑑(𝑃) d𝑉 = ∭
𝒯

𝑟 sin 𝜑 ⋅ 𝑟2 sin 𝜑 d𝑟 d𝜑 d𝜃

= ∫
2𝜋

𝜃=0
d𝜃 ∫

𝜋

𝜑=0
sin2 𝜑 d𝜑 ∫

1

𝑟=0
𝑟3 d𝑟.

The center integral needs the following trig identity:
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sin2 𝜑 = 1 − cos(2𝜑)
2

⟹ ∫ sin2 𝜑 d𝜑 = 𝜑
2

− sin(2𝜑)
4

.

Hence,

∭
𝒯

𝑑(𝑃) d𝑉 = ∫
2𝜋

𝜃=0
d𝜃 ∫

𝜋

𝜑=0
sin2 𝜑 d𝜑 ∫

1

𝑟=0
𝑟3 d𝑟 = (2𝜋) ⋅ (𝜋

2
) ⋅ (1

4
)

= 𝜋2

4
.

So the final answer is

1
Vol(𝒯)

∭
𝒯

𝑑(𝑃) d𝑉 = 𝜋2/4
4𝜋/3

= 3
16

𝜋 .

§49.3 Solution to Exercise 27.2 (gravity on hemisphere)

Exercise 27.2.  Suppose 𝒯 is a solid metal hemisphere of radius 1 of constant unit density, and 𝑃  is
a point of mass 𝑚 at the center of the base of the hemisphere. Calculate the magnitude of the force
of gravity exerted on the point 𝑃 .

We orient the hemisphere so it rests on the 𝑥𝑦-plane with the point 𝑃  at (0, 0, 0) (so the hemisphere
is 𝑥2 + 𝑦2 + 𝑧2 ≤ 1 and 𝑧 ≥ 0). Then this is basically the same as the example in Section 27.5, except
the bounds of integration change.

To be precise, we have 𝐺1 = 𝐺2 = 0, and Equation 17 and again

𝐺3 = 𝐺𝑚 ∭
𝒯

sin 𝜑 cos 𝜑 d𝜌 d𝜑 d𝜃

after setting the density to 1. The only change is the bounds of integration: for the hemisphere we
should have

0 ≤ 𝜌 ≤ 1, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋
2
.

So, when we integrate to compute 𝐺3 we have

𝐺3 = 𝐺𝑚 ∫
2𝜋

𝜃=0
∫

𝜋
2

𝜑=0
∫

1

𝜌=0
sin 𝜑 cos 𝜑 d𝜌 d𝜑 d𝜃

= 𝐺𝑚(∫
2𝜋

𝜃=0
d𝜃)(∫

𝜋
2

𝜑=0
sin 𝜑 cos 𝜑 d𝜑)(∫

1

𝜌=0
d𝜌)

= 𝐺𝑚(2𝜋)(∫
𝜋
2

𝜑=0
sin 𝜑 cos 𝜑 d𝜑)(1).

To evaluate the integral with 𝜑, write

∫
𝜋/2

𝜑=0
sin 𝜑 cos 𝜑 d𝜑 = 1

2
∫

𝜋/2

0
sin 2𝜑 d𝜑 = 1

2
[−1

2
cos 2𝜑]

𝜋/2

𝜑=0
= 1

2
.
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Hence,

𝐺3 = (𝐺𝑚) ⋅ (2𝜋) ⋅ 1
2

⋅ 1 = 𝐺𝑚𝜋.

In other words, in the coordinate system we chose, gravity is given by

𝐆 = ⟨0, 0, 𝐺𝑚𝜋⟩.

The magnitude is |𝐆| = 𝐺𝑚𝜋 .

§49.4 Solution to Exercise 28.1 (find point on parametrized surface)

Exercise 28.1.  Consider a surface 𝒮 given by the parametrization 𝐫 : ℝ2 → ℝ3 defined by

𝐫(𝑢, 𝑣) = ⟨𝑢 − 𝑣, 𝑢 + 𝑣, 𝑢𝑣⟩

for all (𝑢, 𝑣) in ℝ2. Compute the real number 𝑘 for which the point 𝑃 = (2, 8, 𝑘) lies on 𝒮.

For 𝑃 = (2, 8, 𝑘) to lie on 𝒮, there must exist 𝑢, and 𝑣 such that:

𝑢 − 𝑣 = 2, 𝑢 + 𝑣 = 8, 𝑢𝑣 = 𝑘.

Adding the first two equations:

(𝑢 − 𝑣) + (𝑢 + 𝑣) = 2 + 8 ⟹ 2𝑢 = 10 ⟹ 𝑢 = 5.

Subtracting the first equation from the second:

(𝑢 + 𝑣) − (𝑢 − 𝑣) = 8 − 2 ⟹ 2𝑣 = 6 ⟹ 𝑣 = 3.

Hence 𝑘 = 𝑢𝑣 = 15 .

§49.5 Solution to Exercise 29.1 (find tangent plane to parametrized surface)

Exercise 29.1.  Consider a surface 𝒮 given by the parametrization 𝐫 : ℝ2 → ℝ3 defined by

𝐫(𝑢, 𝑣) = ⟨𝑢 − 𝑣, 𝑢 + 𝑣, 𝑢𝑣⟩

for all (𝑢, 𝑣) in ℝ2. Compute the tangent plane to 𝒮 at the point (3, 7, 10).

The first step is to solve for (𝑢, 𝑣), much like in the preceding Exercise 28.1. The point (3, 7, 10) must
satisfy the parametrization equations:

𝑢 − 𝑣 = 3, 𝑢 + 𝑣 = 7, 𝑢𝑣 = 10.

Solving gives (𝑢, 𝑣) = (5, 2).

Now, from the discussion in Section 29.2, the idea is that the normal vector for our tangent plane ought
to be given by

𝜕𝐫
𝜕𝑢

× 𝜕𝐫
𝜕𝑣

at every point of the surface.

So, we first compute the derivatives:
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𝜕𝐫
𝜕𝑢

= ( 𝜕
𝜕𝑢

(𝑢 − 𝑣), 𝜕
𝜕𝑢

(𝑢 + 𝑣), 𝜕
𝜕𝑢

(𝑢𝑣))

= ⟨1, 1, 𝑣⟩
𝜕𝐫
𝜕𝑣

= ( 𝜕
𝜕𝑣

(𝑢 − 𝑣), 𝜕
𝜕𝑣

(𝑢 + 𝑣), 𝜕
𝜕𝑣

(𝑢𝑣))

= ⟨−1, 1, 𝑢⟩.

At (𝑢, 𝑣) = (5, 2) we get

𝜕𝐫
𝜕𝑢

(5, 2) = ⟨1, 1, 2⟩

𝜕𝐫
𝜕𝑣

(5, 2) = ⟨−1, 1, 5⟩.

The cross product is then given by

𝜕𝐫
𝜕𝑢

(5, 2) × 𝜕𝐫
𝜕𝑣

(5, 2) =
|
||
| 𝐞1

1
−1

𝐞2
1
1

𝐞3
2
5 |

||
|
= 3𝐞1 − 7𝐞2 + 2𝐞3.

Thus, the normal vector is ⟨3, −7, 2⟩. So the equation of the tangent plane should be

3𝑥 − 7𝑦 + 2𝑧 = 𝑘

for some number 𝑘. To pass through (3, 7, 10), we take 𝑘 = 3 ⋅ 3 − 7 ⋅ 7 + 2 ⋅ 10 = −20. Hence the
final answer is

3𝑥 − 7𝑦 + 2𝑧 = −20 .

§49.6 Solution to Exercise 30.1 (surface area of paraboloid)

Exercise 30.1.  Compute the surface area of the surface defined by 𝑧 = 𝑥2 + 𝑦2 ≤ 1.

The surface 𝒮 is parametrized by

𝐫(𝑥, 𝑦) =
(
((
(𝑥

𝑦
𝑧)
))
) =

(
((
( 𝑥

𝑦
𝑥2 + 𝑦2

)
))
)

where (𝑥, 𝑦) lies within the disk 𝑥2 + 𝑦2 ≤ 1. Compute the partial derivatives of 𝐫 with respect to 𝑥
and 𝑦:

𝜕𝐫
𝜕𝑥

=

(
((
((
(

𝜕𝑥
𝜕𝑥
𝜕𝑦
𝜕𝑥
𝜕𝑧
𝜕𝑥)

))
))
)

=
(
((
( 1

0
2𝑥)

))
)

𝜕𝐫
𝜕𝑦

=

(
((
((
((

𝜕𝑥
𝜕𝑦
𝜕𝑦
𝜕𝑦
𝜕𝑧
𝜕𝑦)

))
))
))

=
(
((
( 0

1
2𝑦)

))
).

Hence, the cross product is given by 𝜕𝐫
𝜕𝑥 × 𝜕𝐫

𝜕𝑦 :
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𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

= (0 ⋅ 2𝑦 − 1 ⋅ 2𝑥)𝐞1 − (1 ⋅ 2𝑦 − 0 ⋅ 2𝑥)𝐞2 + (1 ⋅ 1 − 0 ⋅ 0)𝐞3

=
(
((
(−2𝑥

2𝑦
1 )

))
).

Hence the magnitude of this cross product is:

| 𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

| = √(−2𝑥)2 + (−2𝑦)2 + (1)2 = √4𝑥2 + 4𝑦2 + 1.

Hence, the surface area of the surface in question is given by

SurfArea(𝒮) = ∬
𝑥2+𝑦2≤1

| 𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

| d𝑥 d𝑦

= ∬
𝑥2+𝑦2≤1

√4𝑥2 + 4𝑦2 + 1 d𝑥 d𝑦

Due to the circular symmetry, it is convenient to switch to polar coordinates; we write

SurfArea(𝒮) = ∫
2𝜋

𝜃=0
∫

1

𝑟=0

√4𝑟2 + 1 ⋅ 𝑟 d𝑟 d𝜃

= (∫
2𝜋

𝜃=0
d𝜃)(∫

1

𝑟=0

√4𝑟2 + 1 ⋅ 𝑟 d𝑟).

The integral over 𝑟 can be evaluated by using 𝑢-substitute according to

𝑢 ≔ 4𝑟2 + 1 ⟹ d𝑢 = 8𝑟 d𝑟 ⟹ 𝑟 d𝑟 = d𝑢
8

so

∫
1

𝑟=0

√4𝑟2 + 1 ⋅ 𝑟 d𝑟 = ∫
5

𝑢=1
(

√
𝑢

8
) d𝑢

= 1
8

∫
5

1

√
𝑢 d𝑢 = [1

8
⋅ 2
3
𝑢3/2]

5

𝑢=1
= 1

12
(53/2 − 13/2)

= 1
12

(5
√

5 − 1).

And of course ∫2𝜋
𝜃=0

d𝜃 = 2𝜋. Hence the answer

5
√

5 − 1
6

𝜋 .

§49.7 Solution to Exercise 30.2 (Archimedes hat-box theorem)
The area of the cylinder part is straightforward and does not need calculus: it’s a cylinder whose base
has circumference 2𝜋 and which has height 𝑏 − 𝑎, so the surface area is

2𝜋(𝑏 − 𝑎).
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So the main part of the problem is to show that the blue part of the sphere in Figure 69 has the same
surface area.

It’s sufficeint to solve the problem in the case 0 ≤ 𝑎 ≤ 𝑏 ≤ 1. (If 𝑎 and 𝑏 are both negative, then you
can do a reflection argument. And if 𝑎 < 0 < 𝑏, then one should split the surface area at the equator
of the sphere (along 𝑧 = 0) into two parts; then add them together.)

We’ll adopt the calculation in Section 30.3 for our purposes. In that section, we were able to calculate
the surface of the unit hemisphere by viewing the sphere as the level surface of 𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 +
𝑧2 = 1, and using the formula

∇𝑔
𝜕𝑔/𝜕𝑧

= ⟨2𝑥, 2𝑦, 2𝑧⟩
2𝑧

= ⟨𝑥
𝑧
, 𝑦
𝑧
, 1⟩.

to derive that

SurfArea(hemisphere) = ∬
𝑥2+𝑦2≤1

1
√1 − (𝑥2 + 𝑦2)

d𝑥 d𝑦.

For Archimedes hat-box theorem, the integral itself stays the same; the change is that rather than
integrating along the entire 𝑥2 + 𝑦2 ≤ 1 (which would give the surface area of the hemisphere), we
instead integrate along the annulus

1 − 𝑏2 ≤ 𝑥2 + 𝑦2 ≤ 1 − 𝑎2.

Indeed, this is the shadow of the surface area in Figure 69 onto the 𝑥𝑦-plane. (Indeed, the bottom disk
has radius 

√
1 − 𝑎2 and the top disk has radius 

√
1 − 𝑏2.)

Getting back to integration, the surface area we seek for the sphere is thus

𝑆 = ∬
1−𝑏2≤𝑥2+𝑦2≤1−𝑎2

1
√1 − (𝑥2 + 𝑦2)

d𝑥 d𝑦.

Now we just have to redo the calculation in Section 29.2 with only slight modifications. We use polar
coordinates to change this to

𝑆 = ∫
2𝜋

𝜃=0
∫

√
1−𝑎2

𝑟=
√

1−𝑏2

1√
1 − 𝑟2

(𝑟 d𝑟 d𝜃)

= (∫
2𝜋

𝜃=0
d𝜃)(∫

√
1−𝑎2

𝑟=
√

1−𝑏2

𝑟√
1 − 𝑟2

d𝑟).

The left integral is 2𝜋. For the inner integral, use the 𝑢-substitution 𝑢 = 1 − 𝑟2 ⟹ d𝑢
d𝑟 = −2𝑟 to get

∫

√
1−𝑎2

𝑟=
√

1−𝑏2

𝑟√
1 − 𝑟2

d𝑟 = ∫
𝑎2

𝑢=𝑏2

−1
2
𝑢−1

2 d𝑢 = ∫
𝑏2

𝑢=𝑎2

1
2
𝑢−1

2 d𝑢 = [𝑢1
2 ]

𝑏2

𝑢=𝑎2
= 𝑏 − 𝑎.

Thus we get

𝑆 = 2𝜋(𝑏 − 𝑎)

as we needed.
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Chapter 50. Solutions to Part India

§50.1 Solution to Exercise 31.1 (touch grass)

Exercise 31.1.  Take a few deep breaths, touch some grass, and have a nice drink of water, so that
you can look at Figure 75 without feeling fear.

Here’s a picture of moonlight sailing after having to grade the third midterm.

Figure 118: Moonlight sailing after the third midterm.

§50.2 Solution to Exercise 31.2 (print a poster)

Exercise 31.2.  Print out a copy of the high-resolution version of Figure 75 (which can be down-
loaded at https://web.evanchen.cc/textbooks/poster-stokes.pdf) and hang it in your room.

Here’s a picture of a leftover poster taped up in my room.
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Figure 119: Hanging up a poster in my room.

§50.3 Solution to Exercise 32.1 (divergence of gravity)

Exercise 32.1.  Consider the force of gravity 𝐆 exerted by a point mass of mass 𝑚 at a point 𝑂.
Show that

∇ ⋅ 𝐆 = 0

at every point except 𝑂.

Recall that the gravity vector field is given by

𝐆 = ⟨ −𝐺𝑚𝑥
(𝑥2 + 𝑦2 + 𝑧2)

3
2
, −𝐺𝑚𝑦
(𝑥2 + 𝑦2 + 𝑧2)

3
2
, −𝐺𝑚𝑧
(𝑥2 + 𝑦2 + 𝑧2)

3
2
⟩

For brevity, we let 𝜌 = √𝑥2 + 𝑦2 + 𝑧2,

𝐆 = ⟨−𝐺𝑚𝑥
𝜌3 , −𝐺𝑚𝑦

𝜌3 , −𝐺𝑚𝑧
𝜌3 ⟩.

Ignoring the constant factor 𝐺𝑚, we start by calculating the derivative of the first component with
respect to 𝑥, that is:

𝜕
𝜕𝑥

𝑥
𝜌3 .

Using the quotient rule

𝜕
𝜕𝑥

𝑥
𝜌3 =

(𝜌3) 𝜕
𝜕𝑥(𝑥) − 𝑥 𝜕

𝜕𝑥(𝜌3)
(𝜌3)2 .

Since 𝜌3 = (𝑥2 + 𝑦2 + 𝑧2)3/2, the chain rule gives

𝜕
𝜕𝑥

(𝜌3) = 3
2
(𝑥2 + 𝑦2 + 𝑧2)1/2 ⋅ 2𝑥 = 3𝑥𝜌.

Hence, the quotient rule gives
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𝜕
𝜕𝑥

𝑥
𝜌3 = 𝜌3 ⋅ 1 − 𝑥 ⋅ 3𝑥𝜌

𝑟6 = 𝜌2 − 3𝑥2

𝜌5 .

Now the divergence is given by

∇ ⋅ 𝐆 = −𝐺𝑚( 𝜕
𝜕𝑥

𝑥
𝜌3 + 𝜕

𝜕𝑥
𝑦
𝜌3 + 𝜕

𝜕𝑥
𝑧
𝜌3 )

= −𝐺𝑚(𝜌2 − 3𝑥2

𝜌5 + 𝜌2 − 3𝑦2

𝜌5 + 𝜌2 − 3𝑧2

𝜌5 )

= −𝐺𝑚
3𝜌2 − 3(𝑥2 + 𝑦2 + 𝑧2)

𝜌5

= 0

as claimed.

§50.4 Solution to Exercise 33.1 (parabola arc v1)

Exercise 33.1 (Suggested by Ting-Wei Chao).  Let 𝒞 be the oriented closed curve formed by the arc
of the parabola 𝑦 = 𝑥2 − 1 running from (−1, 0) to (1, 0), followed by a line segment from (1, 0)
back to (−1, 0). Let

𝐅(𝑥, 𝑦) = (𝑥2(𝑦 + 1)
(𝑦 + 1)2 ).

Compute ∫
𝒞

𝐅 ⋅ d𝐫 using direct parametrization.

We split 𝒞 into two parts 𝒞1 and 𝒞2 corresponding to the parabola and the segment, respectively. These
are colored red and blue in Figure 120, respectively.

Figure 120: The curve 𝒞 (and the enclosed region).

For 𝒞1, we choose the parametrization

𝐫(𝑡) = (𝑡, 𝑡2 − 1)

for −1 ≤ 𝑡 ≤ 1, so

𝐅(𝐫(𝑡)) = 𝐅(𝑡, 𝑡2 − 1) = (𝑡4
𝑡4) 𝐫′(𝑡) = ( 1

2𝑡).

Then we get
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∫
𝒞1

𝐅 ⋅ d𝐫 = ∫
1

𝑡=−1
(𝑡4

𝑡4) ⋅ ( 1
2𝑡) d𝑡

= ∫
1

𝑡=−1
(𝑡4 + 𝑡4 ⋅ 2𝑡) d𝑡

= [𝑡5

5
+ 1

3
𝑡6]

1

𝑡=−1

= 2
5
.

Next, we parameterize 𝒞2 by (1 − 𝑡, 0) for 0 ≤ 𝑡 ≤ 2. Then

𝐅(𝐫(𝑡)) = 𝐅(1 − 𝑡, 0) = ((1 − 𝑡)2

1 ) 𝐫′(𝑡) = (−1
0 ).

Then

∫
𝒞2

𝐅 ⋅ d𝐫 = ∫
1

𝑡=−1
((1 − 𝑡)2

1 ) ⋅ (−1
0 ) d𝑡

= ∫
2

𝑡=0
−(1 − 𝑡)2 d𝑡

= −2
3
.

Putting this all together we get

∫
𝒞

𝐅 ⋅ d𝐫 = ∫
𝒞1

𝐅 ⋅ d𝐫 + ∫
𝒞2

𝐅 ⋅ d𝐫 = 2
5

− 2
3

= − 4
15

.

§50.5 Solution to Exercise 33.2 (work from 45° angle)

Exercise 33.2.  Let 𝒞 be a curve in ℝ2 from (0, 0) to (2, 3) whose arc length is 7. Let 𝐅 be a vector
field with the property that for any point 𝑃  on the curve,

• 𝐅(𝑃) has magnitude 5;
• 𝐅(𝑃) makes a 45° angle with the tangent vector to 𝒞 at 𝑃  (the tangent vector points along the

direction of 𝒞).

Compute ∫
𝒞

𝐅 ⋅ d𝐫.

Take any parametrization of the curve 𝒞, say from 𝑡 = 0 to 1. The work we seek is then

∫
𝒞

𝐅 ⋅ d𝐫 = ∫
1

𝑡=0
𝐅(𝐫(𝑡)) ⋅ 𝐫′(𝑡) d𝑡.

The point of the problem is that 𝐅(𝐫(𝑡)) is supposed to have magnitude 5 and form a 45° angle with
𝐫′(𝑡). Hence, if we use the geometric definition of the dot product, we get
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∫
𝒞

𝐅 ⋅ d𝐫 = ∫
1

𝑡=0
|𝐅(𝐫(𝑡))| |𝐫′(𝑡)| cos(45°) d𝑡

= ∫
1

𝑡=0
5 |𝐫′(𝑡)| cos(45°) d𝑡

= 5 cos(45°) ∫
1

𝑡=0
|𝐫′(𝑡)| d𝑡.

But that integral is the arc length of 𝒞. So

∫
𝒞

𝐅 ⋅ d𝐫 = 5 cos(45°) ⋅ 7 = 35 cos(45°) = 35
√

2
2

.

§50.6 Solution to Exercise 34.1 (checking conservativeness)

Exercise 34.1.  Is the vector field

𝐅(𝑥, 𝑦) = ( sin(𝑒𝑥)
arctan(𝑦𝜋 + 𝜋𝑦))

conservative?

Yes, because

𝜕
𝜕𝑦

sin(𝑒𝑥) = 0

𝜕
𝜕𝑥

arctan(𝑦𝜋 + 𝜋𝑦) = 0.

In general, the point of this exercise is that every vector field of the form 𝐅(𝑥, 𝑦) =
⟨stuff only involving 𝑥, stuff only involving 𝑦⟩ is always conservative, because the relevant partial
derivatives are both 0.

§50.7 Solution to Exercise 34.2 (work exercise)

Exercise 34.2.  Calculate the line integral

∮
𝒞
(𝑥2 − 𝑦) d𝑥 + (𝑦2 − 𝑥) d𝑦

where 𝒞 is the boundary of the region enclosed by the circle 𝑥2 + 𝑦2 = 4, oriented counterclock-
wise.

The vector field is conservative, because

𝜕
𝜕𝑦

(𝑥2 − 𝑦) = −1 = 𝜕
𝜕𝑥

(𝑦2 − 𝑥).

So the answer is 0. (If you didn’t notice this at first and tried to use Green’s theorem, you should notice
at the moment where the curl turns out to 0.)

§50.8 Solution to Exercise 34.3 (parabola arc v2)
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Exercise 34.3 (Suggested by Ting-Wei Chao).  As in Exercise 33.1, let 𝒞 be the oriented closed curve
formed by the arc of the parabola 𝑦 = 𝑥2 − 1 running from (−1, 0) to (1, 0), followed by a line
segment from (1, 0) back to (−1, 0). Again let

𝐅(𝑥, 𝑦) = (𝑥2(𝑦 + 1)
(𝑦 + 1)2 ).

Compute ∫
𝒞

𝐅 ⋅ d𝐫 this time using Green’s Theorem.

Let 𝑃 = 𝑥2(𝑦 + 1) and 𝑄 = (𝑦 + 1)2. Thus

𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

= 0 − 𝑥2 = −𝑥2.

Let ℛ be the region between 𝑦 = 𝑥2 − 1 and 𝑦 = 0, enclosed by 𝒞. Then ℛ can be described by the
inequalities

−1 ≤ 𝑥 ≤ 1
𝑥2 − 1 ≤ 𝑦 ≤ 0.

See Figure 121.

Figure 121: The curve 𝒞 encloses a region ℛ.

Hence from Green’s theorem, we have

∫
𝒞

𝐅 ⋅ d𝐫 = ∬
ℛ

(𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

) d𝐴

= ∫
1

𝑥=−1
∫

0

𝑦=𝑥2−1
(−𝑥2) d𝑦 d𝑥

= ∫
1

𝑥=−1
𝑥2(𝑥2 − 1) d𝑥

= [𝑥5

5
− 𝑥3

3
]

1

𝑥=−1

= 2
5

− 2
3

= − 4
15

.

§50.9 Solution to Exercise 34.4 (the shoelace formula)

Exercise 34.4 (*) (Shoelace formula).  Let 𝑛 ≥ 3 be an integer and suppose 𝒫 = 𝑃1𝑃2…𝑃𝑛 is a
convex 𝑛-gon in ℝ2, where the vertices 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖) are labeled counterclockwise. Use Green’s
theorem to prove the following formula for the area of 𝒫:
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Area(𝒫) = 1
2

∑
𝑛−1

𝑖=0
(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖).

Here 𝑥0 = 𝑥𝑛 and 𝑦0 = 𝑦𝑛 by convention, so the 𝑖 = 0 summand is 𝑥𝑛𝑦1 − 𝑥1𝑦𝑛.

Green’s theorem states that for a simple closed curve 𝒞 enclosing a region ℛ, we have

∬
ℛ

(𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

) d𝐴 = ∮
𝒞
(𝑃 d𝑥 + 𝑄 d𝑦).

We take 𝒞 as the polygon, oriented counterclockwise, and ℛ as its interior. We will chose the vector
field

𝐅 = (0
𝑥)

so that the 2D scalar curl equals

𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

= 𝜕
𝜕𝑥

(𝑥) − 𝜕
𝜕𝑦

(0) = 1.

Thus, Green’s theorem gives:

Area(𝒫) = ∮
𝒞

𝑥 d𝑦.

Now we evaluate the line integral “manually” across the 𝑛 sides of the polygon. As the boundary 𝒞
consists of the edges 𝑃𝑖𝑃𝑖+1, we sum over each edge:

∮
𝒞

𝑥 d𝑦 = ∑
𝑛−1

𝑖=0
∫

From 𝑃𝑖 to 𝑃𝑖+1

𝑥 d𝑦.

Let’s parametrize the segment joining (𝑥𝑖, 𝑦𝑖) to (𝑥𝑖+1, 𝑦𝑖+1) by just the constant speed parametriza-
tion taking unit time:

𝐫(𝑡) = ⟨(1 − 𝑡)𝑥𝑖 + 𝑡𝑥𝑖+1, (1 − 𝑡)𝑦𝑖 + 𝑡𝑦𝑖+1⟩ 0 ≤ 𝑡 ≤ 1.

Thus,

𝐅(𝐫)(𝑡) = ( 0
(1 − 𝑡)𝑥𝑖 + 𝑡𝑥𝑖+1

)

𝐫′(𝑡) = (𝑥𝑖+1 − 𝑥𝑖
𝑦𝑖+1 − 𝑦𝑖

)

so we are integrating the dot product
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∫
From 𝑃𝑖 to 𝑃𝑖+1

𝑥 d𝑦 = ∫
1

𝑡=0
( 0

(1 − 𝑡)𝑥𝑖 + 𝑡𝑥𝑖+1
) ⋅ (𝑥𝑖+1 − 𝑥𝑖

𝑦𝑖+1 − 𝑦𝑖
) d𝑡

= ∫
1

𝑡=0
((1 − 𝑡)𝑥𝑖 + 𝑡𝑥𝑖+1)(𝑦𝑖+1 − 𝑦𝑖) d𝑡

= (𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖 ∫
1

𝑡=0
(1 − 𝑡) d𝑡 + 𝑥𝑖+1 ∫

1

𝑡=0
𝑡 d𝑡)

= (𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖 ⋅ 1
2

+ 𝑥𝑖+1 ⋅ 1
2
)

= 1
2
(𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖 + 𝑥𝑖+1)

=
𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖

2
+

𝑥𝑖+1𝑦𝑖+1 − 𝑥𝑖𝑦𝑖
2

.

Summing over all edges, the first term is the desired right-hand side, while the second term cancels
since

𝑥1𝑦1 − 𝑥𝑛𝑦𝑛
2

+ 𝑥2𝑦2 − 𝑥1𝑦1
2

+ 𝑥3𝑦3 − 𝑥2𝑦2
2

+ … + 𝑥𝑛𝑦𝑛 − 𝑥𝑛−1𝑦𝑛−1
2

= 0.

In other words,

∑
𝑛−1

𝑖=0
∫

From 𝑃𝑖 to 𝑃𝑖+1

𝑥 d𝑦 = ∑
𝑛−1

𝑖=0
(

𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖
2

+
𝑥𝑖+1𝑦𝑖+1 − 𝑥𝑖𝑦𝑖

2
)

= ∑
𝑛−1

𝑖=0
(

𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖
2

)

and the proof is complete.

§50.10 Solution to Exercise 35.1 (parabola arc v3)

Exercise 35.1 (Suggested by Ting-Wei Chao).  As in Exercise 33.1 and Exercise 34.3, let 𝒞 be the
oriented closed curve formed by the arc of the parabola 𝑦 = 𝑥2 − 1 running from (−1, 0) to (1, 0),
followed by a line segment from (1, 0) back to (−1, 0). Again let

𝐅(𝑥, 𝑦) = (𝑥2(𝑦 + 1)
(𝑦 + 1)2 ).

Compute ∫
𝒞

𝐅 ⋅ 𝐧 d𝑠 using direct parametrization and by using Green’s Theorem for flux.

We can pretty much copy Exercise 33.1 and Exercise 34.3, and just make slight modifications to get the
2D flux instead of the work. See the following figure, which is just a copy of Figure 120 and Figure 121.
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Figure 122: The parabola arc again.

Using direct parametrization

Again we split 𝒞 into two parts 𝒞1 and 𝒞2 corresponding to the parabola and the segment, respectively.

For 𝒞1, we choose the parametrization

𝐫(𝑡) = (𝑡, 𝑡2 − 1)

for −1 ≤ 𝑡 ≤ 1. As we saw in Exercise 33.1, we have

𝐫(𝑡) = (𝑡, 𝑡2 − 1)

for −1 ≤ 𝑡 ≤ 1, so

𝐅(𝐫(𝑡)) = 𝐅(𝑡, 𝑡2 − 1) = (𝑡4
𝑡4) 𝐫′(𝑡) = ( 1

2𝑡).

So rotating 𝐅 as in Section 35.5, we have

∫
𝒞1

𝐅 ⋅ 𝐧 d𝑠 = ∫
1

𝑡=−1
(−𝑡4

𝑡4 ) ⋅ ( 1
2𝑡) d𝑡

= ∫
1

𝑡=−1
(−𝑡4 + 𝑡4 ⋅ 2𝑡) d𝑡

= [−𝑡5

5
+ 1

3
𝑡6]

1

𝑡=−1

= −2
5
.

Next, we parameterize 𝒞2 by (1 − 𝑡, 0) for 0 ≤ 𝑡 ≤ 2. Again, repeating from Exercise 33.1, we have

𝐅(𝐫(𝑡)) = 𝐅(1 − 𝑡, 0) = ((1 − 𝑡)2

1 ) 𝐫′(𝑡) = (−1
0 ).

Rotating 𝐅 as in Section 35.5, we have

∫
𝒞2

𝐅 ⋅ 𝐧 d𝑠 = ∫
1

𝑡=−1
( −1

(1 − 𝑡)2) ⋅ (−1
0 ) d𝑡

= ∫
2

𝑡=0
1 d𝑡

= 2.

Putting this all together we get
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∫
𝒞

𝐅 ⋅ 𝐧 d𝑠 = ∫
𝒞1

𝐅 ⋅ 𝐧 d𝑠 + ∫
𝒞2

𝐅 ⋅ 𝐧 d𝑠 = −2
5

+ 2 = 8
5

.

Using Green’s Theorem

This is similar to Exercise 34.3, and the only change we make is the integrand. Letting 𝑃 = 𝑥2(𝑦 + 1)
and 𝑄 = (𝑦 + 1)2, we consider

𝜕𝑃
𝜕𝑥

+ 𝜕𝑄
𝜕𝑦

= 2𝑥(𝑦 + 1) + 2(𝑦 + 1) = 2(𝑥 + 1)(𝑦 + 1).

Again let ℛ be the region between 𝑦 = 𝑥2 − 1 and 𝑦 = 0, enclosed by 𝒞. The region ℛ hasn’t changed
and is given by

−1 ≤ 𝑥 ≤ 1
𝑥2 − 1 ≤ 𝑦 ≤ 0.

Hence from Green’s theorem, we have

∫
𝒞

𝐅 ⋅ 𝐧 d𝑠 = ∬
ℛ

(𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

) d𝐴

= ∫
1

𝑥=−1
∫

0

𝑦=𝑥2−1
2(𝑥 + 1)(𝑦 + 1) d𝑦 d𝑥

= ∫
1

𝑥=−1
(𝑥 + 1) ∫

0

𝑦=𝑥2−1
2(𝑦 + 1) d𝑦 d𝑥

= ∫
1

𝑥=−1
(𝑥 + 1)(1 − 𝑥4) d𝑥

= ∫
1

𝑥=−1
(−𝑥5 − 𝑥4 + 𝑥 + 1) d𝑥

= [−𝑥6

6
− 𝑥5

5
+ 𝑥2 + 𝑥]

1

𝑥=−1

= 8
5

.

§50.11 Solution to Exercise 35.2 (flux across a triangle)

Exercise 35.2.  Triangle 𝐴𝐵𝐶 has vertices 𝐴 = (−5, 0), 𝐵 = (9, 0), and 𝐶 on the positive 𝑦-axis.
The flux of the vector field

𝐅(𝑥, 𝑦) = (𝑥 + 7𝑦2

𝑥2 + 7𝑦)

across the perimeter of 𝐴𝐵𝐶 , oriented counterclockwise, is 672. Compute the length of the
perimeter of 𝐴𝐵𝐶 .

We are given a triangle 𝐴𝐵𝐶 with vertices:

𝐴 = (−5, 0), 𝐵 = (9, 0), 𝐶 = (0, ℎ),

where 𝐶 is on the positive 𝑦-axis. We’ll find ℎ, after which we can get the length of the perimeter
easily.
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The vector field is:

𝐅(𝑥, 𝑦) = (𝑃 , 𝑄) = (𝑥 + 7𝑦2, 𝑥2 + 7𝑦).

Let 𝒞 be the boundary of that triangle. Green’s theorem gives

672 = ∮
𝒞

𝐅 ⋅ 𝐧 d𝑠 = ∬
ℛ

(𝜕𝑄
𝜕𝑥

− 𝜕𝑃
𝜕𝑦

) d𝐴.

Computing partial derivatives:

𝜕𝑃
𝜕𝑥

= 𝜕
𝜕𝑥

(𝑥 + 7𝑦2) = 1,

𝜕𝑄
𝜕𝑦

= 𝜕
𝜕𝑦

(𝑥2 + 7𝑦) = 7.

Thus, the divergence is:

∇ ⋅ 𝐅 = 𝜕𝑃
𝜕𝑥

+ 𝜕𝑄
𝜕𝑦

= 1 + 7 = 8.

Hence, we get

672 = ∬
ℛ

8 d𝐴 = 8 Area(ℛ).

But the area of a triangle is:

Area(△ 𝐴𝐵𝐶) = 1
2

⋅ base ⋅ height = 1
2

⋅ 14 ⋅ ℎ = 7ℎ.

Substituting this into the integral equation:

8 ⋅ 7ℎ = 672.

Solving for ℎ:

56ℎ = 672 ⟹ ℎ = 672
56

= 12.

Hence, we know 𝐶 = (0, 12).

We can then get the perimeter by computing all the side lengths:

𝐴𝐵 = |9 − (−5)| = 14

𝐵𝐶 = √(9 − 0)2 + (0 − 12)2 =
√

81 + 144 =
√

225 = 15

𝐶𝐴 = √(0 − (−5))2 + (12 − 0)2 =
√

25 + 144 =
√

169 = 13.

Thus, the perimeter is: 14 + 15 + 13 = 42 .

§50.12 Solution to Exercise 37.1 (return of the butterfly)

Exercise 37.1.  Another butterfly is fluttering in the 𝑥𝑦 plane with position 𝐫(𝑡) = ⟨sin(𝑡), sin(𝑡)⟩.
Let 𝒞 denote its trajectory between 0 ≤ 𝑡 ≤ 2𝜋. Compute ∫

𝒞
(𝑥 d𝑥) and ∫

𝒞
(𝑦 d𝑥).

Note the butterfly starts at 𝐫(0) = (0, 0) and ends at 𝐫(2𝜋) = (0, 0) as well.
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The short solution to both parts

The answer is 0  regardless of the vector field 𝐅! Two ways to see this.
• This follows by Green’s theorem, because the trajectory 𝐫 cuts a degenerate parallelogram of

area zero.
• The butterfly is tracing its own path in reverse, so the part from 0 ≤ 𝑡 ≤ 𝜋

2  cancels 𝜋
2 ≤ 𝑡 ≤ 𝜋

while the part from 𝜋 ≤ 𝑡 ≤ 3
2𝜋 cancels 32𝜋 ≤ 𝑡 ≤ 2𝜋.

Another short way for the first vector field

The first integral is of the conservative vector field 𝐅 = (𝑥
0), because its 2D scalar curl is 0 − 0 = 0. So

the fundamental theorem of calculus also implies the answer is 0, because the path is a loop. (If 𝑓  is a
potential function, then the answer should be 𝑓(0, 0) − 𝑓(0, 0) = 0. You could compute the potential
function 𝑓(𝑥, 𝑦) = 𝑥2

2 + 𝐶 if you want, but it’s not needed.)

The long way for the second non-conservative field

In the second part, 𝐅 = (𝑦
0) is not conservative. Let’s say you didn’t come up with the idea in the slick

solution. Then you could still compute the integral manually by taking

𝐫′(𝑡) = ⟨cos(𝑡), cos(𝑡)⟩

so the line integral is given by

∫
2𝜋

𝑡=0
𝐅(sin(𝑡), sin(𝑡)) ⋅ 𝐫′(𝑡) d𝑡 = ∫

2𝜋

𝑡=0
sin(𝑡) cos(𝑡) d𝑡.

This integral is 0; here are many ways to evaluate it.

1. Notice this is actually the same trig integral you got if you evaluated for the first line integral
manually as well, so the answer should be the same, namely 0.

2. Notice the contribution from 𝑡 and 𝑡 + 𝜋 cancel for 0 ≤ 𝑡 ≤ 𝜋.
3. Another way to evaluate the integral is via the 𝑢-substitution 𝑢 = sin(𝑡), where d𝑢 = cos(𝑡) d𝑡:

∫
2𝜋

𝑡=0
sin(𝑡) cos(𝑡) d𝑡 = ∫

𝑢= sin(2𝜋)

𝑢= sin(0)
𝑢 d𝑢 = ∫

0

0
𝑢 d𝑢 = 0.

4. Another way is to use the trig substitution

∫
2𝜋

𝑡=0
sin(𝑡) cos(𝑡) d𝑡 = ∫

2𝜋

𝑡=0

sin(2𝑡)
2

d𝑡 = [−cos(2𝑡)
4

]
2𝜋

𝑡=0
= 0.

5. If you are allergic to trig functions, a fifth approach is to remember that line integrals don’t depend
on the exact parametrization. So rather than using 𝐫(𝑡) = ⟨sin(𝑡), sin(𝑡)⟩, you could imagine
cutting the butterfly’s motion into three constant-velocity trajectories:

• 𝐫1(𝑡) = (𝑡, 𝑡) for 0 ≤ 𝑡 ≤ 1
• 𝐫2(𝑡) = (1 − 𝑡, 1 − 𝑡) for 0 ≤ 𝑡 ≤ 2
• 𝐫3(𝑡) = (𝑡 − 1, 𝑡 − 1) for 0 ≤ 𝑡 ≤ 1.

If you compute the three line integrals, the sum will also be zero.

§50.13 Solution to Exercise 37.2 (standard work and flux)

Exercise 37.2.  Let 𝒞 denote the unit circle 𝑥2 + 𝑦2 = 1 oriented counterclockwise, and consider
the vector field 𝐅(𝑥, 𝑦) = ⟨𝑥 + 2𝑦, 4𝑥 + 8𝑦⟩. Compute ∫

𝒞
𝐅 ⋅ d𝐫 and ∫

𝒞
𝐅 ⋅ 𝐧 d𝑠.
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This is a cookie-cutter application of Green’s theorem (both forms).

For the line integral, use Green’s theorem with 2D scalar curl:

∫
𝒞

𝐅 ⋅ d𝐫 = ∬
𝑥2+𝑦2≤1

( 𝜕
𝜕𝑥

(4𝑥 + 8𝑦) − 𝜕
𝜕𝑦

(𝑥 + 2𝑦)) d𝐴

= ∬
𝑥2+𝑦2≤1

(4 − 2) d𝐴

= 2 ∬
𝑥2+𝑦2≤1

d𝐴

= 2𝜋 .

For the flux, use Green’s theorem with divergence:

∫
𝒞

𝐅 ⋅ 𝐧 d𝑠 = ∬
𝑥2+𝑦2≤1

∇ ⋅ 𝐅 d𝐴

= ∬
𝑥2+𝑦2≤1

( 𝜕
𝜕𝑥

(𝑥 + 2𝑦) + 𝜕
𝜕𝑦

(4𝑥 + 8𝑦)) d𝐴

= ∬
𝑥2+𝑦2≤1

(1 + 8) d𝐴

= 9 ∬
𝑥2+𝑦2≤1

d𝐴

= 9𝜋 .

§50.14 Solution to Exercise 37.3 (region with area 𝜋)

Exercise 37.3.  Compute all real numbers 𝑘 for which the following region has area 𝜋:

(𝑘𝑥 + 𝑦)2 + (𝑥 + 𝑘𝑦)2 ≤ 1
4
.

Let ℛ denote the region in the problem. This is a change of variables problem where

𝑢 = 𝑥 + 𝑘𝑦
𝑣 = 𝑘𝑥 + 𝑦

changes ℛ into the disk 𝑢2 + 𝑣2 ≤ 1
4  of radius 12 .

Let 𝐓 denote the corresponding map (𝑢, 𝑣) ↦ (𝑥, 𝑦). Compute the inverse of the Jacobian

𝐽𝐓−1 =
(
((

𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑥

𝜕𝑢
𝜕𝑦
𝜕𝑣
𝜕𝑦)

)) = (1
𝑘

𝑘
1).

So

det 𝐽𝐓 = 1
|1𝑘

𝑘
1|

= 1
1 − 𝑘2 .

Now, the problem condition tells us
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𝜋 = ∬
ℛ

d𝑥 d𝑦 = ∬
𝑢2+𝑣2≤1

4

| 1
1 − 𝑘2 | d𝑢 d𝑣 = | 1

1 − 𝑘2 | ∬
𝑢2+𝑣2≤1

4

d𝑢 d𝑣 = | 1
1 − 𝑘2 | ⋅ 𝜋

4
.

So the equation we are trying to solve is

𝜋 = | 1
1 − 𝑘2 | ⋅ 𝜋

4
⟺ 𝑘2 − 1 = ±1

4
⟺ 𝑘2 = 3

4
 or 𝑘2 = 5

4
.

Hence the answers are

𝑘 = ±
√

3
2

 or ±
√

5
2

.

§50.15 Solution to Exercise 37.4 (center of mass of wedge)

Exercise 37.4.  Compute the center of mass of the region where 𝑦 ≥ 0 and 3𝑥2 ≤ 𝑦2 ≤ 9 − 𝑥2,
assuming constant density.

First, we sketch the region. The condition 𝑥2 + 𝑦2 ≤ 9 represents a circle of radius 3 centered at the
origin. The inequality 𝑦 ≥ 0 and 𝑦 ≥

√
3|𝑥| cuts out a wedge covering the top half of the circle within

the angle range 𝜋3 ≤ 𝜃 ≤ 2𝜋
3  in polar coordinates. See Figure 123.

Switching to polar coordinates, the region in polar coordinates is bounded by:
• 0 ≤ 𝑟 ≤ 3 (radius of the circle),
• 𝜋

3 ≤ 𝜃 ≤ 2𝜋
3  (angular bounds determined by 𝑦 =

√
3𝑥 and 𝑦 = −

√
3𝑥).

The coordinates of the center of mass are then given by:

̅𝑥 = 1
Area(ℛ)

∬
ℛ

𝑥 d𝐴, ̅𝑦 = 1
Area(ℛ)

∬
ℛ

𝑦 d𝐴.

• The area can computed by noticing the region is one-sixth of the area of the full circle:

Area(ℛ) = 1
6

⋅ (32 ⋅ 𝜋) = 3𝜋
2

.

• We have ̅𝑥 = 0 by symmetry around the 𝑦-axis.
• We need to compute ̅𝑦. Use 𝑦 = 𝑟 sin 𝜃:

̅𝑦 = ∬
ℛ

𝑦 d𝐴 = ∫
2𝜋
3

𝜃=𝜋
3

∫
3

𝑟=0
𝑟 sin 𝜃 ⋅ 𝑟 d𝑟 d𝜃 = ∫

2𝜋
3

𝜃=𝜋
3

sin 𝜃 ∫
3

𝑟=0
𝑟2 d𝑟 d𝜃.

First, we compute

∫
3

𝑟=0
𝑟2 d𝑟 = [𝑟3

3
]

3

𝑟=0

= 27
3

= 9.

Hence ̅𝑦 = ∬
ℛ

𝑦 d𝐴 = 9 ∫
2𝜋
3

𝜃=𝜋
3

sin 𝜃 d𝜃. Integrate sin 𝜃 with respect to 𝜃:

∫
2𝜋
3

𝜃=𝜋
3

sin 𝜃 d𝜃 = −[cos 𝜃]
2𝜋
3

𝜃=𝜋
3

= − cos(2𝜋
3

) + cos(𝜋
3
) = −(−1

2
) + 1

2
= 1.

Thus, ∬
ℛ

𝑦 d𝐴 = 9 ⋅ 1 = 9, and so
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̅𝑦 = 1
Area(ℛ)

∬
ℛ

𝑦 d𝐴 = 9
3𝜋
2

= 6
𝜋

.

In conclusion, the center of mass is given by

( ̅𝑥, ̅𝑦) = (0, 6
𝜋

) .

Digression: the long way for area

If you don’t want to do geometry, you can manually compute Area(ℛ) by the definition
Area(ℛ) = ∫

2𝜋
3

𝜃=𝜋
3

∫3
𝑟=0

𝑟 d𝑟 d𝜃. First, integrate with respect to 𝑟:

∫
3

𝑟=0
𝑟 d𝑟 = [𝑟2

2
]

3

𝑟=0

= 9
2
.

Then, integrate with respect to 𝜃:

𝐴 = ∫
2𝜋
3

𝜃=𝜋
3

9
2

d𝜃 = 9
2
(2𝜋

3
− 𝜋

3
) = 9

2
⋅ 𝜋
3

= 3𝜋
2

.

Figure 123: It’s a one-sixth slice of a pizza or something.
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Digression: the long way for 𝑥

For comparison, we show what happens if you didn’t notice the symmetry and proceed to
integrate. In polar coordinates, 𝑥 = 𝑟 cos 𝜃 and d𝐴 = 𝑟 d𝑟 d𝜃. So:

∬
ℛ

𝑥 d𝐴 = ∫
3

𝑟=0
∫

2𝜋
3

𝜃=𝜋
3

𝑟 cos 𝜃 ⋅ 𝑟 d𝑟 d𝜃 = ∫
3

𝑟=0
𝑟2 ∫

2𝜋
3

𝜃=𝜋
3

cos 𝜃 d𝜃 d𝑟.

However, the inner integral is

∫
2𝜋
3

𝜃=𝜋
3

cos 𝜃 d𝜃 = [sin 𝜃]
2𝜋
3

𝜃=𝜋
3

= sin(2𝜋
3

) − sin(𝜋
3
) =

√
3

2
−

√
3

2
= 0.

So the whole thing is 0.

§50.16 Solution to Exercise 37.5 (recovering ℎ)

Exercise 37.5.  Let 𝒞 denote any path from (0, 0) to (𝜋, 𝜋). Determine the unique function ℎ(𝑥) for
which 𝐅(𝑥, 𝑦) = ⟨𝑥𝑦 + cos(𝑥), ℎ(𝑥) + cos(𝑦)⟩ is conservative, and moreover ∫

𝒞
𝐅 ⋅ d𝐫 = 0.

Because 𝐅 is conservative, we know the following two partial derivatives must be equal:

𝜕
𝜕𝑦

(𝑥𝑦 + cos(𝑥)) = 𝑥

𝜕
𝜕𝑥

(ℎ(𝑥) + cos(𝑦)) = ℎ′(𝑥).

From ℎ′(𝑥) = 𝑥 we deduce

ℎ(𝑥) = 𝑥2

2
+ 𝐶

for some constant 𝐶 .

So we almost know ℎ, except we need to use the last piece of information to find 𝐶 . First, recover a
potential function for 𝐅 in terms of 𝐶 :

𝑓(𝑥, 𝑦) = 1
2
𝑥2𝑦 + sin(𝑥) + sin(𝑦) + 𝐶𝑦 + 𝐶′

for some constant 𝐶′ (which is irrelevant). Then use the fundamental theorem calculus for line
integrals:

∫
𝒞

𝐅 ⋅ d𝐫 = 𝑓(𝜋, 𝜋) − 𝑓(0, 0)

⟹ 0 = (𝜋3

2
+ 𝐶𝜋 + 𝐶′) − 𝐶′ ⟹ 𝐶 = −𝜋2

2
.

Thus we’ve completely recovered the function ℎ:
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ℎ(𝑥) = 𝑥2

2
− 𝜋2

2
.

§50.17 Solution to Exercise 37.6 (integrating log(
√

𝑥 + 1))

Exercise 37.6.  Assume log is base 𝑒 ≈ 2.718. Use any method you want to compute

∫
(𝑒−1)2

𝑥=0
log(

√
𝑥 + 1) d𝑥.

Recommended approach: view the integral as the area under a curve, then switch from vertical to
horizontal slicing.

At face value, this looks like an 18.01 integral, but we know from 18.01 that this integral is actually
measuring the area under some curve; we denote that region by ℛ, shaded in blue below. The idea is
that, to avoid having to deal with log and square root, we are going to use horizontal slicing for the
region under the curve shown in the figure.

Figure 124: The region 𝑦 ≤ log(
√

𝑥 + 1) for 0 ≤ 𝑥 ≤ (𝑒 − 1)2.

The point is to now rewrite

𝑦 ≤ log(
√

𝑥 + 1) ⟺ 𝑒𝑦 − 1 ≤
√

𝑥 ⟺ 𝑥 ≥ (𝑒𝑦 − 1)2.

Hence, we could equally well rewrite the shaded blue region ℛ as:

0 ≤ 𝑦 ≤ 1  and 𝑥 ≥ (𝑒𝑦 − 1)2.

Writing this as a double integral gives
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Area(ℛ) = ∫
1

𝑦=0
∫

(𝑒−1)2

𝑥=(𝑒𝑦−1)2
d𝑥 d𝑦 = ∫

1

𝑦=0
((𝑒 − 1)2 − (𝑒𝑦 − 1)2) d𝑦

= 𝑒2 − 2𝑒 − ∫
1

𝑦=0
(𝑒2𝑦 − 2𝑒𝑦) d𝑦 = 𝑒2 − 2𝑒 − [𝑒2𝑦

2
− 2𝑒𝑦]

1

𝑦=0

= 𝑒2 − 2𝑒 − (𝑒2

2
− 2𝑒) − (1

2
− 2) = 𝑒2 − 3

2
.

Remark

It is also possible to calculate an antiderivative of log(
√

𝑥 + 1) directly by using integration by
parts and 𝑢-substitution, but this process is time-consuming. The anti-derivative turns out to
equal −𝑥

2 +
√

𝑥 + (𝑥 − 1) log(
√

𝑥 + 1) + 𝐶 .
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Chapter 51. Solutions to Part Juliett

§51.1 Solution to Exercise 38.1 (flux through a surface)

Exercise 38.1.  Calculate the flux of the vector field

𝐅(𝑥, 𝑦, 𝑧) = ⟨𝑥
3
, 𝑦
4
, 1
5
⟩

across the portion of the surface defined by

𝑥3 + 𝑦4 = 𝑒𝑧, 0 ≤ 𝑥 ≤ 5, 0 ≤ 𝑦 ≤ 5

where the normal vector is oriented upwards.

We parametrize the surface by 𝐫(𝑥, 𝑦) = ⟨𝑥, 𝑦, log(𝑥3 + 𝑦4)⟩. Rather than deal with log, we use the
second row of Table 23 and define the function

𝑔(𝑥, 𝑦, 𝑧) = 𝑥3 + 𝑦4 − 𝑒𝑧.

The surface is given implicitly by 𝑔(𝑥, 𝑦, 𝑧) = 0, so we compute its gradient:

∇𝑔 = ⟨𝜕𝑔
𝜕𝑥

, 𝜕𝑔
𝜕𝑦

, 𝜕𝑔
𝜕𝑧

⟩ = (3𝑥2, 4𝑦3, −𝑒𝑧).

Hence,

𝜕𝐫
𝜕𝑥

× 𝜕𝐫
𝜕𝑦

= ∇𝑔
𝜕𝑔
𝜕𝑧

= ⟨3𝑥2, 4𝑦3, −𝑒𝑧⟩
−𝑒𝑧 =

(
((
(−3𝑥2𝑒−𝑧

−4𝑦3𝑒−𝑧

1 )
))
).

This normal vector is oriented upwards because its 𝑧-component is positive, so we take this as our
𝐧 d𝑆.

Hence, the flux of 𝐅 through 𝑆 is given by

∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = ∫
5

𝑥=0
∫

5

𝑦=0
(
((
((

𝑥
3𝑦
4
1
5)
))
)) ⋅

(
((
(−3𝑥2𝑒−𝑧

−4𝑦3𝑒−𝑧

1 )
))
) d𝑦 d𝑥

= ∫
5

𝑥=0
∫

5

𝑦=0
(𝑥3 + 𝑦4

𝑒𝑧 + 1
5
) d𝑦 d𝑥

= ∫
5

𝑥=0
∫

5

𝑦=0
(−𝑒𝑧

𝑒𝑧 + 1
5
) d𝑦 d𝑥

= ∫
5

𝑥=0
∫

5

𝑦=0
−4

5
d𝑦 d𝑥

= 25 ⋅ −4
5

= −20 .

§51.2 Solution to Exercise 39.1 (sealing a surface)
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Exercise 39.1.  Let 𝒮 be the part of the surface 𝑧 = 𝑒𝑥2+𝑦2  where 𝑧 ≤ 𝑒, with normal vector oriented
downwards. Let 𝐅(𝑥, 𝑦, 𝑧) = ⟨cos(𝑧2) − 𝑥, sin(𝑧2) − 𝑦, 2𝑧⟩. Compute the flux of 𝐅 through 𝒮.
(Recommended approach: sealing.)

The divergence of 𝐅 is

∇ ⋅ 𝐅 = 𝜕
𝜕𝑥

(cos(𝑧2) − 𝑥) + 𝜕
𝜕𝑦

(sin(𝑧2) − 𝑦) + 𝜕
𝜕𝑧

(2𝑧) = (−1) + (−1) + 2 = 0.

We seal the region 𝒮 by adding 𝒮lid, the surface of points with 𝑧 = 𝑒 and 𝑥2 + 𝑦2 ≤ 1. This encloses a
closed volume 𝒯. We orient the normal vector pointing upward (away from 𝒯). Note 𝒮 also has normal
vector pointing away from 𝒯.

The divergence theorem on 𝒮 and 𝒮lid, enclosing 𝒯, now gives

∬
𝒮

𝐅 ⋅ d𝐒 + ∬
𝒮lid

𝐅 ⋅ d𝐒 = ∭
𝒯

∇ ⋅ 𝐅 d𝑉 = 0.

Thus, we compute the flux through the disk and use it to determine the flux through 𝒮.

We can take 𝐧 d𝑆 = ⟨0, 0, 1⟩ for the flat surface 𝒮lid, so

∬
𝒮lid

𝐅 ⋅ d𝐒 = ∬
𝒮lid

𝐅 ⋅ ⟨0, 0, 1⟩ d𝐴 = ∬
𝒮lid

2𝑧 d𝐴

= ∬
𝑥2+𝑦2≤1

2𝑒 d𝐴

= 2𝑒 Area(𝑥2 + 𝑦2 ≤ 1) = 2𝑒𝜋.

Hence the answer:

∬
𝒮

𝐅 ⋅ d𝐒 = − ∬
𝒮lid

𝐅 ⋅ d𝐒 = −2𝜋𝑒 .

§51.3 Solution to Exercise 39.2 (gravity)

Exercise 39.2.  Suppose 𝒮1 and 𝒮2 are two closed surfaces that don’t intersect and such that 𝒮2 is
contained inside 𝒮1. Orient both surfaces outwards. Let 𝑂 be a point contained inside 𝒮2. Consider
the force of gravity 𝐆 exerted by a point mass of mass 𝑚 at 𝑂. Show that

∯
𝒮1

𝐆 ⋅ 𝐧 d𝑆 = ∯
𝒮2

𝐆 ⋅ 𝐧 d𝑆.

This basically follows from Exercise  32.1 which told us 𝐆 has divergence 0. See the cartoon in
Figure 125.

We consider the solid volume 𝒯 contained between 𝒮1 and 𝒮2. Since 𝒮2 has normal vector oriented
toward 𝒯 while 𝒮1 has normal vector oriented away from 𝒯, the divergence theorem says that

∬
𝒮2

𝐆 ⋅ 𝐧 d𝑆 − ∬
𝒮1

𝐆 ⋅ 𝐧 d𝑆 = ∭
𝒯

∇ ⋅ 𝐆 d𝑉 .
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Figure 125: Cartoon of Exercise 39.2.

However, 𝒯 does not contain the point 𝑂. Therefore, applying Exercise 32.1, we have

∭
𝒯

∇ ⋅ 𝐆 d𝑉 = ∭
𝒯

0 d𝑉 = 0.

The proof is complete.

§51.4 Solution to Exercise 39.3 (divergence to Green for flux)

Exercise 39.3 (*).  Prove Green’s theorem for flux by quoting the divergence theorem.

That is, suppose 𝐅 = (𝑝
𝑞) is a vector field in ℝ2 and 𝒞 is a closed loop enclosing a region ℛ

counterclockwise. Find a way to use the divergence theorem to prove

∮
𝒞

𝐅 ⋅ 𝐧 d𝐬 = ∬
ℛ

(𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

) d𝐴.

This is covered in Section 20.2 of Poonen’s notes. We give the same solution here.

Instead of working in two dimensions, we extend ℛ into a three-dimensional region 𝒯 that consists
of a slab of height 1:

𝒯 = {(𝑥, 𝑦, 𝑧) ∣ (𝑥, 𝑦) in ℛ, 0 ≤ 𝑧 ≤ 1}.

To put this in words, imagine if we had one of those cool printers that schools use that can make a
stack of hundreds of copies of the same image in a moment. Then we print a bunch of copies of ℛ
until the stack of photocopies has height 1; then 𝒯 denotes the part of the papers that has ink within
it. See Figure 126.

Now the boundary of 𝒯 consists of three parts in its surface:

• The top lid 𝒮top, which looks like a copy of ℛ at height 𝑧 = 1.
• The bottom lid 𝒮bottom, which looks like a copy of ℛ at height 𝑧 = 0;
• The curved part 𝒮 which look like walls of 𝒯.

We orient all three away from 𝒯.
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Figure 126: We make a stack of copies of ℛ of height 1. This produces a solid
volume 𝒯.

Next, we define a new three-dimensional vector field based on our 2D field 𝐅:

𝐅∗ = ⟨𝑝, 𝑞, 0⟩.

The divergence of 𝐅∗ is:

∇ ⋅ 𝐅∗ = 𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

.

Applying the divergence theorem to 𝒯, we obtain:

∬
𝒮top

𝐅∗ ⋅ 𝐧 d𝑆 + ∬
𝒮bottom

𝐅∗ ⋅ 𝐧 d𝑆 + ∬
𝒮

𝐅∗ ⋅ 𝐧 d𝑆 = ∭
𝒯

∇ ⋅ 𝐅∗ d𝑉 .

Since 𝒯 has height 1, the volume integral simplifies to:

∭
𝒯

∇ ⋅ 𝐅∗ d𝑉 = ∫
1

𝑧=0
∬

ℛ
(𝜕𝑝

𝜕𝑥
+ 𝜕𝑞

𝜕𝑦
) d𝐴 d𝑧

= ∬
ℛ

(𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

) d𝐴.

Now let’s look at the three parts of the boundary of 𝒯:

• On the top face at 𝑧 = 1, the outward normal is 𝐧 = ⟨0, 0, 1⟩, and since 𝐅∗ = ⟨𝑝, 𝑞, 0⟩, we have:

𝐅∗ ⋅ ⟨0, 0, 1⟩ = 0.

Thus, there is no contribution from the top face.
• Similarly the bottom face 𝑧 = 0 gives no contribution.
• The vertical sidewalls project exactly onto 𝒞, the boundary of ℛ. The normal to these walls is

𝐧 in the 𝑥𝑦-plane, so the surface element is 𝐧 d𝑆 = 𝐧 d𝑠 d𝑧. The flux contribution from these
sidewalls is:

∮
𝒞

∫
1

𝑧=0
𝐅∗ ⋅ 𝐧 d𝑧 d𝑠.
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Since 𝐅∗ does not depend on 𝑧, this simplifies to:

∮
𝒞

𝐅 ⋅ 𝐧 d𝑠.

Putting this all together we get

∮
𝒞

𝐅 ⋅ 𝐧 d𝑠 = ∬
ℛ

(𝜕𝑝
𝜕𝑥

+ 𝜕𝑞
𝜕𝑦

) d𝐴.

This completes the proof of Green’s theorem for flux using the divergence theorem.

§51.5 Solution to Exercise 40.1 (Stokes to Green for work)

Exercise 40.1.  Prove Green’s theorem for work by quoting classical Stokes’ theorem.

That is, suppose 𝐅 = (𝑝
𝑞) is a vector field in ℝ2 and 𝒞 is a closed loop enclosing a region ℛ

counterclockwise. Find a way to use classical Stokes’ theorem to prove

∮
𝒞

𝐅 ⋅ d𝐫 = ∬
ℛ

(𝜕𝑞
𝜕𝑥

− 𝜕𝑝
𝜕𝑦

) d𝐴.

This is covered in Section 20.1 of Poonen’s notes. It’s actually easier than Exercise 39.3, because one
doesn’t need to print a whole bunch of copies of ℛ — just one.

Specifically, we’ll just take a single copy of 𝒞 on the plane 𝑧 = 0. That’s all — it’s completely flat. Then
we take our surface 𝒮 to be just the flat ℛ, again, still contained in 𝑧 = 0. And we take the force field
to be

𝐅∗ = ⟨𝑝, 𝑞, 0⟩

as before.

The classical Stokes’ theorem now states that for a surface 𝒮 with boundary 𝒞,

∮
𝒞

𝐅∗ ⋅ d𝐫 = ∬
𝒮

∇ × 𝐅∗ ⋅ 𝐧 d𝑆.

The left-hand side is the same as ∮
𝒞

𝐅 ⋅ 𝐫 in 2D: the work doesn’t change if we add an extra dimension.
So we just evaluate the curl on the right-hand side:

∇ × 𝐅∗ =

|
|
|
|𝐞1

𝜕
𝜕𝑥
𝑝

𝐞2
𝜕
𝜕𝑦
𝑞

𝐞3
𝜕
𝜕𝑧
0 |

|
|
|
=

(
((
((

0
0

𝜕𝑞
𝜕𝑥 − 𝜕𝑝

𝜕𝑦)
))
)).

As the surface 𝒮 lies in the plane 𝑧 = 0, so the unit normal to 𝒮 is 𝐧 = ⟨0, 0, 1⟩. So, the dot product is

(∇ × 𝐅∗) ⋅ 𝐧 =

(
((
((

0
0

𝜕𝑞
𝜕𝑥 − 𝜕𝑝

𝜕𝑦)
))
)) ⋅

(
((
(0

0
1)
))
) = 𝜕𝑞

𝜕𝑥
− 𝜕𝑝

𝜕𝑦
.

Plugging this into the right-hand side of our Stokes’ theorem application ends the proof.
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Chapter 52. Solutions to Part Kilo
Right now we only have solutions to the “mock half-final” here. (If you want to submit a pull request
for the remaining problems, you’d be welcome to.)

§52.1 Solution to Exercise 41.1 (cube roots)

Exercise 41.1.  Give an example of a complex number 𝑧 whose real and imaginary part are both
negative such that 𝑧3 = −1000𝑖. Write your answer in rectangular form.

We’ll just find all the answers to 𝑧3 = −1000𝑖 as in Section 10.5 and then identify the relevant one. In
polar form, write

𝑧3 = −1000𝑖 = 1000 ⋅ (cos 270° + 𝑖 sin 270°).

Take the cube roots with the standard recipe: the magnitudes should be 3
√

1000 = 10 and the argu-
ments should start from 270°

3 = 90° and be spaced 120° apart. That is, the three cube roots should be

𝑧1 = 10(cos 90° + 𝑖 sin 90°)
𝑧2 = 10(cos 210° + 𝑖 sin 210°)
𝑧3 = 10(cos 330° + 𝑖 sin 330°).

Of these three answers, we want the one whose real and imaginary part are both negative. Only 𝑧2
works; in rectangular form it is

𝑧2 = 10(−
√

3
2

− 𝑖1
2
) = −5

√
3 − 5𝑖

(and this is the only possible example).

§52.2 Solution to Exercise 41.2 (one of two eigenvalues)

Exercise 41.2.  Compute the unique real number 𝑎 for which the matrix 𝑀 = (1
𝑎

1
6) has an eigen-

value of 2. For this value of 𝑎, compute the other eigenvalue of 𝑀 , and a (nonzero) eigenvector for
that eigenvalue.

Solution with bare-hands

Given that 2 is an eigenvalue of 𝑀 , we should have det(𝑀 − 2𝐼) = 0. Write

0 = det(𝑀 − 2𝐼) = |1 − 2
𝑎

1
6 − 2| = |−1

𝑎
1
4| = −4 − 𝑎 ⟹ 𝑎 = −4 .

Now let’s go back to the characteristic polynomial again. The eigenvalues are those 𝜆 such that

0 = |1 − 𝜆
−4

1
6 − 𝜆| = (1 − 𝜆)(6 − 𝜆) + 4 = 𝜆2 − 7𝜆 + 10.

We know that 𝜆 = 2 is one root of the quadratic; the other one is 𝜆 = 5 .

To get the eigenvector, write (𝑥
𝑦) so that we need

𝑀(𝑥
𝑦) = 5(𝑥

𝑦) ⟹ {(1 − 5)𝑥 + 𝑦 = 0
−4 + (6 − 5)𝑦 = 0 ⟹ 𝑦 = 4𝑥.
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So an eigenvector for 5 is (1
4)  (or any nonzero multiple of it).

Solution using trace and determinant shortcut

Let 𝜆2 be the other eigenvalue. If you happen to remember that the trace is the sum of the eigenvalues
while the determinant was the product of the eigenvalues (Section 9.7), then this question can be done
even more quickly:

𝜆2 + 2 = Trace 𝑀 = 1 + 6

𝜆2 ⋅ 2 = det 𝑀 = |1𝑎
1
6| = 6 − 𝑎.

The first equation implies 𝜆2 = 5; then the second implies 𝑎 = −4. The eigenvector is then recovered
in the same way as the first solution.

§52.3 Solution to Exercise 41.3 (plane)

Exercise 41.3.  The four points (𝑏, 0, 0), (0, 𝑏, 0), (0, 0, 𝑏), and (2, 3, 6) lie on a plane 𝒫. Compute 𝑏,
and compute the distance from (1, 2, 3) to 𝒫.

We start by determining the equation of the plane through 𝑃1 = (𝑏, 0, 0), 𝑃2 = (0, 𝑏, 0) and 𝑃3 =
(0, 0, 𝑏). You might be able to guess the equation just by looking, but if you didn’t see it, you could
also use the cross product

(𝑃2 − 𝑃1) × (𝑃3 − 𝑃1) =
(
((
(−𝑏

𝑏
0 )

))
) ×

(
((
(−𝑏

0
𝑏 )

))
) =

(
((
(𝑏2

𝑏2

𝑏2
)
))
) = 𝑏2

(
((
(1

1
1)
))
).

Therefore, (
1
1
1
) is a normal vector to the plane, so the plane’s equation should be 𝑥 + 𝑦 + 𝑧 = const.

The plane should pass through (𝑏, 0, 0) and so on; hence the plane’s equation is

𝑥 + 𝑦 + 𝑧 = 𝑏.

In order for this to also pass through (2, 3, 6), we need 𝑏 = 2 + 3 + 6 = 11 .

It remains to calculate the distance from (0, 0, 0) to the plane 𝑥 + 𝑦 + 𝑧 = 11. If you use the point-to-
plane formula (Section 5.6) for this, you get

|1 + 2 + 3 − 11|√
12 + 12 + 12

=
5√
3

.

If you didn’t remember this formula, you should instead compute the length of the projection of the
vector 𝐯 = (1, 2, 3) − (2, 3, 6) = ⟨−1, −1, −3⟩ (you can replace (2, 3, 6) with any other point on the
plane, like (0, 0, 11) or similar) along the direction of 𝐧 = ⟨1, 1, 1⟩. Doing this by hand gives

𝐯 ⋅ 𝐧
|𝐧|

= ⟨−1, −1, −3⟩ ⋅ ⟨1, 1, 1⟩√
3

= − 5√
3

like before, although as I’ve described before, we’re really just repeating the proof of the point-to-
plane formula.
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§52.4 Solution to Exercise 41.4 (level curves through critical points)

Exercise 41.4.  Let 𝑓(𝑥, 𝑦) = cos(𝑥) + sin(𝑦). Give an example of a saddle point of 𝑓 , and an
example of a local maximum of 𝑓 . Pick either of these two points and sketch the level curve of 𝑓
passing through it.

Let 𝑓(𝑥, 𝑦) = cos(𝑥) + sin(𝑦). The gradient is given by

∇𝑓 = ⟨− sin(𝑥), cos(𝑦)⟩.

So a critical point occurs at any point for which sin(𝑥) = cos(𝑦) = 0. (These are the points where
cos(𝑥) = ±1 and sin(𝑦) = ±1.)

Saddle point

To identify a saddle point, we compute the double derivatives:

𝑓𝑥𝑥 = − cos(𝑥)
𝑓𝑥𝑦 = 0

𝑓𝑦𝑦 = − sin(𝑦).

It’s enough to pick any (𝑥, 𝑦) for which 𝑓𝑥𝑥 and 𝑓𝑦𝑦 have opposite sign. One example would be (𝑥, 𝑦) =

(0, 3𝜋
2

) , among many others. At this value we get 𝑓(0, 3𝜋
2 ) = 0.

In fact, the complete list of saddle points is given as follows: whenever 𝑚 and 𝑛 are integers where
𝑚 + 𝑛 is odd, the point

(𝑥, 𝑦) = (𝑚𝜋, (𝑛 + 1
2
)𝜋)

is a saddle point, and these are all saddle points. The previous example was the special case 𝑚 = 0 and
𝑛 = 1.

The level curve of 𝑓  is the set of points (𝑥, 𝑦) with cos(𝑥) + sin(𝑦) = 0, so in fact every saddle point
lies on this level curve. In Figure 127, we draw the level curve below in blue, and the saddle points in
red. Since cos(𝑥) = sin(𝑦) whenever 𝑥 ± 𝑦 + 𝜋

2  is a multiple of 2𝜋, the level curves are a mesh of lines
running through the plane at diagonals.
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Figure 127: The level curve of 𝑓 = cos(𝑥) + sin(𝑦) = 0. Saddle points are marked
in red, and these are all the saddle points.

Local maximum

An example of a local maximum would be 0, 𝜋
2 , at which 𝑓(0, 𝜋

2 ) = cos 0 + sin(𝜋
2 ) = 2. In fact, the

level curve of 𝑓(𝑥, 𝑦) = 2 passes through all the local maximums, which occur only when cos 𝑥 =
sin 𝑦 = 1, meaning 𝑥 and 𝑦 − 𝜋

2  are integer multiples of 2𝜋. So the level curve of 𝑓  for the value 2
contains only a disjointed set of points, as shown in Figure 128.

Figure 128: The level curve of 𝑓 = cos(𝑥) + sin(𝑦) = 2, in green. Each green point
is a local maximum of 𝑓  (and these are the only local maximums).
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§52.5 Solution to Exercise 41.5 (optimization)

Exercise 41.5.  Compute the maximum and minimum value of 𝑥2 + 2𝑦2 + 4𝑥 over the region 𝑥2 +
𝑦2 ≤ 9.

Let 𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑦2 + 4𝑥. Let ℛ denote the region 𝑥2 + 𝑦2 ≤ 9, which is 2D, has no limit cases,
and boundary 𝑥2 + 𝑦2 = 9. We carry out our optimization recipe from Chapter 19.

0. There are no limit cases, but a boundary 𝑥2 + 𝑦2 = 9, a circle of radius 3.

1. First let’s find the critical points of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 2𝑦2 + 4𝑥. Write

∇𝑓 = (2𝑥 + 4
4𝑦 ).

The only point at which ∇𝑓 = 0 is (−2, 0), at which

𝑓(−2, 0) = −4.

2. The boundary of ℛ is 𝑥2 + 𝑦2 = 9. We use Lagrange multipliers on the boundary, which we
denote 𝒮, with constraint 𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 = 9.

0. The new region 𝒮 has no boundary and no limit cases.

1. Let’s find the LM-critical points for 𝑓  on 𝒮. Take the gradient of 𝑔 to get

∇𝑔 = (2𝑥
2𝑦).

The only point at which ∇𝑔 = 𝟎 is 𝑥 = 𝑦 = 0 which isn’t on 𝒮, so we don’t have to worry
about ∇𝑔 = 𝟎 the case. Now we instead solve

(2𝑥 + 4
4𝑦 ) = 𝜆(2𝑥

2𝑦).

The second equation says

4𝑦 = 𝜆2𝑦 ⟹ 𝜆 = 2  or 𝑦 = 0.

If 𝑦 = 0, we get the points (3, 0) and (−3, 0) which we need to check. We have

𝑓(3, 0) = 21
𝑓(−3, 0) = −3.

Now suppose instead 𝜆 = 2. Then 2𝑥 + 4 = 4𝑥 ⟹ 𝑥 = 2, and hence 𝑦 = ±
√

5. We check
those points

𝑓(2,
√

5) = 22

𝑓(2, −
√

5) = 22.

2. 𝒮 has no boundary to consider.

3. 𝒮 has no limit cases to consider.

3. ℛ has no limit cases to consider.

Of the five points we’ve checked, 𝑓(−2, 0) = −4  and 𝑓(2, ±
√

5) = 22  give the optimal values.
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§52.6 Solution to Exercise 41.6 (triple integral)

Exercise 41.6.  Use any method (recommended approach: change order of integration) to compute

∫
1

𝑥=0
∫

1

𝑦=𝑥
∫

1

𝑧=𝑦
𝑒𝑧3 d𝑧 d𝑦 d𝑥.

The region being integrated over can be succinctly described as

ℛ = {0 ≤ 𝑥 ≤ 𝑦 ≤ 𝑧 ≤ 1}.

Swap the order of integration so that 𝑧 is outermost:

∫
1

𝑥=0
∫

1

𝑦=𝑥
∫

1

𝑧=𝑦
𝑒𝑧3 d𝑧 d𝑦 d𝑥 = ∫

1

𝑧=0
∫

𝑧

𝑦=0
∫

𝑦

𝑥=0
𝑒𝑧3 d𝑥 d𝑦 d𝑧

= ∫
1

𝑧=0
𝑒𝑧3 ∫

𝑧

𝑦=0
∫

𝑦

𝑥=0
1 d𝑥 d𝑦 d𝑧

= ∫
1

𝑧=0
𝑒𝑧3 ∫

𝑧

𝑦=0
𝑦 d𝑦 d𝑧

= ∫
1

𝑧=0
𝑒𝑧3 𝑧2

2
d𝑦 d𝑧

= 1
6

∫
1

𝑧=0
𝑒𝑧33𝑧2 d𝑦 d𝑧

= 1
6
[𝑒𝑧3]

1

𝑧=0
= 𝑒 − 1

6
.

§52.7 Solution to Exercise 41.7 (curl)

Exercise 41.7.  Compute the real number 𝑐 for which

𝐅(𝑥, 𝑦, 𝑧) = ⟨7 cos(𝑥), cos(𝑦) cos(2𝑧), 𝑐 sin(𝑦) sin(2𝑧)⟩

is conservative. For that 𝑐, compute the maximum possible value of a line integral ∫
𝒞

𝐅 ⋅ d𝐫 across
all possible choices of some curve 𝒞 in ℝ3.

The curl of 𝐅 can be computed as

∇ × 𝐅 =

|
|
|
| 𝐞1

𝜕
𝜕𝑥

7 cos(𝑥)

𝐞2
𝜕
𝜕𝑦

cos(𝑦) cos(2𝑧)

𝐞3
𝜕
𝜕𝑧

𝑐 sin(𝑦) sin(2𝑧)|
|
|
|
=

(
((
(𝑐 cos(𝑦) sin(2𝑧) − cos(𝑦) ⋅ (−2 sin(2𝑧))

0
0 )

))
)

which is identically zero only for 𝑐 = −2 . For that value of 𝑐, we can recover a potential function 𝑓
by writing
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𝜕𝑓
𝜕𝑥

= 7 cos(𝑥) ⟹ 𝑓 = 7 sin(𝑥) + 𝐶1(𝑦, 𝑧)

𝜕𝑓
𝜕𝑦

= cos(𝑦) cos(2𝑧) ⟹ 𝑓 = sin(𝑦) cos(2𝑧) + 𝐶2(𝑧, 𝑥)

𝜕𝑓
𝜕𝑧

= −2 sin(𝑦) sin(2𝑧) ⟹ 𝑓 = sin(𝑦) cos(2𝑧) + 𝐶3(𝑥, 𝑦).

Hence, the potential function can be extracted:

𝑓(𝑥, 𝑦, 𝑧) = 7 sin(𝑥) + sin(𝑦) cos(2𝑧).

For a curve 𝒞 starting at 𝑃  and ending at 𝑄, we have

∫
𝒞

𝑓 ⋅ d𝐫 = 𝑓(𝑄) − 𝑓(𝑃).

However, since both the trig functions sin and cos take values in [−1, 1], it’s easy to see that max 𝑓 = 8
(for example 𝑓(𝜋

2 , 𝜋
2 , 0) = 8) while min 𝑓 = −8 (for example 𝑓(−𝜋

2 , −𝜋
2 , 0) = −8). Hence the largest

possible value of the line integral is 8 − (−8) = 16 .

§52.8 Solution to Exercise 41.8 (flux)

Exercise 41.8.  Let

𝐅(𝑥, 𝑦, 𝑧) = ⟨𝑥 + 𝑒𝑦 + 𝑧3, 𝑒𝑥 + 𝑦 + 𝑧3, 𝑧⟩.

Let 𝒮 be the surface defined by 𝑥2 + 𝑦2 = 100 and 7 ≤ 𝑧 ≤ 9, with normal vector oriented outwards
(thus 𝒮 is the curved part of a cylinder). Compute the divergence of 𝐅. Then compute the flux of 𝐅
through 𝒮. (Recommended approach: add two “lids” to 𝒮, calculate flux through the lids by hand,
then use the divergence theorem.)

The divergence is ∇ ⋅ 𝐅 = 𝜕
𝜕𝑥(𝑥 + 𝑒𝑦 + 𝑧3) + 𝜕

𝜕𝑦(𝑒𝑥 + 𝑦 + 𝑧3) + 𝜕
𝜕𝑧𝑧 = 1 + 1 + 1 = 3.

Given 𝒮, we add two lids, 𝒮top and 𝒮bottom. The top lid is the flat surface given by 𝑧 = 9 and 𝑥2 +
𝑦2 ≤ 100, with normal vector oriented upwards. The bottom lid is the flat surface given by 𝑧 = 7 and
𝑥2 + 𝑦2 ≤ 100, with normal vector oriented outwards. Finally, let 𝒯 denote the cylinder 1 ≤ 𝑧 ≤ 2
and 𝑥2 + 𝑦2 ≤ 100, which is enclosed by 𝒮, 𝒮top, 𝒮bottom. Then the divergence theorem states that

∭
𝒯

∇ ⋅ 𝐅 d𝑉 = ∬
𝒮top

𝐅 ⋅ 𝐧 d𝑆 + ∬
𝒮bottom

𝐅 ⋅ 𝐧 d𝑆 + ∬
𝒮

𝐅 ⋅ 𝐧 d𝑆.

The fourth quantity is the flux we want, so our strategy is to calculate the first three quantities.

The divergence is straightforward because its constant:

∭
𝒯

∇ ⋅ 𝐅 d𝑉 = ∭
𝒯

3 d𝑉 = 3 Vol(𝒯) = 3 ⋅ 100𝜋 ⋅ 2 = 600𝜋

(the volume of a cylinder with height 2 and base of area 100𝜋).

For the top lid, we recall that for a flat surface parallel to the 𝑥𝑦-plane, we have 𝐧 d𝑆 =
±⟨0, 0, 1⟩ d𝑥 d𝑦. For the top lid, we thus have
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∬
𝒮top

𝐅 ⋅ 𝐧 d𝑆 = ∬
𝒮top

⟨𝑥 + 𝑒𝑦 + 729, 𝑒𝑥 + 𝑦 + 729, 9⟩ ⋅ ⟨0, 0, 1⟩ d𝑥 d𝑦

= ∬
𝒮top

9 d𝑥 d𝑦

= 9 Area(𝒮top) = 900𝜋.

For the bottom lid, we instead have

∬
𝒮bottom

𝐅 ⋅ 𝐧 d𝑆 = ∬
𝒮bottom

⟨𝑥 + 𝑒𝑦 + 343, 𝑒𝑥 + 𝑦 + 343, 7⟩ ⋅ ⟨0, 0, −1⟩ d𝑥 d𝑦

= ∬
𝒮bottom

(−7) d𝑥 d𝑦

= −7 Area(𝒮bottom) = −700𝜋.

Hence, the quantities in the divergence theorem become

600𝜋 = 900𝜋 − 700𝜋 + ∬
𝒮

𝐅 ⋅ 𝐧 d𝑆

so ∬
𝒮

𝐅 ⋅ 𝐧 d𝑆 = 400𝜋 .
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Part Mike: Appendix
Nothing past this point is for exam, obviously.

Chapter 53. If you are thinking of majoring in math…
During the course, one of the students asked me about academic advice saying they wanted to become
a math major at MIT. If that also describes you, here’s what I told them. The course numbers here are
with respect to MIT, but this advice should hold equally well at other universities.

§53.1 The two starter topics are algebra and analysis, not calculus
It may come as a surprise to you that 18.02 isn’t a prerequisite, even indirectly, for most upper-division
math classes (18.𝑥𝑦𝑧 for 𝑥 ≥ 1). The two most important areas to take in pure math are 18.100 (real
analysis) and 18.701–18.702 (algebra); these are sort of the barrier between the world of pre-university
math and serious math. Once you clear these two classes, the floodgates open and the world of modern
math is yours to explore (see the dependency chart in the Napkin for more on this).

For example, if you take 18.701, the instructor will literally throw away the “definitions” of linear
transformations (and others) you learned in 18.02 and replace them with the “correct” ones. You’ve
seen me do this already. Similarly, you will have new rigorous definitions of derivatives and integrals.
In some sense, 18.100 is really redoing all of 18.01 and 18.02 with actual proofs.

§53.2 Proof-writing
A prerequisite to both 18.100 (real analysis) and 18.701–18.702 (algebra) isn’t any particular theory, but
proof experience, and that’s the biggest priority if you don’t have that yet. (And I don’t mean two-
column proofs in 9th grade geometry. Two-column proofs were something made up for K-12 education
and never used again.)

At MIT, I’ve been told in recent years there’s a class called 18.090 for this. This class is new enough I
don’t even have any secondhand accounts, but if Poonen is on the list of instructors who developed
the course, I trust him. If you’re at a different school, my suggestion would be to ask any of the math
professors a question along the lines of “I’d like to major in math, but I don’t have proof experience
yet. Which class in your department corresponds to learning proof arguments?”. They should know
exactly what you’re talking about.

Alternatively, if you are willing to study proof-writing independently, the FAQ https://web.
evanchen.cc/faq-contest.html#C-5 on my website has some suggestions. In particular, if you’re
a textbook kind of person, the book I used growing up was Rotman’s Journey into Math: An Intro-
duction to Proofs, available at https://store.doverpublications.com/products/9780486453064
it worked well for me. I’m sure there are other suitable books as well.

§53.3 The three phases of math education (from Tao’s blog)
Let me put proof-writing into the bigger framework. Terence Tao, on his blog, describes a division
of mathematical education into three stages. The descriptions that follows are copied verbatim from
that link:

1. The “pre-rigorous” stage, in which mathematics is taught in an informal, intuitive manner, based
on examples, fuzzy notions, and hand-waving. (For instance, calculus is usually first introduced
in terms of slopes, areas, rates of change, and so forth.) The emphasis is more on computation
than on theory.

2. The “rigorous” stage, in which one is now taught that in order to do maths “properly”, one needs
to work and think in a much more precise and formal manner (e.g. re-doing calculus by using
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epsilons and deltas all over the place). The emphasis is now primarily on theory; and one is
expected to be able to comfortably manipulate abstract mathematical objects without focusing
too much on what such objects actually “mean”.

3. The “post-rigorous” stage, in which one has grown comfortable with all the rigorous foundations
of one’s chosen field, and is now ready to revisit and refine one’s pre-rigorous intuition on the
subject, but this time with the intuition solidly buttressed by rigorous theory. (For instance, in
this stage one would be able to quickly and accurately perform computations in vector calculus
by using analogies with scalar calculus, or informal and semi-rigorous use of infinitesimals, big-
O notation, and so forth, and be able to convert all such calculations into a rigorous argument
whenever required.) The emphasis is now on applications, intuition, and the “big picture”.

These notes are still in the first stage. The introduction-to-proofs class at your school will essentially
be the beginning of the second stage.
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Chapter 54. Proofs of the dot product property

§54.1 Deriving the geometric definition of dot product from the algebraic one
This proof is short, but harder to come up with.

We have two definitions in play and we want to show they coincide, which makes notation awkward.
So in what follows, our notation 𝐮 ⋅ 𝐯 will always refer to the algebraic definition; and we will prove
that 𝐮 ⋅ 𝐯 = |𝐮| |𝐯| cos 𝜃.

The algebraic definition is already enough to tell us that

𝐰 ⋅ 𝐰 = |𝐰|2 (18)

by the Pythagorean theorem: if 𝐰 = ⟨𝑎1, …, 𝑎𝑛⟩ then both sides equal 𝑎2
1 + … + 𝑎2

𝑛.

Let 𝐶 denote the origin, and let 𝐴 and 𝐵 denote the endpoints of 𝐮 and 𝐯 when we draw them as
arrows emanating from the origin. Hence 𝐯 − 𝐮 is a vector pointing from 𝐴 to 𝐵.

Figure 129: We use the law of cosines on triangle 𝐴𝐵𝐶 together with three
applications of Equation 18 to show the geometric definition of dot product.

We now use Equation 18 three times as follows:

𝐴𝐵2 = (𝐯 − 𝐮)(𝐯 − 𝐮)
= 𝐯 ⋅ 𝐯 + 𝐮 ⋅ 𝐮 − 2𝐮 ⋅ 𝐯
= 𝐶𝐴2 + 𝐶𝐵2 − 2𝐮 ⋅ 𝐯.

However, the law of cosines on triangle 𝐴𝐵𝐶 also tells us that

𝐴𝐵2 = 𝐶𝐴2 + 𝐶𝐵2 − 2(𝐶𝐴)(𝐶𝐵) cos 𝜃

where 𝜃 is the angle between 𝐮 and 𝐯. Setting the two equations for 𝐴𝐵2 equal gives

𝐮 ⋅ 𝐯 = (𝐶𝐴)(𝐶𝐵) cos 𝜃.

As |𝐮| = 𝐶𝐴 and |𝐯| = 𝐶𝐵, the proof is complete.

§54.2 Deriving the algebraic definition of dot product from the geometric one
The proof in Section 54.1 might seem magical. Indeed, it’s so short because it’s cheating in some way:
it starts with the algebraic definition. But if you’ve never seen the dot product before, that algebraic
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definition is unnatural; you wouldn’t have any idea to write the expression 𝑎1𝑏1 + … + 𝑎𝑛𝑏𝑛. So in
this section we give a proof that starts from the geometric formula and shows how you would come
up with 𝑎1𝑏1 + … + 𝑎𝑛𝑏𝑛.

So this time our convention is flipped from Section 54.1: in what follows, our notation 𝐮 ⋅ 𝐯 will always
refer to the geometric definition; that is 𝐮 ⋅ 𝐯 ≔ |𝐮| |𝐯| cos 𝜃. And our goal is to show that it matches
the algebraic definition.

We will assume that |𝐮| = 1 (i.e. 𝐮 is a unit vector) so that 𝐮 ⋅ 𝐯 is the length of the projection of 𝐯
onto 𝐮. This is OK to assume because in the general case one just scales everything by |𝐮|.

Easy special case

As a warmup, try to show that if 𝐮 = (𝑎
𝑏) is any vector, then 𝐮 ⋅ 𝐞1 = 𝑎. (This is easy. The projection

of 𝐮 onto 𝐞1 is literally 𝑎.)

Main proof

For concreteness, specialize to ℝ2 and consider 𝐮 ⋅ 𝐯 where 𝐮 = (𝑎
𝑏) is a unit vector (i.e. 𝐮 = 1), and

𝐯 = (𝑥
𝑦) is any vector in ℝ2. Then we want to show that the projection of 𝐯 onto 𝐮 has length 𝑥𝑎 +

𝑦𝑏. See Figure 130.

Figure 130: Proof that the dot product is given by the projection

The basic idea is to decompose 𝐯 = 𝑥𝐞1 + 𝑦𝐞2. The length of projection of 𝐯 onto 𝐮 can be decomposed
then into the lengths of projections of 𝑥𝐞1 and 𝑦𝐞2. (To see this, tilt your head so the green line is
horizontal; recall that the black quadrilateral is a rectangle, hence also a parallelogram). In other words,

𝐮 ⋅ 𝐯 = 𝐮 ⋅ (𝑥𝐞1 + 𝑦𝐞2) = 𝑥(𝐮 ⋅ 𝐞1) + 𝑦(𝐮 ⋅ 𝐞2).

But we already did the special cases before:
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𝐮 ⋅ 𝐞1 = 𝑎
𝐮 ⋅ 𝐞2 = 𝑏.

Hence, we get the right-hand side is

𝐮 ⋅ 𝐯 = 𝑥𝑎 + 𝑦𝑏,

as advertised. In summary, by using the black parallelogram, we were able to split 𝐮 ⋅ 𝐯 into two easy
cases we already know how to do.

The same idea will work in ℝ3 if you use 𝐯 = 𝑥𝐞1 + 𝑦𝐞2 + 𝑧𝐞3 instead, and replace the parallelogram
with a parallelepiped, in which case one now has 3 easy cases. And so on in 𝑛 dimensions.
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Chapter 55. What does 𝑖𝑖 mean?
When learning mathematics, I believe definitions are actually more important than theorems. A lot
of confusion comes from not having been given careful definitions of the objects. (See https://web.
evanchen.cc/handouts/NaturalProof/NaturalProof.pdf for more on that.)

So in general any time you are confused about whether an operation is “legal” — and this is true in all
of math, not just 18.02 — the first thing to really check whether you have been given a precise
definition. The endless Internet debates on whether 0 is even or whether 0.999… = 1 or whether 1𝑥  is
a continuous function (hint: yes) are all examples of people who don’t know the definitions of objects
they’re discussing.

§55.1 Real exponents, real base
With that in mind, let’s fix 𝑎 > 0 a positive real number and think about what 𝑎𝑟 should mean.

Definition 55.1 (18.100 definition).
• When 𝑛 > 0 is an integer, then 𝑎𝑛 ≔ 𝑎 ⋅ … ⋅ 𝑎, where 𝑎 is repeated 𝑛 times.
• Then we let 𝑎−𝑛 ≔ 1

𝑎𝑛  for each integer 𝑛 > 0.
• When 𝑚

𝑛  is a rational number, 𝑎𝑚
𝑛  means the unique 𝑏 > 0 such that 𝑎𝑚 = 𝑏𝑛. (In 18.100, one

proves this 𝑏 is unique and does exist.)
• It’s less clear what 𝑎𝑥 means when 𝑥 ∈ ℝ, like 𝑥 =

√
2 or 𝑥 = 𝜋. I think usually one takes a

limit of rational numbers 𝑞 close to 𝑥 and lets 𝑎𝑥 ≔ lim𝑞→𝑥 𝑎𝑞 . (In 18.100, one proves this limit
does in fact exist.)

§55.2 Complex exponents, real base
But when 𝑧 ∈ ℂ, what does 𝑎𝑧 mean? There’s no good way to do this.

You likely don’t find an answer until 18.112, but I’ll tell you now. In 18.100 you will also prove that the
Taylor series

𝑒𝑥 = ∑
𝑘≥0

𝑥𝑘

𝑘!

is correct, where 𝑒 ≔ ∑𝑘≥0
1
𝑘!  is Euler’s constant.

So then when you start 18.112, we will flip the definition on its head:

Definition 55.2 (18.112 definition).  If 𝑧 ∈ ℂ, we define

𝑒𝑧 ≔ ∑
𝑘≥0

𝑧𝑘

𝑘!
.

Then for 𝑎 > 0, we let 𝑎𝑧 = 𝑒𝑧 log 𝑎.

To summarize: in 18.100, we defined exponents in the way you learned in grade school and then proved
there was a Taylor series. But in 18.112, you start with the Taylor series and then prove that the rules
in grade school you learned still applied.

And checking this consistency requires work. Because we threw away Definition 55.1, identities like
𝑒𝑧1+𝑧2 = 𝑒𝑧1𝑒𝑧2  and (𝑒𝑧1)𝑧2 = 𝑒𝑧1𝑧2  are no longer “free”: they have to be proved rigorously too. (To
be fair, they need to be proved in 18.100 too, but there it’s comparatively easier.) I think you shouldn’t
be surprised they’re true; we know it’s true for ℝ, so it’s one heck of a good guess. But you shouldn’t
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take these on faith. At least get your professor to acknowledge they require a (non-obvious) proof,
even if you aren’t experienced enough to follow the proof yourself yet.

Anyway, if we accept this definition, then Euler’s formula makes more sense:

Theorem 55.3 (Euler). We have

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃.

The point is that cosine and sine also have a Taylor series that is compatible with definition:

cos(𝑥) = 1 − 𝑥2

2!
+ 𝑥4

4!
− 𝑥6

6!
+ …

sin(𝑥) = 𝑥 − 𝑥3

3!
+ 𝑥5

5!
− 𝑥7

7!
+ ….

(19)

And if you put these together, you can verify Theorem 55.3, up to some technical issues with infinite
sums. I think the professor even showed this in class:

cos(𝜃) + 𝑖 sin(𝜃) = (1 − 𝜃2

2!
+ 𝜃4

4!
− …) + (𝜃 − 𝜃3

3!
+ 𝜃5

5!
− …)𝑖

= 1 + (𝜃𝑖) + (𝜃𝑖)2

2!
+ (𝜃𝑖)3

3!
+ 𝜃𝑖4

4!
+ (𝜃𝑖)5

5!
= 𝑒𝑖𝜃.

§55.3 Complex exponents, complex base
But what about 𝑖𝑖? Our Definition 55.2 above only worked for positive real numbers 𝑎 > 0. Here, it
turns out you’re out of luck. There isn’t any way to define 𝑖𝑖 in a way that makes internal sense. The
problem is that there’s no way to take a single log of a complex number, so the analogy with log 𝑎
breaks down.

Put another way: there’s no good way to assign a value to log(𝑖), because 𝑒𝑖𝜋/2 = 𝑒5𝑖𝜋/2 = … are all
equal to 𝑖. You might hear this phrased “complex-valued logarithms are multivalued”. You can have
some fun with this paradox:

𝑖 = 𝑒𝑖𝜋/2 ⟹ 𝑖𝑖 = 𝑒−𝜋/2

𝑖 = 𝑒5𝑖𝜋/2 ⟹ 𝑖𝑖 = 𝑒−5𝜋/2.

Yeah, trouble.

§55.4 Trig functions with complex arguments
On the other hand, cos(𝑖) can be defined: use the Taylor series Equation 19, like we did for 𝑒𝑧. To spell
it out:

Definition 55.4 (18.112 trig definitions).  If 𝑧 is a complex number, we define

cos(𝑧) ≔ 1 − 𝑧2

2!
+ 𝑧4

4!
− 𝑧6

6!
+ …

sin(𝑧) ≔ 𝑧 − 𝑧3

3!
+ 𝑧5

5!
− 𝑧7

7!
+ ….

If you do this, then Definition 55.2 implies the following identities are kosher:
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Proposition 55.5.  Under Definition 55.4, we have the identities

cos(𝑧) ≔ 𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2

sin(𝑧) ≔ 𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
.

Proof.  If you write out 𝑒𝑖𝑧 = ∑ (𝑖𝑧)𝑘

𝑘!  and 𝑒−𝑖𝑧 = ∑ (−𝑖𝑧)𝑘

𝑘!  and add them, the odd 𝑘’s cancel and the
even 𝑘’s don’t, which gives you

𝑒𝑖𝑧 + 𝑒−𝑖𝑧 = 2 − 2 ⋅ 𝑧2

2!
+ 2 ⋅ 𝑧4

4!
− 2 ⋅ 𝑧6

6!
+ ….

So dividing by 2, we see cos(𝑧) on the right-hand side, as needed. The argument with sin is similar,
but this time the even 𝑘’s cancel and you divide by 2𝑖 instead. □

So for example, from Proposition 55.5, we conclude for example that

cos(𝑖) =
𝑒 + 1

𝑒
2

.

Strange but true.

§55.5 The future: what are 18.100 and 18.112 anyway?
First I need to tell you what analysis is. When students in USA ask me what analysis is, I sometimes
say “calculus but you actually prove things”. But that’s actually a bit backwards; it turns out that in
many parts of the world, there is no topic called “calculus”.²⁹ It would be more accurate to say calculus
is analysis with proofs, theorems, and coherent theorem statements deleted, and it only exists in some
parts of the world (which is why mathematicians will tend to look down on it).

With that out of the way,

• 18.100 is real analysis, i.e. analysis of functions over ℝ
• 18.112 is complex analysis, i.e. analysis of functions over ℂ.

If you ever take either class, I think the thing to know about them is:

Complex analysis is the good twin and real analysis is the evil one: beautiful formulas and
elegant theorems seem to blossom spontaneously in the complex domain, while toil and pathol-
ogy rule the reals.

— Charles Pugh, in Real Mathematical Analysis

²⁹See https://web.evanchen.cc/faq-school.html#S-10.
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Chapter 56. Saddle point simulation code for Section 17.3
import random

random.seed("18.02 Fall 2024")

def classify_critical_points(a3, a2, a1, b3, b2, b1):
    # f = a3 * x**3 + a2 * x**2 + a1 * x + b3 * y**3 + b2 * y**2 + b1 * y
    # the constant term has no effect on the critical points, so we ignore it
    assert a3 != 0 and b3 != 0

    # fx = 3 a3 x^2  + 2 a2 x + 1; fy = 3 b3 y^2  + 2 b2 y + 1
    # If either of these have negative discriminant, rage-quit
    if 4 * a2 * a2 - 12 * a3 * a1 < 0 or 4 * b2 * b2 - 12 * b3 * b1 < 0:
        return (0, 0, 0)

    # Otherwise, let's get the two critical values
    x1 = (-2 * a2 + (4 * a2 * a2 - 12 * a3 * a1) ** 0.5) / (6 * a3)
    x2 = (-2 * a2 - (4 * a2 * a2 - 12 * a3 * a1) ** 0.5) / (6 * a3)
    y1 = (-2 * b2 + (4 * b2 * b2 - 12 * b3 * b1) ** 0.5) / (6 * b3)
    y2 = (-2 * b2 - (4 * b2 * b2 - 12 * b3 * b1) ** 0.5) / (6 * b3)

    local_minima, local_maxima, saddle_points = 0, 0, 0

    for x0 in (x1, x2):
        for y0 in (y1, y2):
            fxx = 6 * a3 * x0 + 2 * a2
            fyy = 6 * b3 * x0 + 2 * b2
            assert fxx != 0 and fyy != 0  # give up lol
            if fxx > 0 and fyy > 0:
                local_minima += 1
            elif fxx < 0 and fyy < 0:
                local_maxima += 1
            else:
                saddle_points += 1
    return (local_minima, local_maxima, saddle_points)

local_minima = 0
local_maxima = 0
saddle_points = 0

N = 10**6
for _ in range(10000):
    a1 = random.randint(-N, N + 1)
    a2 = random.randint(-N, N + 1)
    a3 = random.randint(-N, N + 1)
    b1 = random.randint(-N, N + 1)
    b2 = random.randint(-N, N + 1)
    b3 = random.randint(-N, N + 1)
    u, v, w = classify_critical_points(a3, a2, a1, b3, b2, b1)
    local_minima += u
    local_maxima += v
    saddle_points += w
total = local_minima + local_maxima + saddle_points
print(local_minima / total, local_maxima / total, saddle_points / total, total)
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